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TETRIS: Template Transformer Networks for
Image Segmentation With Shape Priors

Matthew Chung Hai Lee , Kersten Petersen, Nick Pawlowski , Ben Glocker , and Michiel Schaap

Abstract— In this paper, we introduce and compare differ-
ent approaches for incorporating shape prior information
into neural network-based image segmentation. Specifi-
cally, we introduce the concept of template transformer
networks, where a shape template is deformed to match
the underlying structure of interest through an end-to-end
trained spatial transformer network. This has the advantage
of explicitly enforcing shape priors, and this is free of
discretization artifacts by providing a soft partial volume
segmentation. We also introduce a simple yet effective
way of incorporating priors in the state-of-the-art pixel-wise
binary classification methods such as fully convolutional
networks and U-net. Here, the template shape is given as
an additional input channel, incorporating this information
significantly reduces false positives. We report results on
synthetic data and sub-voxel segmentation of coronary
lumen structures in cardiac computed tomography showing
the benefit of incorporating priors in neural network-based
image segmentation.

Index Terms— Image segmentation, shape priors, neural
networks, template deformation, image registration.

I. INTRODUCTION

SEGMENTATION of anatomical structures can be greatly
improved by incorporating priors on shape, assuming

population wide regularities are observed, or that expert
knowledge is available. Shape priors help to reduce the search
space of potential solutions for machine learning algorithms,
improving the accuracy and plausibility of solutions [1].
Priors are particularly useful when data is ambiguous, corrupt,
exhibits low signal-to-noise or if training data is scarce.

Some of the first attempts to explicitly enforce shape
priors in segmentation pipelines made use of deformable
templates [2], combining image registration with a shape
template to perform segmentation. Subsequently this method
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was combined with anatomical atlases to perform segmen-
tations of different organs [3]–[5]. However these methods
require either an image-to-image or image-to-segmentation
likelihood function to drive atlas matching or alignment of
the deformation model. Statistical methods such as active
shape models [6] have been explored extensively with the
difficulty of constructing shape models in the first place
which are then often limited in their expressiveness due to
the underlying manifold learning method (linear or non-linear
principal component analysis).

State-of-the-art neural network based segmentation models
[7]–[10] typically optimize pixel-wise loss functions such
as mean squared error or cross entropy, and more recently
differentiable Dice [11]. These objective functions do not take
explicit priors into consideration during training. Neverthe-
less, smoothness priors can be enforced during test time by
using conditional random fields or similar post-processing
techniques. More recent work has shown improved results
by directly incorporating shape constraints into their learn-
ing algorithm rather than applying them as post-processing
such as in [12]–[14], where priors are learnt to regularize
neural network embeddings during training. While this can
lead to networks that favor plausible segmentations, there
is no guarantee that the outputs adhere to desired shape
constraints, such as a single connected component or a closed
surface.

A. Contributions

In this paper we introduce a new neural network model
based on template deformations which utilizes spatial trans-
former networks [15]. Our model leverages the representa-
tional power of neural networks while explicitly enforcing
shape constraints in segmentations by restricting the model to
perform segmentation through deformations of a given shape
prior. We call this Template Transformer Networks for Image
Segmentation (TETRIS). As with template deformations, our
method produces anatomically plausible results by regularizing
the deformation field. This also avoids discretization artifacts
as we do not restrict the network to make pixel-wise classifi-
cations. By using a neural network that is trained to align the
shape prior to the structure of interest visible in the input image
there is no need for a hand crafted (intensity-based) image-
to-segmentation registration measure as with other template
deformation models. To the best of our knowledge, this is the
first full 3D neural network-based image segmentation through
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Fig. 1. Schematic to illustrate the differences between traditional, pixel-wise segmentation models, the naive way of incorporating priors through
additional input, and our TETRIS model which produces a set of parameters for a transformation. By restricting the output space of the network to
only deformations of the prior, we obtain guarantees on topology.

registration method combining deep convolutional neural nets
with spatial transformers.

