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Patch-based Output Space Adversarial Learning
for Joint Optic Disc and Cup Segmentation
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Abstract—Glaucoma is a leading cause of irreversible blind-
ness. Accurate segmentation of the optic disc (OD) and cup
(OC) from fundus images is beneficial to glaucoma screening and
diagnosis. Recently, convolutional neural networks demonstrate
promising progress in joint OD and OC segmentation. However,
affected by the domain shift among different datasets, deep
networks are severely hindered in generalizing across different
scanners and institutions. In this paper, we present a novel patch-
based Output Space Adversarial Learning framework (pOSAL)
to jointly and robustly segment the OD and OC from different
fundus image datasets. We first devise a lightweight and efficient
segmentation network as a backbone. Considering the specific
morphology of OD and OC, a novel morphology-aware segmen-
tation loss is proposed to guide the network to generate accurate
and smooth segmentation. Our pOSAL framework then exploits
unsupervised domain adaptation to address the domain shift
challenge by encouraging the segmentation in the target domain
to be similar to the source ones. Since the whole-segmentation-
based adversarial loss is insufficient to drive the network to
capture segmentation details, we further design the pOSAL in
a patch-based fashion to enable fine-grained discrimination on
local segmentation details. We extensively evaluate our pOSAL
framework and demonstrate its effectiveness in improving the
segmentation performance on three public retinal fundus image
datasets, i.e., Drishti-GS, RIM-ONE-r3, and REFUGE. Further-
more, our pOSAL framework achieved the first place in the OD
and OC segmentation tasks in MICCAI 2018 Retinal Fundus
Glaucoma Challenge.

Index Terms—Optic disc segmentation, optic cup segmentation,
deep learning, domain adaptation, adversarial learning

I. INTRODUCTION

GLAUCOMA is a chronic disease that damages the optic
nerves and leads to irreversible vision loss [2]. Screening

and detecting glaucoma in its early stage are beneficial to
preserve the vision of patients. Currently, analyzing the optic
nerve head and retinal nerve fiber layer is a practical method
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Fig. 1. Segmentation degradation due to domain shift. Domain D1 stands
for the ORIGA dataset, while domain D2 stands for the Drishti-GS dataset.
In the Prediction column, the black and gray colors represent the optic cup
(OC) and optic disc (OD) segmentation, respectively. The two numbers are
the dice coefficients for the OC and OD segmentation results, showing that
the dice coefficients degrade from 0.87 to 0.62 for OC and from 0.95 to 0.73
for OD, when we use the M-Net [1] trained on D1 to test on D2. Our method
overcomes the problem; while it is trained on D1, it still can achieve high
dice coefficients of 0.86 and 0.95 for OC and OD, respectively, when using
it on D2.

for glaucoma detection. However, such analysis is predomi-
nantly subjective and often suffers from the high intra- and
inter-observer variations [3]. With the recent advancement in
optical fundus imaging, objective and quantitative glaucoma
assessments based on the morphology of optic disc (OD)
and optic cup (OC), and the cup-to-disc ratio (CDR) become
available [2]. CDR is the ratio of vertical cup diameter to ver-
tical disc diameter. A large CDR value often indicates a high
risk of glaucoma. Manually acquiring those measurements is
time-consuming. Accurately segmenting OD and OC from the
fundus image via automatic solutions would prompt the large-
scale glaucoma screening [1].

Remarkable performance on OD and OC segmentation are
recently reported with the development of deep learning [1],
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[4], [5]. Assuming the training and testing samples have the
same appearance distribution, training dataset consisting of a
large amount of pixel-level annotations helps the deep net-
works learn the segmentation on the testing dataset. However,
it is difficult for the network to obtain good segmentation
performance on new datasets. For example, the state-of-the-art
network, like M-Net [1] performs well on its specific testing
dataset, i.e., ORIGA [6], but generalizes poorly on some other
datasets; see Fig. 1. Domain shift, which refers to the differ-
ence in appearance distribution between the different datasets,
is the main cause for the poor generalization ability of deep
networks [7]–[9]. Indeed, domain shift among various retinal
fundus image datasets is very common. Many public retinal
image datasets, e.g., Drishti-GS [10], RIM-ONE-r3 [11], and
REFUGE, are acquired with obvious appearance discrepancy
resulting from different scanners, image resolution ratios, light
source intensities, and parameter settings (Fig. 1). Overcoming
the domain shift is highly desired to enhance the robustness
of deep networks.

To reduce the performance degradation caused by domain
shift, domain adaptation methods [8], [12] are developed to
generalize the deep networks trained in a source domain to
work more effectively in some other target domains with
varying appearance. A vanilla solution is to fine-tune the
segmentation network with a full-supervision provided by a
large quantity of annotated samples from the target domain.
However, preparing for the extra annotations in the target
domain is highly time-consuming and expensive, and often
suffers from inter-observer variations; moreover, such a solu-
tion is impractical for large-scale glaucoma screening. There-
fore, an unsupervised domain adaptation approach without
requiring extra annotations is highly desirable in real clini-
cal scenarios. Furthermore, leveraging the knowledge shared
across different domains can help the deep networks maintain
their performance under various imaging conditions. For this
joint OD and OC segmentation task, spatial and morphological
structures in the output space (i.e., segmentation mask) are
shared by different datasets and thus are beneficial to the
mask prediction. For example, the OC is always contained
inside the OD region, while both the OC and OD have ellipse-
like shapes. Such spatial correlation information is crucial for
domain adaptation but is typically ignored by existing deep-
network-based segmentation methods.

