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 Abstract—Estimating over-amplification of human epidermal 
growth factor receptor 2 (HER2) on invasive breast cancer (BC) 
is regarded as a significant predictive and prognostic marker. We 
propose a novel deep reinforcement learning (DRL) based model 
that treats immunohistochemical (IHC) scoring of HER2 as a 
sequential learning task. For a given image tile sampled from 
multi-resolution giga-pixel whole slide image (WSI), the model 
learns to sequentially identify some of the diagnostically relevant 
regions of interest (ROIs) by following a parameterized policy. 
The selected ROIs are processed by recurrent and residual 
convolution networks to learn the discriminative features for 
different HER2 scores and predict the next location, without 
requiring to process all the sub-image patches of a given tile for 
predicting the HER2 score, mimicking the histopathologist who 
would not usually analyze every part of the slide at the highest 
magnification. The proposed model incorporates a task-specific 
regularization term and inhibition of return mechanism to 
prevent the model from revisiting the previously attended 
locations. We evaluated our model on two IHC datasets: a 
publicly available dataset from the HER2 scoring challenge 
contest and another dataset consisting of WSIs of 
gastroenteropancreatic neuroendocrine tumor sections stained 
with Glo1 marker. We demonstrate that the proposed model 
outperforms other methods based on state-of-the-art deep 
convolutional networks. To the best of our knowledge, this is the 
first study using DRL for IHC scoring and could potentially lead 
to wider use of DRL in the domain of computational pathology 
reducing the computational burden of the analysis of large multi-
gigapixel histology images. 
 

Index Terms — Deep Reinforcement Learning, Computational 
Pathology, Immunohistochemical Scoring, Breast Cancer. 

I. INTRODUCTION 

uman epidermal growth factor receptor 2 (HER2) is a 
protein that influences the growth of malignant epithelial 

cells. The over-amplification of HER2 gene is observed in 
breast cancer (BC) cases having invasive tumor regions. 
Cancer cells in HER2+ (positive) cases of BC encounter 
neoplastic transformations which lead to an uncontrolled 
growth of tumor cells as compared to HER2 (negative) cases. 
Approximately all the invasive breast carcinomas cases are 
recommended for HER2 testing [1] and nearly 20-30% of 
cases have overexpression of HER2 protein [2] which is 
associated with poor prognosis, lower survival, and high 
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recurrence [3]. Recent studies have reported the HER2 status 
as a predictive factor for anti-HER2 and hormonal therapies 
and also a prognostic factor to associate invasive tumors with 
mortality and duration of recurrence free survival [4]. 
Therefore, precise quantification of HER2 overexpression is 
crucial for ensuring that HER2+ patients receive appropriate 
anti-HER2 treatment. 

The most common method for assessment of HER2 
biomarker expression is immunohistochemical (IHC) staining. 
In routine clinical practice, an expert pathologist visually 
examines IHC stained BC histology slides under the 
microscope to quantify the expression of HER2 and reports a 
score between 0 and 3+. Example regions of interest (ROIs) 
from slides with different HER2 scores (0 to 3+) are shown in 
Fig. 1. Samples scoring 0 or 1+ contain no or weak membrane 
staining in less than 10% of the tumor cells and are regarded 
as HER2. A score of 3+ is assigned to cases where strong 
membrane staining is observed in more than 10% of the tumor 
cells and regarded as HER2+. Borderline cases, in which a 
non-uniform staining is observed, are classified as equivocal 
with a 2+ score. Such cases are recommended for fluorescence 
in-situ hybridization (FISH) test to measure the status of 
HER2/neu gene amplification. A limitation of the current 
practice for HER2 scoring is that the visual examination of 
glass slides is a time consuming and laborious task, as well as 
subjective by nature and more likely to be affected by inter- 
and intra-observer variability. It has also been reported that up 
to 20% of the HER2 results may contain inaccuracies [5].  