Another contribution of this paper is the demonstration that
state-of-the-art segmentation algorithms can be easily extended
to incorporate implicit shape priors by providing a shape
template as additional input during training. To the best of
our knowledge, this simple yet effective enhancement has not
been considered in the past. Our benchmarking shows that this
can lead to a significant increase in segmentation accuracy,
a high level graphical overview of these methods are given
in Fig. 1.

We present promising results on coronary artery seg-
mentation from cardiac computed tomography which further
strengthens the case for the use of priors in medical image
segmentation with deep neural nets. Experimentally we show
that all methods which utilize prior information are able to
consistently improve the cross entropy score of segmentation,
and that our method is able to retain a singly connected
component segmentation. Our quantitative results show the
varying strengths and weakness of the two introduced meth-
ods. We also present qualitative results on synthetic examples
to demonstrate the effects of out-of-sample data and how this
affects neural network segmentations.

B. Related Work

Our proposed model lies in the intersection of machine
learning based image registration and segmentation, and the
incorporation of shape priors into neural networks. The fol-
lowing discusses the most related work but due to space
limitations and the large amount of work in these fields, this
cannot provide a comprehensive overview.

1) Atlas and Registration Based Segmentation: Atlas based
segmentation algorithms [16] are among the most popular
methods and rely on two key components, an intensity-
based image-to-image matching term Lη and a set of training
examples, i.e. the atlases, with corresponding labels. During
testing, images can be compared to examples in the atlas
dataset using Lη and the label mask of the most similar atlases
are selected as candidate segmentations. This concept can be
extended to employ patch based techniques or advanced label
fusion procedures and is robust when label boundaries occur
in homogeneous regions. However, this method often offers
a coarse segmentation, which may lack precision and can be
refined using linear and nonlinear registration. This refinement

can be done in either image or segmentation space [17]. The
authors of [18] proposed a combination of an image-to-image
and segmentation-to-segmentation likelihood function, using a
Lagrange multiplier to weight the contribution of each term.
If an image-to-segmentation likelihood function is used then
this approach is better referred to as template registration [19].

2) Statistical Shape Models: Active shape models as intro-
duced in [20] explicitly model shape based on training exam-
ples. By discretizing the k dimensional shapes using n control
points, they create point distribution models using an ellipsoid
prior. Principle modes of variation can then be found using
principle component Analysis (PCA) [21]. New shapes can be
represented as a linear weighting of these components. Addi-
tionally, by restricting the model to use t principle components
where t < kn and restricting the range of values each linear
weighting can have, a valid shape space is produced. Active
appearance models [22] build on this technique and jointly
model appearance together with shape. These models have
been use widely in the medical imaging community to perform
segmentation [6]. However, such models are heavily biased by
the distribution of the training set used to build them.

3) Network Based Image Registration: Traditional registra-
tion algorithms take two images, a moving M and fixed F
and perform registration by iteratively updating some parame-
terized transformation Tθ which maps image grid locations to
each other, such that some loss function Lη(M ◦ Tθ ,F) is
minimized, where bespoke parameters θ are found for a given
pair of images during test time. Optimization of the algorithm
can be considered as optimizing η, some parameterization of
the loss function which results in the ‘best’ registrations (such
as the values of Lagrange multipliers) or by optimizing the
choice of T (the transformation family expressible).

The key difference between neural network based image
registration and traditional, iterative registration algorithms
is that the loss function is only computed during training
for neural networks. The parameters of the neural network
implicitly encode what transformation, conditioned on the
input, is needed to register the image with minimal cost
instead of repeatedly calculating a loss to iteratively update
the parameters θ .