In this work, we aim at jointly segmenting the OD and
OC in retinal fundus images from different domains by
introducing a novel patch-based Output Space Adversarial
Learning framework (pOSAL). As the core workhorses in the
framework, the lightweight network architecture for efficacy
and the unsupervised domain adaptation for domain-invariance
contribute to our promising performance. Our framework
explores the annotated source domain images and unannotated
target domain images to reduce the performance degradation
on target domain. We first develop a representative segmen-
tation network equipped with a morphology-aware segmen-
tation loss to produce compelling segmentations. Effectively
combining the designs of DeepLabv3+ [13] and depth-wise
separable convolutional network MobileNetV2 [14], our seg-
mentation network achieves a good balance between extracting

multi-scale discriminative context features and computational
burden. The proposed morphology-aware segmentation loss
further guides the network to capture mask smoothness priors
and therefore improves the segmentation. To overcome the
domain shift challenge, inspired by [15], we adopt the output
space adversarial learning via utilizing the spatial and mor-
phological structures of the segmentation mask. Specifically,
we attach a discriminator network to learn the abstract spatial
and shape information from the label distributions of the
source domain, and then employ the adversarial learning
procedure to encourage the segmentation network to generate
consistent predictions in a shared output space (e.g., the similar
spatial layout and structure context) for the images in both
source and target domains. Since the whole-segmentation-
based adversarial scheme is weak in capturing segmentation
details, we devise a patch-wise discriminator to capture the
local statistics of the output space and guide the segmentation
network to focus on the local structure similarity in the image
patches. We extensively evaluate our pOSAL framework for
the joint OD and OC segmentation on three public fundus
image datasets (Drishti-GS, RIM-ONE-r3, and REFUGE). The
pOSAL framework achieves state-of-the-art results, bringing
significant improvements with the proposed patch-based out-
put space adversarial learning.

Our main contributions are summarized as follows:
1) We exploit unsupervised domain adaptation for joint

OD and OC segmentation over different retinal fundus
image datasets. The presented novel pOSAL framework
enables patch-based output space domain adaptation to
reduce the segmentation performance degradation on
target datasets with domain shift.

2) We design an efficient segmentation network equipped
with a new morphology-aware segmentation loss to
produce plausible OD and OC segmentation results.
The morphological segmentation loss is able to guide
the network to capture the mask smoothness priors for
accurate segmentation.

3) We conduct extensive experiments on three public retinal
fundus image datasets to demonstrate the effectiveness
of the pOSAL framework. Furthermore, we achieved the
first place in the OD and OC segmentation task of the
MICCAI 2018 Retinal Fundus Glaucoma Challenge.

The remainders of this paper are organized as follows. We
review the related techniques in Section II and elaborate the
pOSAL framework in Section III. The experiments and results
are presented in Section IV. We further discuss our method in
Section V and draw the conclusions in Section VI.

II. RELATED WORKS

The OD and OC segmentation from retinal fundus images
are non-trivial and have been independently studied for years.
For the OD segmentation, early works employed the hand-
crafted visual features, including the image gradient informa-
tion [16], features from stereo image pairs [17], local texture
features [18] and superpixel-based classifier [19]. The OC
segmentation is more challenging than OD considering the
lower-contrast boundary [1]. Hand-crafted features are also
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Fig. 2. Overview of the pOSAL framework. ROI regions (IcT , IcS ) are firstly extracted from the source (IS ) and target (IT ) domain images and then fed
into the segmentation network S. The discriminator D in a patch-based adversarial learning scheme enforces the similarity between the target image prediction
(ycT ) and source ones (ycS ). The segmentation network is supervised by the segmentation loss (Lseg) computed on the prediction of source domain images
(ycS ) and the adversarial loss (Ladv) calculated on the prediction of unlabeled target domain images (ycT ).

investigated for this task [18]–[23]. Recently, some works were
developed for joint OD and OC segmentation. Zheng et al. [24]
designed a graph-cut framework. In [25], structure constraints
were utilized for joint OD and OC segmentation.

Convolutional neural networks (CNNs) have shown remark-
able performance on retinal fundus image segmentation [1],
[4], [5], [26]–[29], and outperformed traditional hand-crafted
features based methods [30]. Effective network architecture
design is the focus of these deep learning based methods. For
example, Maninis et al. [4] presented the DRIU network com-
bining multi-level features to segment vessels and optic disc. A
disc-aware network [28] was designed for glaucoma screening
by an ensemble of different feature streams in the network.
ResU-net was presented in [5] with an adversarial module
between the ground truth and segmentation mask to improve
the final segmentation. Based on the U-net, Fu et al. [1]
developed the M-Net for joint OD and OC segmentation.
Although promising, CNN-based methods are often degraded
when the training and testing datasets are from different
domains. Our output space adversarial learning framework
helps address this domain shift challenge and enhance the
segmentation performance on different testing domains.