Recently, there has been an upward trend in the adoption of 
digital pathology and consequently a surge of research on 
algorithms for analysis of pathology images. Despite the 
recent progress that highlights the significance of image 
analysis in computational pathology [6][7], there are several 
challenges that hinder the adoption of algorithms in routine 
clinical practice. Computational pathology algorithms usually 
require detailed annotated datasets to predict the slide label. 
For the task at hand, the ground-truth (GT) label for IHC score 
(HER2 score in our case) is generally provided at the whole 
slide image (WSI) level and there are no detailed annotations 
provided about which ROIs from the tissue slides are 
consulted for the final HER2 score. Amongst existing 
automated approaches, the simplest approach is to manually or 
randomly extract patches from desired ROIs of a WSI and 
train a supervised model to predict the required HER2 score. 
Such approaches offer an inevitable bias to the model 
predictions and disjoint selection of small patches may also 
suffer from loss of visual context. Another potential 
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shortcoming is computational inefficiency, as these models 
need to process all the regions of a given image, where some 
of the tissue regions may not be diagnostically relevant for the 
prediction of the correct HER2 score.  

With regards to the aforementioned challenges, we ask the 
question: can we train a model that ignores the irrelevant 
information and learn where to see? To answer this question, 
we propose a novel deep learning approach for automated 
scoring of IHC stained HER2 slides of invasive breast 
carcinoma, based on the concept of policy gradients. Given a 
large tile from a WSI, the proposed model identifies some of 
the diagnostically relevant locations from a low resolution 
(2.5 ×) coarse representation of a given image by learning a 
parameterized policy over the interaction sequences of ROIs 
locations. The model sequentially samples the multi-resolution 
ROIs 40 × and 20 ×, from the relevant locations to learn the 
discriminative features for different HER2 scores (0 to 3+). 
The core components of the proposed model are a residual 
convolutional neural network (ResNet) and a recurrent neural 
network (RNN). The role of ResNet in this model is to learn 
discriminative features whereas the RNN sequentially 
analyzes the provided features to predict the outcome and the 
next location. Since the GT information was only provided for 
WSI level with no prior knowledge of ROI locations, we train 
the model with policy gradients. Our model is designed to 
explore spatially distinct locations and learn features from 
visually discriminative regions. In cognitive psychology, this 
phenomenon is known as inhibition of return (IoR) [8] that 
prevents the previously attended regions to be attended again. 
Our model incorporates the concept of IoR in order to 
encourage the model to attend non-overlapping diagnostically 
relevant regions. Another important issue is that an erroneous 
scoring of 3+ as 0/1+ or vice versa may have far-reaching 
effects for a patient. In order to avoid such large errors, we 
propose a task-specific regularization term that penalizes such 
predictions. This study was conducted on a publicly available 
dataset from the HER2 scoring contest [9] containing 172 
WSIs from 86 cases. Extensive experiments on the contest 
dataset show the efficacy of our proposed model, for guiding 
deep learning models to ignore irrelevant regions and scaling 
up to large images. The proposed method outperforms all the 
18 algorithms that participated in the HER2 contest, most 

methods using state-of-the-art CNNs. 

II. RELATED WORK 

Automated IHC scoring has been approached with a variety 
of handcrafted features and deep learning based methods. The 
most common approach for automated IHC scoring involves a 
pre-processing step to identify the potential tissue regions for 
training the underlying model. Then, a handful of small 
patches are sampled from selected tissue regions, either 
randomly or by using sliding window approach. The 
identification of potential tissue regions is generally 
accomplished by manual selection [10][11], semi-automated 
[12] or thresholding based automated methods [13]. The pre-
processing step is generally followed by training a patch-based 
supervised model, to learn the discriminative features and 
predict the outcome of each input patch. A range of hand-
crafted [13][14], approaches have been proposed to improve 
the IHC scoring of hormone receptors in breast cancer. For 
HER2 scoring, Rodner et al. [15] recently proposed an 
algorithm that computes a set of bilinear filters using 
convolutional layers. For classification of HER2 scores on 
patch level, they use bilinear features to train a multi-class 
logistic regression model. A deep neural network has been 
presented by Saha et al. [16] for HER2 quantification by 
segmenting nuclei and cell membranes. Mukundan et al. [17] 
introduced a set of characteristic curves by varying the 
intensity of saturation channel with a handpicked threshold for 
classification of HER2 score. The final step of HER2 scoring 
in general involves aggregation of patch level scores to the 
WSI level score which is typically done by finding the most 
dominant class within a WSI or by training a shallow classifier 
on features selected from the output probability map of a WSI. 
Supervised patch-based approaches have established well for 
problems where tissue level GT is readily available. However, 
in IHC scoring where tissue level GT is generally not 
available, it is imperative to explore how deep learning models 
can be trained to ignore unnecessary information from the 
given image and focus only on regions that eventually helps in 
predicting the correct outcome.         