Recent works on neural network based image registration
fall into two major categories, the first treats network based
registration as a regression problem on a given ground truth
deformation field such as in [23]–[27]. These methods, unlike



2598 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 38, NO. 11, NOVEMBER 2019

ours, can be used as fast approximations to other registration
models. The second group of methods learn the deformation
field implicitly while optimizing a downstream task. For exam-
ple, [28] combine momentum-parametrization for LDDMM
shooting [29] and neural networks to learn an end-to-end
model for registration. Reinforcement learning approaches
have also been used to perform image registration [30]. They
treat the registration problem as an iterative update of four
translation and two rotation parameters so do not handle free
form deformations.

Related network-based registration methods [31] and [32]
use 2D spatial transformer networks to embed the deformation
model into a neural network pipeline in order to learn the
registration model end-to-end. The latter of which uses a
FlowNet architecture [24]. This work was built on in [33]
which performs full unsupervised 3D registration. However,
unlike our model, all of these methods perform image-to-
image registration rather than template deformation for a
downstream segmentation task. The authors of [34], [35] begin
to investigate template deformations but do not investigate this
to its full 3D potential.

4) Shape Priors in Neural Networks: Finally we discuss
methods which incorporate shape priors into neural networks.
Though conditional random fields are considered smooth-
ness priors, they do assist in providing shape consistency
in segmentations. CRFs are incorporated into the training
process in [12] by casting CRFs as recurrent neural networks.
This allows the segmentation and refinement model to be
trained end-to-end. Adversarial training was used in [36] as
a means of learning such regularization without the need of
an explicit model whilst still being able to train end-to-end.
A discriminator network was used to distinguish segmentations
from a network and ground truth segmentations, this training
process encourages the network segmentations to look more
plausible. An interleaving process was proposed in [37] where
iterative training of a neural network and CRF refinement
was performed inspired by the grab cut [38] method, though
this model was not trained end-to-end. More recent work
has shown improved results by directly incorporating prin-
ciple component based shape constraints into their learning
algorithm. Building on the work of active shape models [20],
the authors of [13] use a PCA layer embedded in the neural
network to restrict its output space to be weightings of the
principle components, this was extended to a probabilistic
model in [39]. Another approach proposed in [14] exploits
the fact that autoencoders are able to capture a low dimen-
sional representation of the shapes of segmentation maps.
This encoding is then used at training time to constrain the
outputs of a segmentation network to be close to this low
dimensional manifold via adversarial training. The latter two
methods utilize anatomical consistency across subjects.

5) Spatial Transformer Networks: Our work builds heavily on
spatial transformer networks (STNs) [15] which we describe
below. STNs are a neural network model that, conditioned on
some input I returns θ for some parameterized transformation
model Tθ (G). That is θ = fψ(I ) where fψ is a neural
network, itself parameterized by ψ . Once we have θ , we are
able to differentiably re-sample our image I to V using Tθ ,

as with image registration, here the image itself is re-sampled.
The STN model then passes the re-sampled image V to another
neural network, gξ (V ) which performs some down stream
task. In [15], they utilize this powerful model to train gξ ,
which performs a classification task and simultaneous train fψ
a deformation model that makes the down stream task easier
via a combination of rescaling, region of interest extraction
and rotation of the input images.

During training, the loss is calculated on the down stream
task only, for classification this could be the cross entropy loss
between the predicted class produced by gξ (V ) and the true
class. Since the neural network gξ is a differentiable function
and sampling from I to V is also differentiable we are able
to train both tasks end to end. Inherently a spatial transformer
is performing deformations that assist the down stream task,
as opposed to having a loss calculated directly on the task
of deforming. This can be considered an implicit registration
step, where the registration is autonomously discovered by the
network for optimal downstream performance. We do not have
to decide what kind of deformation will be good for the task,
though we do need to specify the family of deformations T .
During test time, unlike iterative registration models, no loss
value needs to be calculated. We simply need to perform a
forward pass through the network to get both the deformation
and the class prediction

II. TEMPLATE TRANSFORMER NETWORKS

Traditional template deformation models require the defi-
nition of an image-to-segmentation matching function as an
approximation or surrogate to the actual segmentation objec-
tive. Iterative optimization is then used to incrementally update
the transformation parameters in order to maximize agreement
between a template and the image to be segmented. In con-
trast, our method makes use of network based registration,
which only requires the computation of a corresponding loss
function (equivalent to the matching function) during training
time. This important difference means we no longer need to
approximate our actual segmentation function via an intensity-
based surrogate and can directly optimize for the task at hand.