Very recently, domain adaptation techniques were explored
in the field of medical image analysis [8], [9], [31]–[33].
Previous methods [8], [9] performed the latent feature align-
ment to explore a shared feature space on the source and
target domain through the adversarial learning. Another cut-
in point for domain adaptation is to transfer the images
from the target domain to the source domain, and then to
apply the trained network to the transferred images [32], [34],
[35]. Among these methods, Cycle-GAN [36] is a popular
technique to transfer images over different domains. The
key characteristic of these approaches is to generate style-
realistic images in another domain without using paired data.
Extra constraints are needed to guide this unsupervised style
transfer process. For example, Zhang et al. [34] employed two
segmentation networks stacked behind the cycle-GAN to act
as an extra supervision on the generators to enhance the shape-
consistency. In [35], a semantic-aware adversarial learning was

introduced to prevent the semantic distortion during the image
transformation. In [32], a task-driven generative adversarial
network was developed to enforce the segmentation consis-
tency. However, these methods ignore the property that for
segmentation tasks, the label space (output space) of different
domains are usually highly correlated in terms of the spatial
structures and geometry. Therefore, instead of exploring a
shared feature space or transferring the input images, we use
a patch-based output space adversarial learning to conduct the
domain adaptation for joint OD and OC segmentation.

III. METHODOLOGY

Fig. 2 overviews the pOSAL framework for joint OD and
OC segmentation from retinal fundus images; our framework
has three modules: an ROI extraction network E, a segmen-
tation network S, and a patch-level discriminator D. Due to
the small area ratio of OD over the whole image, the ROI
regions, IcS and IcT , are firstly extracted from the source
domain images IS and target domain images IT , respectively
(Section III-A). Then, the cropped source and target images
IcS and IcT are fed into the segmentation network S to
produce the OD and OC predictions (Section III-B). A patch-
level discriminator D is utilized to encourage the segmentation
network to produce similar outputs for the source domain
images IcS and target domain images IcT (Section III-C). The
whole framework is finally optimized by adversarial learning.

A. ROI Extraction

To perform accurate segmentation, we first locate the po-
sition of OD and then crop the disc region from the orig-
inal image for further segmentation. To achieve that, we
build an extraction network E to segment the OD and crop
the ROI image according to the segmentation result. The
extraction network is configured to segment the optic disc
to provide a rough guidance. Although only trained with
the source domain images and labels, as our experiments
will demonstrate, the trained extraction network generalizes
well on the target domain images due to the strong and
visible structure characteristics of the optic disc in both source
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Fig. 3. Architecture of the segmentation network. It is based on DeepLabv3+
but with MobileNetV2 as the network backbone.

and target domain images. Therefore, the disc regions of
both domain images can be obtained by the same extraction
network. Specifically, our extraction network follows a U-
Net [37] architecture and is trained with resized source images
(640× 640) and corresponding OD labels. The trained U-net
can be used for coarse OD prediction in both domains. We
then map the predicted OD mask back to the original image
and crop a sub-image with the size of 512 × 512 based on
the center of the predicted OD mask. The extraction network
E has 19 convolutional layers, and the last one is a 1 × 1
convolutional layer with one output feature channel for the
OD segmentation. We use the Sigmoid activation function to
generate the probability map of OD.

B. Segmentation Network with Morphology-aware Loss

We conduct the OD and OC segmentation based on the
above-cropped ROI images. To better capture the geometric
structure of the output space, we customize a network with
a novel morphology-aware segmentation loss for high-quality
segmentation of the OD and OC.

1) Segmentation Network Architecture: our segmentation
network follows the spirit of DeepLabv3+ architecture [13]. To
further reduce the number of parameters and the computation
cost, we replace the backbone network Xception [13] with
the lightweight and handy MobileNetV2 [14] as shown in
Fig. 3. The first initial convolutional layer and the follow-
ing seven inverted residual blocks of the MobileNetV2 are
utilized to extract features. We keep the stride of the first
convolutional layer and the following three blocks as the initial
setting and set the stride as one in the remaining blocks.
The total downsampling rate of the network is eight. The
ASPP component [13] with different dilation rates is utilized
to generate multi-scale features. The feature maps are then
concatenated and followed by a 1× 1 convolutional layer. To
integrate the semantic clues from different levels, we upsample
the above-combined feature and concatenate it with the low-
level feature for fine-grained semantic segmentation as the

DeepLabv3+ does. Finally, we use another 1×1 convolutional
layer with two output channels followed by the Sigmoid
activation function to generate the probability maps of OD
(pd) and OC (pc) simultaneously, according to the multi-label
setting in [1]. The input size of the designed segmentation
network is 512×512×3, so that it can take the whole cropped
images as input.

2) Morphology-aware Segmentation Loss: to improve the
segmentation, we develop a novel morphology-aware segmen-
tation loss to guide the network to segment and capture the
smoothness priors of the OD and OC. This joint morphological
loss includes a dice coefficient loss LDL and a smoothness loss
LSL.

The dice coefficient loss [38] measures the overlap between
the prediction and ground truth, and is written as

LDL(p, y) = 1−
2
∑
i∈Ω pi · yi∑

i∈Ω p
2
i +

∑
i∈Ω y

2
i

, (1)

where Ω are the total pixels in the image; p and y are
the predicted probability map and binary ground truth mask,
respectively.