Recent studies have shown that deep reinforcement learning 
(DRL) has been employed in widespread applications. For 

Fig. 1: Left to right: examples of regions of interest from whole-slide images of the training dataset. 



 
 

object detection, Caicedo et al. [18] proposed a deep Q-
Network (DQN) for multi-class object localization. The model 
localizes target objects by following a search strategy, which 
starts with analyzing the input image and then agent guides the 
model to narrow down the field of view for precise object 
localization. The reward function was calculated by 
computing the intersection-over-union between the GT and the 
predicted bounding box for the object. This work was further 
extended for medical images including automated anatomical 
landmark [19] and breast lesion detection [20] for DCE-MRI 
images, whereby an agent localizes the potential ROI 
containing the lesion by iteratively adjusting the bounding 
box. The reward function was computed by using the Dice 
coefficient between the GT and the predicted box. There also 
exist some works that incorporate DRL for genomics data to 
enhance the annotation of biological sequences in genome 
sequencing [21] and construction of protein interaction 
network for prostate cancer [22]. Another interesting 
extension is the incorporation of attention models with policy 
gradients that enable the underline model to learn a 
parametrized policy based on spatial dependencies. This 
combination has been explored for a number of applications 
including object detection [23], action recognition [24] and 
image captioning [25]. However, having precisely annotated 
GT for computing the reward function limits the use of deep 
Q-learning for IHC scoring. 

In this work, we treat IHC scoring as a sequential learning 
task to learn discriminative features and select informative 
regions within a large image tile of a WSI. To the best of our 
knowledge, this is the first study that uses DRL for IHC 
scoring of histology WSIs. In terms of policy learning 
methodology, our work has some similarities to the methods 
proposed by Mnih et al. [26] and Ranzato et al. [27]. Our 
proposed model contains a context module that incorporates 
the coarse representation of input image, before predicting 
attentive locations. The end-to-end inhibition of return (IoR) 
mechanism encourages the model to explore spatially distinct 
attentive locations. Moreover, the scope of existing attention 
methods is limited to relatively small natural images whereas 
tumors in IHC stained WSIs are heterogeneous in terms of 

their morphological appearance, color variability, shape, and 
temporal locations.  

III. LEARNING WHERE TO SEE  

Given an image 𝐼, the task is to predict the HER2 score 
ranging from 0 to 3+ by selecting a set of diagnostically 
relevant regions as well as learning discriminative features 
from those regions. The schematic diagram of the proposed 
model is shown in Fig. 2. At each time step 𝑡, the model 
receives two ROIs 𝑖௧ = (𝑖௧

଴, 𝑖௧
ଵ), where 𝑖௧

଴, 𝑖௧
ଵ   𝐼 are regions 

of width 128 and height 128 sampled at the region center 𝑙௧  at 
different magnification levels 40 × and 20 ×, respectively. 
The convolutional network 𝑓௖ଵ with learnable parameters 𝜃௖ଵ 
analyzes 𝑖௧  and transforms it into a fixed length feature vector 
𝐯௧  ∈ ℜ௠. The recurrent model 𝑓௛ with learnable parameters 
𝜃௛ sequentially processes the aggregated ROI features to 
update its internal state. Besides, the context model processes 
the down-sampled version 𝐼↓ଵ଺ (down-sampled by a factor of 
16 in both directions) of the input image and perform the IoR 
operation, as described in Section III.D. The next location 
𝑙௧ାଵis predicted by analyzing the hidden state (𝑓௛(𝜃௛)) from 
the RNN that reflects where we currently are, and the output 
𝐯↓ଵ଺ of CNN 𝑓௖ଶ, with learnable parameters 𝜃௖ଶ, that 
represents the context. The whole process is repeated for 𝑇 
iterations and at the end of the sequence (𝑖ଵ, 𝑖ଶ, … . , 𝑖்  ), the 
model predicts the final output score 𝑌 . 