We introduce a novel template deformation model that
exploits the power of neural network-based registration. Our
end-to-end model takes a shape prior in the form of a partial
volume image (PVI) and an image as input to a neural network
which learns to deform the input prior so as to produce an
accurate segmentation of the input image. This is done by
implicitly estimating a deformation field so as to maximize
template alignment corresponding to optimal segmentation
accuracy. We provide a detailed description of the main steps
below. An overview of our method is shown in Fig. 2. In the
following subsections (II-B, II-C and II-D) we describe in
detail how we perform deformations, how we regularize our
deformation field and how we handle large volume sizes.

A. Obtaining Shape Templates

Shape priors can be utilized in neural networks in vari-
ous forms such as in the form of level sets, PVIs, binary
masks or as shape parameters (e.g., mesh control points).
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Fig. 2. TETRIS takes as input an image and a shape prior in the form of a partial volume image and produces a set of parameters for a transformation,
this transformation is then applied to the prior and the loss is calculated on the deformed prior and the target segmentation during training.

In this work we focus on the use of a deformation model,
conditioned on a shape prior to deform a PVI into another
PVI. Our shape prior itself in this particular case is also a PVI
but we emphasize this is not a necessity and richer priors such
as statistical appearance models can also be used. As template
transfer networks predict a transformation instead of a point-
wise segmentation map, they lend themselves naturally to the
ability of using other geometric representations for the priors
such as mesh-based models. Shape priors can be generally
obtained via manual, semi-automatic and automatic methods
and the exact mechanism is application specific. We will later
discuss one particular approach for obtaining shape priors for
the application of coronary artery segmentation.

B. Deformation Model

To deform a template, consider some input image I , shape
prior U , ground truth segmentation T all of size H × W × D.
We have a sampling scheme (or deformation model) Tθ (G)
where G is considered a standard co-ordinate grid, and loss
function Lη. Tθ (G) is a function on (xt

i , yt
i , zt

i ), grid coordi-
nates in our target space, that maps to (xs

i , ys
i , zs

i ) co-ordinates
in our original source space, where we index voxel locations
by i ∈ [1, . . . , H ′W ′ D′] for notational simplicity. Given this
we can define V , a re-sampling of a prior U , based on Tθ as

Vi =
H∑
n

W∑
m

D∑
l

Umnl × k(xs
i − m;�x)× k(ys

i − n;�y)

× k(zs
i − l;�z) ∀i ∈ [1, . . . , H ′W ′ D′] (1)

where k is any sampling kernel with parameters �. For image
interpolation we use a trilinear kernel to prevent re-sampled
pixel values from being extrapolated to outside of the original
intensity domain, that is

Vi =
H∑
n
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m

D∑
l

Umnl × max(0, 1 − |xs
i − m|)

× max(0, 1 − |ys
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We choose Tθ to be a free form deformation, i.e. θ is a three
dimensional vector field. For notational simplicity we define
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If Tθ is a free form deformation which is not in the same
resolution as the target image we are required to re-sample the
deformation field. Potentially using a different set of sampling
kernels k with it’s own parameters �. We choose to use
B-Spline interpolation to ensure smooth fields [40], utilizing
the Catmull-Rom solution to the interpolation problem [41].

Our method takes inspiration from STNs by using a neural
network fψ(I,U), which is conditioned on both the input
image I and the shape prior U , to produce parameters θ of
the B-Spline deformation model Tθ . We can then perform a
deformation of the prior U , calculate a segmentation loss and
update the parameters ψ of our network.