The smoothness loss encourages the network to produce
homogeneous predictions within neighbor regions. It is calcu-
lated by a binary pairwise label interaction:

LSL(p, y) =
∑
i∈Ω

∑
j∈N i

Bi,j × yi × |pi − pj |, (2)

Bi,j =

{
1 if yi = yj
0 otherwise

,

where N i is the four-connected neighbors of pixel i; p
and y denote the prediction and ground truth, respectively.
The smoothness loss encourages the neighboring pixels j of
central pixel i to have similar predicted probabilities when
their ground truth belong to the same class (Bi,j = 1).
Smoothness loss is applied to the OD and OC probability
maps, respectively.

The joint morphology-aware segmentation loss is defined as

Lseg = λ1LDL(pd, yd) + λ2LDL(pc, yc) (3)

+ λ3[LSL(pd, yd) + LSL(pc, yc)],

where pd, pc, yd, yc are the predicted probability map
and binary ground truth mask of OD and OC, respectively;
λ1, λ2, λ3 are the weights empirically set as 0.4, 0.6, and 1.0,
respectively. Observing that it is more difficult to segment
OC than OD due to the unclear boundaries of OC, we thus
empirically set a slight larger value for λ2 than λ1.

C. Patch-based Output Space Adversarial Learning

Different from high-level feature-based image classification,
the feature for segmentation needs to encode both the low-level
descriptors and high-level abstracts, such as appearance, shape,
context and object semantic information. However, domain
adaption based on feature space may not be the best choice
for our segmentation task due to the complexity in handling
the high-dimensional features [15]. Although the image ap-
pearance shifts across domains, the segmentation of source
and target domain images have similar geometry structures in
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Fig. 4. Network architecture of the patch-based discriminator.

the output space (i.e., segmentation mask). Therefore, bridging
two domains by forcing them to share the same distribution in
the output space becomes an effective way for domain adap-
tation. In this work, we propose to perform domain adaptation
for segmentation task through the output space adversarial
learning. Specifically, the segmentation masks of target domain
images should be similar to the ones of source domain. To
achieve this, we attach a patch-level discriminator D after the
outputs of the segmentation network S, and then employ the
adversarial learning technique to train the whole framework.
In this adversarial setting, the segmentation network S aims
to fool the discriminator D by generating a similar output
space distribution either for source and target domain, while
the discriminator aims to identify the segmentation from target
domain as outliers. The geometry structure constraints on the
segmentation masks are guaranteed through this adversarial
process.

1) Patch Discriminator: we employ a patch discriminator
(PatchGAN) [39], [40] to conduct the adversarial learning.
PatchGAN tries to classify whether each m × n overlapped
patch from the predicted mask is in line with the distribu-
tion of that from the source predictions. Compared with the
image-level (ImageGAN) or pixel-level (PixelGAN) adversar-
ial learning, PatchGAN has the ability to capture the local
statistics [41] of the output space and guides the segmentation
network to focus on the local structure similarity in the image
patches.

We realize the patch-based discriminator through a fully
convolutional network, as shown in Fig. 4. The network con-
tains five convolutional layers with a kernel size of 4× 4 and
a stride of 2×2. The channel number of the five convolutional
layers are 64, 128, 256, 512, 1, respectively. The activation
function following each convolutional layer is LeakyReLU
with an alpha value of 0.2, except for the last one using the
Sigmoid function. The output size (m×n) of the patch-based
discriminator is 16× 16, in which one pixel corresponds to a
patch of size 94×94 in the input probability maps. Each patch
is classified into real (1) or fake (0) through the discriminator.
We employ this adversarial learning strategy to force each
generated patch in the prediction of target domain to be similar
to the patch of source domain.

2) Objective Function: with the adversarial learning, we
model the optimization as a two-player min-max game to
alternately update weights in the segmentation network S and
the discriminator D.

The discriminator evaluates whether the input is from the
source domain prediction. We formulate the training objective

for the discriminator as

LD = −
∑
m,n

zlog(D(S(IcS))) + (1− z)log(1−D(S(IcT ))),

(4)
where z = 1 if the patch prediction is from the source domain,
and z = 0 if the patch prediction is from the target domain.

As for the segmentation network, the objective function
consists of the proposed morphology-aware segmentation loss
for the source domain images and the adversarial loss for
the target domain images. In general, the training objective
of segmentation network is

LS = Lseg(IcS) + Ladv(IcT ), (5)

Ladv(IcT ) = −
∑
m,n

log(D(S(IcT ))).

Since we have the annotations for the images from source
domain, we can use the joint morphology-aware segmentation
loss Lseg to optimize the segmentation network. The adver-
sarial loss Ladv is designed for the images in target domain
IcT without any annotations. The segmentation network is
responsible for ‘fooling’ the discriminator D to classify the
prediction of target domain images as the source prediction.

3) Training Strategy: we optimize the segmentation net-
work and the discriminator following the standard approach
from [42]. In each training iteration, we feed the images from
source domain IcS and target domain IcT to the network
alternatively. Then we optimize the whole framework by
minimizing the proposed objective functions LS and LD. We
repeat the above procedure for each training iteration.

IV. EXPERIMENTS

A. Dataset

We conducted experiments on three public OD and OC
segmentation datasets, Drishti-GS dataset [10], RIM-ONE-r3
dataset [11] and the REFUGE challenge dataset1. The statistics
of these three datasets are listed in Table I. We refer the train
part of the REFUGE dataset as the source domain, the Drishti-
GS dataset, RIM-ONE-r3 dataset and the validation/test parts
of the REFUGE dataset as the target domain. The source
and target domain images are captured by different cameras
so that the color and texture of the images are different, as
shown in Fig. 5. We first extensively evaluated and analyzed
our pOSAL framework on the Drishti-GS and RIM-ONE-
r3 datasets, and then compared with other state-of-the-art
segmentation methods on the REFUGE test dataset.