This iterative process wrapped around an RNN model forms 
a classical environment-agent interface that can be formalized 
by the partially observable Markov decision process 
(POMDP). In the current setup, the RNN and CNNs 
collectively act as a decision maker, which is formally known 
as an agent in the reinforcement learning (RL) literature. The 
agent sequentially interacts with the environment, which in our 
case is the image 𝐼. For each time step 𝑡, the agent receives a 
state from the environment. It then processes the given state 
and responds with appropriate actions, which in our cases is 
the next location (𝑙௧ାଵ), directing the model where to see and 
eventually deciding on the HER2 score. Overall this process 
of predicting the next location is partly stochastic and non-
differentiable, requiring the use of policy gradients. The 

Fig. 2: The schematic diagram of our deep recurrent model. The regions of interest sampled around 𝒍𝒕 at 40× and 20× are shown with blue 
and yellow dashed bounding boxes, respectively. The dashed line in the recurrent model shows the 𝐓 sequential iterations. IoR act as a 
penalization term in the loss function. 



 
 

ultimate task for an agent is to map the given states into 
actions by learning a parametrized policy (𝜋) through trial and 
error. At the end of this sequential process, the agent receives 
a scalar reward 𝑅 based on its actions, which in our case is 
linked to correct prediction of the HER2 score as described in 
Section III.C. 

At a high level, our model mimics the histopathologist 
practice treating a given image as an environment and the 
histopathologist as an agent who acts as a decision maker. 
Given the environment, the agent glances through different 
tissue components at a high level (low magnification) and then 
selects certain visual fields (ROIs) at low level (high 
magnification) to observe and store the relevant morphological 
features into the memory. The agent repeats this process for a 
certain number of iterations on different states to build an 
internal representation of the overall environment before 
coming up with the final decision, i.e. assigning the final 
score. For the sake of simplicity, in the remainder of this 
paper, we refer to the combination of RNN and CNNs as an 
agent and the selected ROIs as the state. 

A. Sequential Modelling 

The recurrent component (RNN) acts as the backbone of the 
proposed model. At each time step 𝑡, the recurrent model 
updates the parameters of hidden states and predicts the HER2 
score for a CNN based feature representation of 𝑖௧ = (𝑖௧

଴, 𝑖௧
ଵ). 

The input to the RNN is 𝐯௧, the CNN based feature vector for 
multi-resolution ROIs 𝑖௧ centered at location 𝑙௧ . The RNN 
model also updates internal states (memory) that capture 
information from previous time steps. The output 𝑓௛(𝜃௛) of 
the RNN model is defined as below,  

 

 * * *1 1 1( ) ( , ( ); )t c ch h h
f f h f  

                      (1) 

* *1( ) ( , ( ); )h h t hh h
f f h f            (2) 

We choose long short-term memory (LSTM) [28] as a 
preferred choice for RNN to learn spatial dependencies 
between the ROIs. LSTM has proven to be more robust and 
less likely to suffer from the problem of vanishing gradients. 
An important task of the model is to predict the next location 
𝑙௧ାଵ by using 𝐯↓ଵ଺ provided by CNN and hidden 
representation 𝑓௛(𝜃௛) of ROI images processed by CNN and 
LSTM. We computed the Hadamard product of 𝑓௛(𝜃௛)  and 
𝐯↓ଵ଺  to obtain a combined feature vector. Finally, the location 
module 𝑓௟(𝜃௟), linearly transforms the combined 
representation to predict the normalized coordinates of the 
next location 𝑙௧ାଵ(𝑥, 𝑦). During the training process, the 
model eventually learns to encode the information from the 
past sequences and decide where to see.  