By combining template deformation with neural networks,
we mitigate the key problem with traditional template defor-
mation models, that being the need to hand craft a good
image to segmentation alignment function. The source of this
problem, as with any registration technique, lies in the fact that
a loss calculation must be made during test time to update the
deformation field parameters θ . By utilizing STNs to produce
θ during test time and instead updating a neural network fψ
during training, we can train a registration model with the true
segmentation loss function (based on alignment between prior
and reference segmentation) avoiding the need for surrogate
functions at test time.

The template deformation model is network agnostic so
any neural network can be used. We choose a simple feed
forward network architecture with convolutions and max pool-
ing to produce a deformation field which we use in the
STN to deform the prior. Full details of which are provided
in Figs. 3 and 12.

Our method is able to take any shape prior and deform
it with sub-pixel accuracy, unlike other neural network based
segmentation algorithms which typically treat segmentation as
pixel-wise classification. Since our model smoothly deforms
a prior, we are able to produce partial volume segmentations,
reducing discretization artifacts in final segmentation maps.
We provide experiments on both partial volume data as well
as voxel-wise classification results.
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Fig. 3. Graphical representation of the three different models explored in this paper. from left to right, the U-Net, FCN and the black box model used
to produce deformation parameters for TETRIS. Building blocks are described in Fig. 12.

C. Field Regularization

Due to the ill-posed nature of registration problems,
it is common to constrain deformation fields by adding a
regularization term to the optimization problem that favors
some desired property, such as locally smooth deforma-
tions, or an l2 penalty on the vector field itself to favor mini-
mum displacement solutions. We investigate two regularization
terms

Ll2 := 1

V

∫ X

0

∫ Y

0

∫ Z

0
T (x, y, z)2dxdydz (4)

and

Lsmooth := 1

V
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∫ Y

0
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0

(
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(
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∂xy

)2
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(
∂2T

∂yz

)2

dxdydz (5)

Ll2 penalizes the l2-norm of the field and Lsmooth penalizes
the sum of squared second order derivatives.

D. Field Aggregation

To deal with the size of the data and the memory restrictions
of modern graphics processing units we do inference on a
patch basis, we collect control points across patches and
aggregate them before re-sampling using B-Spline interpola-
tion. This combined with only using valid padding prevents
ill-posed boundary conditions across the image. This also
allows us to perform inference on variable size volumes with
consistent control point spacing without modification to the
neural network.

Fig. 4. Examples of where a deformation model can extrapolate well
outside of the distribution of the training data compared to a standard
convolutional neural network.

III. ILLUSTRATIVE EXAMPLE

As a proof of concept, we present qualitative results on
the effects of corruption in the data as these are not easily
quantifiable. To investigate how incorporating a prior into a
neural network can help when corruption is present, we create
a toy dataset of 1500 randomly deformed P’s, B’s and R’s
for training and two hand crafted test images which we
provide qualitative results for. We then train a deformation
model to deform the prior (the letter that was originally
deformed) to match the deformed letter. Additionally, we train
a normal convolution neural network to predict the deformed
letter on a pixel-wise level. Both the TETRIS model and the
convolutional neural network are conditioned on the prior and
the target. As is expected, when the image signal is strong,
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Fig. 5. Qualitative results from varying the amount of corrupted training
examples in the dataset. From left to right, the models are trained with 0%,
5%, 10% and 15% of the training set consisting of corrupted examples.

TABLE I
QUANTITATIVE SYNTHETIC DATA RESULTS

the network learns to rely heavily on the image signal and
ignores the prior, this can be seen in Fig. 4. We trained both
models on only uncorrupted deformations to see how each
model can handle an out-of-sample test case. We see that the
vanilla CNN learns to completely ignore prior information,
so when inferring on corrupt data, it is not able to extrapolate,
unlike the TETRIS model. By restricting our model’s output
space to be within the range of deformations of the prior we are
able, even in the presence of corruption to produce plausible
results, consistent with our prior.