REFUGE Train Drishti-GSREFUGE Val/Test

A B C D

RIM-ONE-r3

REFUGE Train Drishti-GSREFUGE Val/Test RIM-ONE-r3

Fig. 5. Comparison of images from different datasets. There exists a large
variation in color and texture among the different dataset images.

1https://refuge.grand-challenge.org/Home/

https://refuge.grand-challenge.org/Home/
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TABLE I
STATISTICS OF THE DATASETS USED IN EVALUATING THE PROPOSED METHOD.

Domain Dataset Number of samples Image size Cameras Release year

Source REFUGE Train 400 2124× 2056 Zeiss Visucam 500 2018

Target Drishti-GS Train/Test 50 + 51 2047× 1759 unknown 2014

Target RIM-ONE-r3 Train/Test 99 + 60 2144× 1424 unknown 2015

Target REFUGE Validation/Test 400 + 400 1634× 1634 Canon CR-2 2018

TABLE II
RESULTS OF JOINT OD AND OC SEGMENTATION ON THE DRISHTI-GS AND RIM-ONE-R3 TESTING DATASETS.

Drishti-GS RIM-ONE-r3

Method DIcup DIdisc δ Method DIcup DIdisc δ

pOSAL 0.858 0.965 0.082 pOSAL 0.787 0.865 0.081
pOSALseg-S 0.836 0.944 0.118 pOSALseg-S 0.744 0.779 0.103

Edupuganti et al. [29] 0.897 0.967 - DRIU [4] - 0.955 -
Sevastopolsky [27] 0.850 - - Sevastopolsky [27] - 0.950 -

Son et al. [43] - 0.967 - Son et al. [43] - 0.955 -
Zilly et al. [26] 0.871 0.973 - Zilly et al. [26] 0.824 0.942 -

pOSALseg-T 0.901 0.974 0.048 pOSALseg-T 0.856 0.968 0.049

B. Implementation Details

The framework was implemented in Python based on
Keras [44] with the Tensorflow backend. We first trained
the segmentation network with source domain images and
annotations and then utilized the adversarial learning to train
the whole pOSAL framework in an end-to-end manner. When
training the segmentation network, we used the Adam [45]
optimizer and initialized the backbone network weights by the
MobileNetV2 [14] weights trained on the ImageNet dataset.
We set the initial learning rate as 1e − 3 and divided it by
0.2 every 100 epochs. We totally trained 200 epochs with a
mini-batch size of 16 on a server with four Nvidia Titan Xp
GPUs. Data augmentation was adopted to expand the training
dataset by random scale, rotation, flip, elastic transformation,
contrast adjustment, adding noise and random erasing [46].
When end-to-end training the whole pOSAL framework, we
fed source and target images to the network alternatively. The
optimization method of segmentation network was the same
as the above, while the discriminator D was optimized with
the stochastic gradient descent (SGD) algorithm. The initial
learning rate of the segmentation network and discriminator
were 2.5e−5 and 1e−5, respectively, and decreased using the
polynomial decay with a power of 0.9 as mentioned in [47] in
a total of 100 epochs. We conducted the morphological oper-
ation, i.e., filling the hole, to post-process the predicted mask.
The implementation and segmentation results are available in
https://emmaw8.github.io/pOSAL.

C. Evaluation Metrics

We adopt the REFUGE challenge evaluation metrics, dice
coefficients (DI) and the vertical cup to disc ratio (CDR),
to evaluate the segmentation performance of the presented

method. The criteria are defined as

DI =
2×NTP

2×NTP +NFP +NFN
, (6)

δ = |CDRp − CDRg|, CDR =
V Dcup

V Ddisc
, (7)

where NTP , NFP , and NFN represent the number of true
positive, false positive, and false negative pixels, respectively.
CDRp and CDRg denote the cup to disc ratio value for the
prediction and ground truth, while V Dcup and V Ddisc are
the vertical diameters for OC and OD, respectively. The dice
coefficient is a standard evaluation metric for segmentation
tasks, while the CDR value is one of the critical indicators for
glaucoma screening in the clinical convention. We use absolute
error δ to evaluate the difference between the CDR value of
prediction CDRp and that of the ground truth CDRg , while
the lower δ value represents the better prediction result.

D. Experiments on Drishti-GS and RIM-ONE-r3 Datasets
Under the domain adaptation setting, we need to utilize the

unlabeled target domain images to train the whole framework.
For a fair comparison, the unlabeled target domain images
used in the training phase were different from the target
domain images in the testing phase. We follow this experiment
setting over our experiments.

1) Effectiveness of Patch-based Output Space Adversarial
Learning: the Drishti-GS and RIM-ONE-r3 datasets both
provide the training and testing images splits. Therefore,
for the Drishti-GS dataset, we used the REFUGE training
dataset as the source domain and the training part of the
Drishti-GS dataset as the target domain to train our pOSAL
framework. We then report the segmentation performance of
our method on the testing dataset of Drishti-GS. We conducted
experiments with the same dataset setting for the RIM-ONE-r3
dataset.

https://emmaw8.github.io/pOSAL
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Fig. 6. Qualitative results on the Drishti-GS testing dataset. Each column presents one example. From top to bottom: original image, ROI region with ground
truth contours of OD and OC, results of the pOSALseg-S, and results of our pOSAL framework. The green and blue contours indicate the boundary of OD
and OC, respectively.