B. Residual Convolutional Network 

In the proposed model, the convolutional network serves as 
a non-linear function that maps a given RGB image into a 
fixed length vector representation. More specifically, we are 
using a variant of residual CNN [29] that contain residual 
connections to reroute the input information into deeper 
convolutional layers. Residual blocks ensure the end-to-end 
training of deep models by preventing the gradient to vanish 
within lower layers of a CNN. It also enables the underlying 
model to reuse the low level features along with deeper 
convolutional (high level) features. For a given input 𝑝௞, the 
residual block function is defined as below  

 

1 ( ( , ) ( ))k k k k kp F p w q p                           (3) 

 
where 𝐹௞(𝑝௞ , 𝑤௞) is representing a sequence of convolutional 
operations, 𝑤௞ denote the trainable weights (biases are 
omitted), 𝑘 represents the 𝑘௧௛ residual block of the CNN, 𝑝௞ାଵ 
is the output of residual block and 𝑞(𝑝௞) =  𝑝௞  is an identity 
function. The function 𝜎(. ) denotes a non-linear activation 
function, which in our case is a ReLU. The 𝐹௞(𝑝௞ , 𝑤௞) + 𝑝௞ 
operation is representing element-wise addition of two 
activation maps. A schematic illustration of the residual CNN 
is shown in Fig. 3.  

We use two residual CNNs, 𝑓௖ଵ and 𝑓௖ଶ where 𝑓௖ଵ learns 
discriminative features by producing a fixed length non-linear 
vector representation 𝐯௧ for further processing by the recurrent 
network and 𝑓௖ଶ incorporates the context information. The 
input to  𝑓௖ଵ(𝜃௖ଵ) is the corresponding ROIs (at 40 × and 
20 ×) sampled at 𝑙௧(𝑥, 𝑦) from the input image 𝐼. The network 
separately processes the selected ROIs and concatenates the 
feature representative of 𝑖௧

଴, 𝑖௧
ଵ. The concatenation operation is 

previously used in [30] for a hierarchical CNN to combine the 
feature representation of corresponding up/down convolution 
layers. The CNN features of extracted ROIs mainly assist our 
model to learn the discriminative patterns of different HER2 
scores. The task for 𝑓௖ଶ(𝜃௖ଶ) is to embed the contextual 

Fig. 3: A schematic illustration of residual convolution neural 
network. 



 
 

awareness within the proposed model.  

C. Model Training  

The proposed model (Fig. 2) is trained end-to-end by 
maximizing the performance over the parameters 𝜃 =
(𝜃௖, 𝜃௛ , 𝜃௟) of the residual CNNs, recurrent network and the 
location module. By interacting with the environment, the 
model forms a special case of the POMDP framework with an 
episodic sequence of states, actions, and rewards. The task for 
the model is to learn a parameterized DRL policy (𝜋) that 
maps a given state into action(s) by maximizing the sum of 
expected reward while following the parameterized policy 𝜋.  
The parameterized policy 𝜋 for calculating the probability of a 
certain action 𝑎 from the action space 𝐴 at iteration 𝑡 for a 
given state 𝑠 with parameters 𝜃 can be defined as follows, 

  
𝜋(𝑎|𝑠) = 𝑃(𝐴௧|𝑆௧;  𝜃)     (4)     

 
where 𝑆௧  denotes the set of possible states at time t. Similarly, 
for the problem at hand, the model needs to learn a 

parameterized policy 𝜋((𝑙௧ାଵ, 𝑌௧) | (𝑖௧, 𝐼↓ଵ଺);  𝜃) to predict 
the HER2 score (𝑌௧) and coordinates of the next location 
𝑙௧ାଵ(𝑥, 𝑦), given the selected ROIs (𝑖௧) from 𝑙௧(𝑥, 𝑦) and 
down-sampled input image 𝐼↓ଵ଺. The model receives a scalar 
reward 𝑟௧ after interacting with each selected ROIs (𝑖ଵ,ଶ,..்) of 
the given image,  

'1 argmax

0 otherwise

T
s

t

g Y
r

  