IV. SYNTHETIC EXPERIMENTS

We argue that for a CNN to handle such corruption it would
need to be present in the training set, Fig. 5 shows the effects
of having an increased amount of corrupted data in the training
set. We construct a secondary dataset where corruption is more
easily generated which consists of 1000 randomly deformed
discs, where corruption is in the form of smaller discs being
cut from the main central disc and smaller peripheral discs
being placed around the main central disc and the set is split
in half for training and testing. We trained the models with 0%,
5%, 10% and 15% of the training set consisting of corrupted
examples. As more corruption is present in the training set,
the better the standard CNN model is able to handle them
during test time as expected. Though the artifacts that occur
are not topologically as plausible as those produced by our
TETRIS model, which is reflected in the high dice scores but
also high Hausdorff distances.

V. CORONARY ARTERY SEGMENTATION EXPERIMENTS

In this paper we focus on the application of vessel segmen-
tation where ambiguities arise from the functional distinction
between veins and arteries, which may have similar image
features. This has lead some methods to approach the problem

Fig. 6. An example of the shape prior on the left and manual seg-
mentation on the right. The shape prior is a tubed human annotated
centerline with a fixed one millimeter radius. (a) Tubed prior. (b) Target
segmentation.

as a multi stage process, first centerlines are extracted [42],
then the vessels are segmented [43]. Shape priors can be
enforced once good candidate centerlines have been extracted
by treating the segmentation task as a wall distance estimation
task. By utilizing curved planar reformation [44] the segmen-
tation problem can be cast as a wall distance regression from
the centerline and topology can be guaranteed.

We train our network on a set of 274 annotated cardiac CT
volumes with 0.5 millimeter isotropic spacing and reserving
138 volumes for validation and an additional 136 for testing.
The ground truth labels obtained through manual expert seg-
mentation are in the form of partial volumes.

A. Generating Priors for Coronary Arteries

To generate a shape prior for coronary artery segmentation,
we first extract out a centerline using a semi-automatic method
which consists of a Random Forest voxel-wise classification,
a Dijkstras shortest path based tree extraction and finally a
human review and correction step to correct outliers. The
centerline is converted to a 3D volumetric representation by
creating a tube around it with a fixed radius of 1 mm in a
partial volume image, since the centerline exists in arbitrary
space rather than voxel space. More examples of coronary
centerline extraction method in cardiac CTA can be found
in [42]. Fig. 6 is a volume rendering illustrating the difference
between the prior and the ground truth segmentation in an
example vessel. More generally, priors can be extracted from
sources such as automated algorithms, weak labels, human
expert knowledge or population based statistics and will inher-
ently be application specific.

B. Model Details and Baselines

We use two baseline models to compare the three models we
present i) the residual fully convolutional network (FCN) and
ii) a residual U-net architecture utilizing the implementations
from [45] using residual blocks from [46]. Details of the
architectures can be found in Fig. 3, where the building blocks
are described in Fig. 12.

We also present results on naively incorporating shape priors
into these state-of-the-art models. We do this by feeding the
networks two channels of input, the image to be segmented
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and the prior that we have of the image at that location. This
alternative method is a very simple extension of existing state-
of-the-art pixel-wise approaches, computationally cheap and
easy to implement. The shape prior, in this case, acts as a
kind of initialization for the network’s output.

C. Training Details

For all models we use the same patch extraction para-
meters, during training we dynamically extract 32 patches
from each volume and randomly shuffle them into a buffer
of 512 patches. Patches are extracted if they are near the
centerline, biasing the sampling around the vessel. We use a
batch size of 8 for all models and train them using the Adam
optimizer [47] while exponentially decaying the learning rate.
The learning rate at step i is as defined as

li = l0 · r
i
s (6)

where our initial learning rate l0 = 1 · 10−5, decay rate r =
0.99, decay step s = 500 and where regularization is used,
we weight it by 5 · 10−6.