TABLE III
COMPARISON WITH DIFFERENT DOMAIN ADAPTATION METHODS ON THE DRISHTI-GS AND RIM-ONE-R3 DATASETS.

Method Drishti-GS RIM-ONE-r3

DIcup DIdisc δ DIcup DIdisc δ

TD-GAN [32] 0.747 0.924 0.117 0.728 0.853 0.118
Hoffman et al. [48] 0.851 0.959 0.093 0.755 0.852 0.082

Javanmardi et al. [31] 0.849 0.961 0.091 0.779 0.853 0.085
OSAL-pixel 0.851 0.962 0.089 0.778 0.854 0.084

pOSAL (ours) 0.858 0.965 0.082 0.787 0.865 0.081

Table II presents the segmentation results on the Drishti-
GS and RIM-ONE-r3 testing datasets. For each dataset, we
show the segmentation performance of our pOSAL framework
(pOSAL) and the segmentation network only (pOSALseg-S) to
demonstrate the effect of the proposed output space adversarial
learning. We used the REFUGE training dataset to train the
pOSALseg-S model and directly evaluated it on the Drishti-
GS and RIM-ONE-r3 testing images. It is observed that the
pOSAL consistently improves the DI of optic cup and disc and
the δ on the Drishti-GS and RIM-ONE-r3 datasets compared
with pOSALseg-S. On the RIM-ONE-r3 dataset, we achieve
4.3% and 8.6% DI improvement for the cup and disc segmen-
tation with the patch-based output space adversarial learning,
while we also achieve 2.2% and 2.1% DI improvement for
OC and OD on the Drishti-GS dataset, respectively. Since
the domain discrepancy between the REFUGE training data
and RIM-ONE-r3 data is larger than the difference between
REFUGE training data and Drishti-GS data (see Fig. 5), the
absolute DI values of optic cup and disc on RIM-ONE-
r3 is lower than those on Drishti-GS. These comparisons

demonstrate the patch-based output space adversarial learning
can alleviate the performance degradation among the datasets
with domain shift.

2) Qualitative Results: we show some qualitative results
of the optic OD and OC segmentation on the Drishti-GS
dataset in Fig. 6. For the pOSALseg-S method without domain
adaptation, it can locate the approximate location but fails to
generate accurate boundaries of OD and OC due to the low
image contrast at the boundary between OD and OC, as well
as between OD and background (especially columns A, B and
E in Fig. 6). In contrast, our proposed method successfully
localizes the OD and OC and further preserves the shape prior
and generates more accurate boundaries.

3) Comparison with other Segmentation Methods: we also
report the segmentation performance of some supervised learn-
ing methods in literature for the above two datasets. In these
methods, the networks were trained with the training split
of the dataset in a supervised way and evaluated on the
testing part of the related datasets. Besides the methods in
the literature, we also trained our segmentation network with
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TABLE IV
RESULTS OF OD AND OC SEGMENTATION ON THE REFUGE TESTING DATASET. TOP THREE ITEMS ARE BOLD FOR EACH METRIC.

Team DIcup RDIcup DIdisc RDIdisc δ Rδ Sf Overall Rank

CUHKMED (ours) 0.8826 2 0.9602 1 0.0450 2 1.75 1

Masker 0.8837 1 0.9464 7 0.0414 1 2.50 2
BUCT 0.8728 3 0.9525 3 0.0456 3 3.00 3
NKSG 0.8643 5 0.9488 5 0.0465 4 4.60 4
VRT 0.8600 6 0.9532 2 0.0525 7 5.40 5

AIML 0.8519 7 0.9505 4 0.0469 5 5.45 6
Mammoth 0.8667 4 0.9361 10 0.0526 8 7.10 7

SMILEDeepDR 0.8367 8 0.9386 9 0.0488 6 7.45 8
NIGHTOwl 0.8257 10 0.9487 6 0.0563 9 8.60 9
SDSAIRC 0.8315 9 0.9436 8 0.0674 10 9.15 10

Cvblab 0.7728 11 0.9077 11 0.0798 11 11.00 11
Winter Fell 0.6861 12 0.8772 12 0.1536 12 12.00 12

the training data and report the segmentation performance
on the testing images (denoted as pOSALseg-T) to show the
effectiveness of our designed segmentation network with the
morphology-aware segmentation loss. We show these results in
Table II. As we can see our segmentation network (pOSALseg-
T) can produce better DI for the optic cup and disc seg-
mentation compared with other supervised methods on both
of the Drishti-GS and RIM-ONE-r3 datasets, showing the
effectiveness of the segmentation network design. In another
aspect, it is observed that the optic cup and disc segmentation
performance of our pOSAL framework on the Drishti-GS
dataset is very close to that of these supervised methods, which
further indicates the effectiveness of the proposed patch-based
output space adversarial learning.