  (5) 

 
as provided in (5), where 𝑔 denotes the GT score, 𝑌ᇱ  
represents the output of the softmax layer and s denotes the 
output label. The total sum of reward is computed after 
analyzing all the selected ROIs, as defined below, 
 

  
R  g t1r

t
t1

T

å         (6) 

 
where 𝛾௧ିଵ is the weight factor for reward 𝑟௧ at time t. For a 
finite horizon problem such as classification, we set 𝛾 = 1. 
Here the learning task is to optimize the parameters 𝜃 that 
maximize the overall performance 𝐿(𝜃), associated with 
reward 𝑟௧. A straightforward approach for handling this 
maximization task is by using the gradient ascent. The update 
rule follows the standard backpropagation and is defined as, 

 

1 ( )n n nL         (7)   

 
where 𝑛 is the iteration index and 𝛼 is the learning rate. In 
order to maximize 𝐿(𝜃), we employ the REINFORCE rule 
[31] from the class of policy gradients to adjust the model 
parameters. In this episodic scenario, on average, the model 
computes the gradients for actions that lead to higher rewards 
and consequently, the log probability of actions with low 

rewards will be decreased. The policy gradient, as described 
above, can be mathematically expressed as follows, 

16
1

1

log (( , ) |( , ); )
T

t t t t
t

L l Y i I R   




  å      (8) 

or 
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1
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log (( , ) | ( , ); )
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n n n n
t t t t

n t

L l Y i I R   


 

  åå   (9) 

One limitation of the above formulation is that the model 
convergence can be challenging if intra-class variance in the 
training dataset is relatively high. To generalize the policy 
gradient algorithm, we include a baseline function 𝑏௧ =
𝔼గ[𝑅௧] for comparing the action values to the cumulative 
reward [32], 

 

  16
1

1 1

log (( , ) | ( , ); )( )
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n n n n
t t t t t

n t

L l Y i I R b   


 

   åå    (10) 

D. Inhibition of Return  

An important factor in adequate selection of diagnostically 
relevant regions is to inhibit the model from visiting the 
previously attended regions. We observe that for some of the 
selected locations during the sequential process, the sampled 
ROIs are not spatially distinct. Fig 4 (1st column) shows two 
such examples where the selected ROIs lie relatively close to 
each other, resulting in overlap with previously attended 
regions without any significant performance gain. This 
argument also applies to images where the diaminobenzidine 
(DAB) stain expression is relatively sparse as shown in Fig. 4 
(2nd row). A straightforward strategy to address this issue 
would be to suppress the texture information [8] of previously 
attended locations that would encourage the model to rapidly 

Fig. 4: Two sample images (Top and Bottom) representing the effect 
of inhibition of return (IoR), showing the selected ROIs without the 
IoR penalization (Left) and with the IoR penalization (Right). As can 
be seen, the selected ROIs after the IoR penalization are relatively 
distinct from each other. Filled rectangular regions (black) show the 
suppressed texture.  



 
 

explore spatially distinct locations. This simple Inhibition of 
return (IoR) strategy leads to the model giving higher priority 
to regions that it has not previously considered for learning the 
discriminative features. The IoR strategy is computationally 
efficient, widely studied in cognitive psychology [33] and in 
sequential learning [8][18]. 

Further, we introduced an additional constraint 𝐿ூ௢ோ  in the 
loss function. At the end of the iteration sequence 𝑡 =
(1, … , 𝑇),  𝐿ூ௢ோ  computes the overlap between the coordinates 
of selected ROIs, penalizing selection of image patches 
relatively close to each other. The scope of IoR penalization 
vanishes (its value becomes 0) if selected locations are 
spatially distinct from each other. The  𝐿ூ௢ோ  term is defined as 
below,   

1 12

1
[ ( , )] [ ( , )]

T T

IoR t jT
t j t

L rect l x y rect l x y
C   

 å å   (11) 

 
where 𝑟𝑒𝑐𝑡[𝑙௧] and 𝑟𝑒𝑐𝑡[𝑙௝] represent rectangular coordinates 
sampled from the input image 𝐼 and 𝐶ଶ

்  is the number of 
combinations of different ROIs, in turn helping in limiting the 
intersection values between 0 and 1. The above loss function 
updates the policy parameters to correctly predict the HER2 
score by penalizing the model for locating spatially 
overlapping regions. 