We pretrain our baseline models using a weighted cross
entropy function as defined in Equation 7, where p is our
target distribution, q is our candidate distribution and w is a
weighting factor. By setting w > 1, we bias the loss term to
penalize false negatives. This is beneficial as voxels containing
the vessel interior are sparse in any given patch. Penalizing
false negatives more prevents the network from predicting
all voxels as background voxels during the initial stages of
optimization, a trivial local optimum. Note this does not
need to be done with our TETRIS model as the network is
already biased towards the identity transform thanks to our
regularization term which favors a smooth deformation field.
For our experiments we set w = 2 and pretrain our non-
TETRIS models for 1000 iterations.

−w · p log(q)− (1 − p) log(1 − q) (7)

We fine tune the models using normal, un-weighted, cross
entropy for a further 5000 iterations.

D. Results

Results are presented on a test set of 136 cases, for the
task of partial volume estimation we use the cross entropy
as a measure of accuracy, we can see from Table II that
incorporating shape priors into state of the to state-of-the-
art neural network segmentation models significantly improves
results. For comparison we include results on using the identity
function on the prior, i.e. naively taking the shape prior as the
segmentation.

We provide box plots of the results in Fig. 9 for a more
fine grained break down of the results, where we have plotted
the cross entropy on a log scale. Though our model with
l2 field regularizations performs the best, there is no significant
difference between the methods, exhibiting the expressiveness
of a deformation model despite constraining the output space
to be a deformation of the prior.

Fig. 7. Close up of qualitative results shown as contours for the
different methods where the blue, green, red and cyan contours are
of the target segmentation, TETRIS, FCN (with prior) and U-Net (with
prior) respectively. On the left and right are orthogonal views of the
left anterior descending artery, near the first diagonal bifurcation where
TETRIS outperforms other methods. (a) TETRIS-l 2. (b) TETRIS-l 2.
(c) FCN (w/ prior). (d) FCN (w/ prior). (e) U-Net (w/ prior). (f) U-Net (w/
prior).

TABLE II
QUANTITATIVE SEGMENTATION RESULTS ON TEST CASES

Both our U-Net (with prior) model and our proposed
TETRIS model are able to consistently produce singly con-
nected components without post processing by incorporating
prior information, further demonstrating the potential of our
approachs. However the FCN (with prior) model often does
not capture these higher order requirements, even with prior
information, we believe this is due to the inherent multi-scale
nature of the U-Net architecture. TETRIS shines when using
metrics that take into account partial volumes, however our
CNNs with priors added as input channels work consistently
well when the goal is pixel-wise binary segmentation. We also
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Fig. 8. Close up of qualitative results shown as contours for the
different methods where the blue, green, red and cyan contours are of
the target segmentation, TETRIS, FCN (with prior) and U-Net (with prior)
respectively. On the left and right are orthogonal views of a trifurcation
where TETRIS over segments and the FCN and U-Net model under
segment. (a) TETRIS-l 2. (b) TETRIS-l 2. (c) FCN (w/ prior). (d) FCN (w/
prior). (e) U-Net (w/ prior). (f) U-Net (w/ prior).

note a drastic reduction of trainable parameters by a factor of
ten for TETRIS compared to U-Net and FCN, indicating a
better balance between performance and model complexity.

To obtain the number of connected components, we thresh-
old the partial volume segmentations at 0.5 and perform a
26-connected component analysis. Ideally, all segmentations
should have only one connected component. We note that
TETRIS without regularization may result in discontinuous
segmentations, but did not find this to be the case in practice.
We notice no major difference between penalizing the field
with an l2 penalty or by the sum of second order derivatives.

Fig. 10 shows an example case where neural networks are
not able to recover the vessel in the image without prior
information, where as all three our models are able to fall
back on the prior when the image signal may be weak.

We further investigated the use of more complex models for
TETRIS but found that convergence became slow and often
resulted in similar validation scores, hence our choice for a
simple TETRIS model. We notice that the models also have
different strengths and weaknesses, as mentioned previously,
the U-Net (with prior) model is better than the FCN (with

Fig. 9. Cross entropy for partial volume estimation of test cases for
the different methods investigated, clearly demonstrating the benefits of
incorporating prior information and the ability of a deformation model to
perform just as well, if not better than an standard neural network which
naively incorporates prior information.