4) Comparison with Different Domain Adaptation Ap-
proaches: as far as we know, we are not aware of any
previous works that explores domain adaptation for optic disc
and cup segmentation. Therefore, we compared our pOSAL
framework with several unsupervised domain adaptation ideas
in other medical image analysis and natural image processing
tasks. Specifically, we compared our pOSAL framework with
a Cycle-GAN based unsupervised domain adaptation method
TD-GAN [32], a latent feature alignment method [48], and
a recent domain adaptation method for eye vasculture seg-
mentation [31]. To show the effectiveness of our patch-based
discriminator, we also implemented a pixel-based discrimi-
nator for adversarial learning (denoted as OSAL-pixel). Ta-
ble III presents the performance of different domain adaptation
methods on the Drishti-GS and RIM-ONE-r3 datasets. All the
methods adopted the same segmentation network architecture
for a fair comparison. As we can see, our pOSAL framework
achieves the best performance for the optic cup and disc
segmentation among these unsupervised domain adaptation
methods on the Drishti-GS and RIM-ONE-r3 datasets. In an-
other aspect, the patch-based adversarial learning outperforms
the pixel-level discriminator (OSAL-pixel) and the image-level
discriminator (Javanmardi et al. [31]) for adversarial learning,
as it considers the local and global context information simul-
taneously.

5) Performance of Glaucoma Screening: the vertical CDR
value is one of the important indicators for glaucoma screen-

Fig. 7. The ROC curves of our method in glaucoma screening on the Drishti-
GS and RIM-ONE-r3 datasets.

ing. Therefore, we provide the glaucoma diagnose perfor-
mance based on our segmentation method. Specifically, we
make use of the segmented OD and OC masks to calculate the
vertical CDR value pi for the ith image. Then the normalized
CDR values p̂i of the ith image can be calculated using

p̂i =
pi − pmin

pmax − pmin
, (8)

where pmax and pmin are the maximum and minimum vertical
CDR values, respectively, through all the testing images. We
report the Receiver Operating Characteristic (ROC) curve
and Area Under ROC Curve (AUC) for glaucoma screening
evaluation in Fig. 7.

E. Results of the REFUGE Challenge

We report the results for the optic disc and cup segmentation
task of the REFUGE challenge in conjunction with MICCAI
2018. The challenge datasets consist of three parts: a train-
ing dataset, a validation dataset, and a testing dataset. The
validation and testing datasets are acquired with the same
cameras and the detailed information is shown in Table I.
The testing images were evaluated via an on-site part, where
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Fig. 8. Qualitative results of the REFUGE testing image. The green and blue
contours indicate the boundary of OD and OC, respectively.

the participants had four hours to acquire the testing images
and submit the prediction results to avoid manually tuning
the hyper-parameters. We treated the training images as the
source domain and the validation images as the unlabeled
target domain to train our pOSAL framework. The testing
image prediction was then acquired by an ensemble of five
models to improve the segmentation performance further.
Other participant teams also utilized the ensemble scheme to
generate the final testing prediction (e.g., team Masker).

There were 12 teams selected to participate in the onsite
REFUGE challenge for the OD and OC segmentation task, and
the challenge results are listed in Table IV (The leaderboard
is in the challenge website2). Each team was only allowed for
one submission, and the teams were ranked according to the
following weighted sum of three metrics:

Sf = 0.35×RDIcup
+ 0.25×RDIdisc + 0.4×Rδ, (9)

where RDIcup
, RDIdisc , and Rδ denote the rank of DIcup,

DIdisc and δ criteria, respectively. A lower Sf suggests
a better final rank. All these methods utilized deep neural
networks for OD and OC segmentation. Some methods made
use of other datasets (e.g., ORIGA [6] and IDRiD3) as the
extra training data to improve the model generalization capa-
bility, while we only used the training and validation datasets
provided by the organizer. In Table IV, it is observed that
our pOSAL framework outperforms the second-ranking team
Masker by around 1.4% on the optic disc DI, while we achieve
compelling performance on both the DI of optic cup and CDR
δ. Overall, our pOSAL framework achieves the best overall
ranking score Sf and the first place in this challenging task,
demonstrating the effectiveness of pOSAL. We also visually
compare the appearance difference of the results with and
without the output space adversarial learning using a single
model. As shown in Fig. 8, our pOSAL framework could retain
the elliptical features and push the optic cup within the optic
disc to produce better visual results.

Besides, we further validate the effectiveness of the patch-
based output space adversarial learning on the REFUGE
validation dataset. Specifically, we randomly divided the 400
validation images into two equal-sized parts and used them

2https://refuge.grand-challenge.org/Results-Onsite TestSet/
3https://idrid.grand-challenge.org

TABLE V
RESULTS OF OD AND OC SEGMENTATION ON THE REFUGE VALIDATION

DATASET.

Method DIcup DIdisc δ

pOSALseg-S 0.869 0.932 0.059
pOSAL 0.875 0.946 0.051

as the unlabeled target domain training data to train the
network and the target domain testing data to evaluate the net-
work, respectively. We report the performance of our pOSAL
framework and the same network without domain adaptation
(pOSALseg-S) in Table V. As we can see, the presented
pOSAL framework also improves the DI for optic cup and
disc on the REFUGE validation dataset.

TABLE VI
COMPARISON OF DIFFERENT LOSS FUNCTIONS.