Fig. 10. Close up of qualitative results shown as volume rendering for
the different methods with and without shape priors compared to the
manual target segmentation. (a) Target segmentation. (b) TETRIS-l 2.
(c) FCN (w/ prior). (d) U-Net (w/ prior). (e) FCN. (f) U-Net.

prior) model at capturing global consistency of shape but in
regions where contrast is low, our TETRIS model produces
smoother more accurate segmentations as seen in Fig. 7.

Using a deformation model does have caveats, in Fig. 8 we
see a trifurcation region where TETRIS over-segments and
both the U-Net/FCN with prior under-segment. The resolution
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Fig. 11. Qualitative results shown as volume rendering for the different
methods with and without shape priors compared to the manual target
segmentation. The transfer function from partial volume probability to
opacity is set as the identity function from [0,1] → [0,1]. (a) Target
segmentation. (b) TETRIS-l 2. (c) FCN (w/ prior). (d) U-Net (w/ prior).
(e) FCN. (f) U-Net.

of the field and the penalty applied to large deformations
prevents our model from doing well in such regions.

In summary, we should highlight the advantages of the
template transformer based networks over point-wise seg-
mentation models such as U-net and FCN, as it might not
be apparent from the segmentation scores. Although, U-Net
performs best on Dice, TETRIS performs better on cross-
entropy assessing the agreement for the soft, partial volume
predictions. Additionally, the template transformer networks
can provide guarantees on the resulting shape while both
U-Net and FCN do not. This can be important in applications
where the segmentations are used for downstream tasks such as
shape analysis or blood flow calculation. One other important
benefit of the TETRIS model (although not explored in this
work) is the ability to incorporate a variety of shape priors
such as mesh-based representations or probabilistic shape and
appearance models (e.g. a mean and variance image).

VI. DISCUSSION

We introduced Template Transformer Networks for image
segmentation which are able to deform shape priors into
segmentations. This work builds on template deformations by
no longer requiring the need for hand-crafted image to seg-
mentation cost functions and makes use of Spatial Transformer

Fig. 12. Graphical representation of the building blocks used to construct
all models.

Networks for differentiable end-to-end learning. Our method
is competitive with state of the art segmentation algorithms
while being able to guarantee topological constraints.

Our work is a proof of concept which relied on a simple
architecture that can be easily extended. Though our model is
restricted in the sense that it can only perform deformations
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of a prior, we argue this can be an advantage where shape
guarantees are important. Arguably, our model strikes a better
balance between performance and model complexity due to a
significantly fewer number of trainable parameters.

We consider the prior extraction beyond the scope of this
work, but we believe that it is a critical part of not only our
method, but all methods which require a prior. In problems
where no sensible priors can used template based methods
are likely not suitable. Though not explored in this work,
our approach lends itself to the incorporation of much richer
priors, such as probabilistic shape priors and other geometric
representations such as meshes or point distribution models.

Our method replaces an iterative method with a one-shot
method, we believe a natural extension to investigate would be
to incorporate template deformations with recurrent or auto-
regressive neural networks for more flexible and potentially
larger deformations, mitigating the effects of the chosen res-
olution for the control point grid. Though in this work we
chose to use B-Splines, our method is agnostic to the choice
of parameterization of the deformation field. The exploration
of other and potentially more flexible parameterizations is also
of great interest. Additionally, we would also like to explore
the use of deformation fields which are not on fixed grids so
as to allow for finer deformation fields as and when is needed
without the burden of excess computation.

APPENDIX

We provide full examples of vessel segmentations in Fig. 11
to give the reader larger context into the accuracy of the model,
where we have trimmed the aorta for clearer visualizations.
Without prior information it is clear that the sensitivity of the
networks drop substantially.
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