Loss function DIcup DIdisc

Cross Entropy Loss 0.860 0.953
Dice Loss 0.878 0.950

Morphology-aware Loss 0.885 0.956

We compared the effect of different loss functions to
the segmentation network. Specifically, we divided the 400
REFUGE training images into 320 and 80 images to train
and evaluate the network, respectively, with different loss
functions. The results are shown in Table VI. We can find
that the Dice Loss achieved a better DI for OC and a
comparable DI for OD compared with the Cross Entropy
Loss. When combined with the smooth loss, the proposed
morphology-aware segmentation loss achieves the best DI of
OD and OC predictions, suggesting that the morphology-aware
segmentation loss produces high-quality predictions.

We also provide the glaucoma screening evaluation results
here for readers’ reference. We directly utilized the segmenta-
tion results of our pOSAL framework to calculate the vertical
CDR values to diagnose glaucoma following the method on
previous two datasets. Since we cannot access the ground
truth of the glaucoma, we only report the AUC of glaucoma
screening on the challenge testing dataset. The AUC value
is 0.9644, ranking third (Team CUHKMED) in the onsite
challenge4.

TABLE VII
COMPARISON OF DIFFERENT NETWORK BACKBONES.

Block type Params DIcup DIdisc Time

Xception 41.3M 0.885 0.953 0.124s
MobileNetV2 5.8M 0.885 0.956 0.056s

V. DISCUSSION

The optic disc to cup ratio has been recognized as an
essential attribute for glaucoma screening, so a high-quality
automatic segmentation method is highly demanded in clinical

4https://refuge.grand-challenge.org/Results-Onsite TestSet/

https://refuge.grand-challenge.org/Results-Onsite_TestSet/
https://idrid.grand-challenge.org
https://refuge.grand-challenge.org/Results-Onsite_TestSet/
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TABLE VIII
PERFORMANCE OF THE EXTRACTION NETWORK E.

Method Drishti-GS RIM-ONE-r3

DIcup DIdisc δ DIcup DIdisc δ

E 0.798 0.930 0.098 0.638 0.709 0.150
pOSAL 0.858 0.965 0.082 0.787 0.865 0.081

practice. Although plenty of works worked on this problem,
there still exists a gap between research works and clinical
practice due to the lack of annotations, the noisy or sparse
annotations of clinical applications, and the domain shift be-
tween training images and real testing images. In this work, we
focus on developing unsupervised domain adaptation methods
to enable optic disc and cup segmentation applied to clinical
applications. The key insight of our method is to encourage the
target domain predictions closer to the source ones, since the
OD and OC geometry structure should be reserved for source
and target domain images. The extensive experiments on three
public fundus image datasets have sufficiently demonstrated
the potential of our method in generalizing the segmentation
network to unlabeled target domain images.

In our method, we first used an extraction network to crop
an ROI image before performing the segmentation. To show
the necessity of the ROI extraction, we conducted another
experiment to see the overall performance of the extraction
network E. We trained a new extraction network E with two
outputs instead of only the optic disc. The performance of
OC and OD on the Drishti-GS and RIM-ONE-r3 datasets
are shown in Table VIII. It is observed that the segmentation
performance of using only the extraction network E is much
lower than the full method pOSAL. The results here verify
the effectiveness of the two-stage pipeline. A good ROI is the
basis of good segmentation results in the two-stage pipeline. In
some cases, the boundary between the OD and background is
unclear, so the OD may not in the center of the ROI. To avoid
this kind of situation, the ROI size is needed to be designed
properly. In our experiments, the width and height of ROI
are about twice larger than that of the OD, which helps relax
the location deviation. We found that all of the OD and OC
regions are covered by the cropped ROI under this experiment
setting.

Currently, numerous works are focusing on computation-
efficient network design [14], [49] to promote the deep learn-
ing applications for mobile devices with limited computing
power. In our work, we used a MobileNetV2 [14] as the
network backbone to reduce the computation cost. We com-
pared the segmentation performance, parameter numbers, and
testing time cost of the original backbone: Xception [13]
and MobileNetV2 [14] in Table VII. It is observed that the
MobileNetV2 backbone has fewer parameters and can reduce
the testing time by half with similar performance compared
with the Xception backbone. This comparison indicates that
we could develop more lightweight network architecture to
promote the development of mobile applications for glaucoma
screening.

Although our network can be generalized to unlabeled

target domain images, collecting extra unlabeled images from
the target domain is needed to train the network. Moreover,
it is necessary to re-train a new network when the image
comes from a new target domain. In practice, the unlabeled
target domain images may not be available during the training
stage. Therefore, in the future, we would explore the domain
generalization techniques [50]–[52] to tackle this problem
without the demand for many target images.

VI. CONCLUSION

We presented a novel patch-based Output Space Adversarial
Learning framework to segment optic disc and cup from
different fundus images. We first employed a lightweight and
efficient network with the morphology-aware segmentation
loss to generate accurate and smooth predictions. To tackle
the domain shift between the source and target domains, we
exploited unsupervised domain adaptation model to improve
the generalization of the segmentation network. Particularly,
the patch-based output space adversarial learning was designed
to capture the local statistics of the output space and guide
the segmentation network generate similar outputs for the
images from the target and source domains. We also performed
extensive experiments on three public retinal fundus image
datasets to demonstrate the significant improvements and the
effectiveness of the presented pOSAL framework. More effort
will be involved to extend this framework to other medical
image analysis problems in the near future.
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