E. Task-Specific Regularization 

The clinical impact of large erroneous predictions of HER2 
score is highly significant and should be avoided as much as 
possible. Inaccurate prediction for patients of score 0/1+ as 3+ 
will lead to giving treatment with toxic anti-HER2 drugs to 
patients who do not need it, while predicting cases with score 
3+ as 0/1+ will lead to the patient not given the appropriate 
treatment needed. To avoid such scenarios, we added a task-
specific regularization term. 
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The final loss function combines the parameterized loss with 
task-specific regularization and IoR as given in (13),  
 

( )sc IoRL L L L             (13) 

 
where   controls the sensitivity (scope of penalty) for both 
𝐿௦௖ and  𝐿ூ௢ோ .  

IV. EXPERIMENTS AND RESULTS 

A. The Dataset  

This study is conducted on a publicly available dataset from 
the HER2 scoring contest [9]. The contest dataset consists of 
WSIs from 172 histology slides of 86 invasive breast 
carcinomas cases scanned using Hamamatsu NanoZoomer 
C9600 at the highest resolution (40 ×), two slides per case 
(one IHC stained with HER2 and another with the standard 
H&E). On average, each scanned WSI contains more than 

10ଵ଴ pixels. The GT for the contest was marked by a 
minimum of two expert histopathologists. For each case in the 
training dataset, the GT consists of a HER2 score and a 
percentage of complete membrane staining (PCMS), both at 
the WSI level. The training dataset is made of 52 cases, 13 
cases from each HER2 score (0-3+) and the test set consists of 
28 cases. The remaining 6 cases were not included in the 
test/training dataset and only reserved for the on-site part of 
the competition, see [12] for more details. 

B. Experimental Setup  

The ROIs were cropped at 40 × and 20 × resolutions, each 
ROI of size 128 × 128 × 3 pixels. The size of the input image 
𝐼 was 2048 × 2048 × 3 (471.1 × 471.1 𝜇𝑚ଶ) sampled at 
40 ×.  In total, we extracted 58,500 tiles (with an overlap of 
50%) from the 52 training WSIs after tissue segmentation and 
a simple DAB intensity based thresholding. The number of 
neurons in hidden layers of RNN was set to 256 and 128, 
respectively. The CNN transforms the given image into the 
feature representation of size 1 × 128. ReLU activation 
function was used after each residual block. To overcome the 
overfitting problem, we performed data augmentation by 
random rotations (0°, 90°, 180°, 270°), horizontal and vertical 
flipping, and the transpose of all the images in the training 
dataset. The regularization parameter   controls the 
sensitivity of the task-specific regularization and IoR 
penalization, as in (13). Through empirical observations, we 
found that the best performance was achieved with a value of 
0.04 for  , which we used for all the experiments. The initial 
learning rate was set to 0.001 with exponential reduction of 
0.97 and the momentum was adjusted at 0.9. The batch size 
was selected as 10. The location of the first ROI was randomly 
selected. The number of ROIs per image was selected as 6, 
more details on this in Section IV.C.2. The learning 
parameters were initialized as Gaussian random numbers with 
0 mean and 10ିଶ standard deviation and biases were set to 0. 

C. Comparative Analysis   

In this section, we discuss a variety of experiments to 
demonstrate the efficacy and evaluate the performance of the 
proposed method. For the following experiments, we 
performed 4-fold cross validation across 52 cases. We split the 
52 cases into 4 subsets, with nearly equal representation of all 
four HER2 scores, and used 3 subsets for training and the 
remaining one subset for validation. The GT for the test 
dataset is not publicly available and, in this section, we have 
reported the performance of different variants of the proposed 
model on the validation dataset. We report the results for the 
test dataset in Section IV.D. Generally, a large part of WSI 
contains background (glass) regions with no tissue 
components. For tissue segmentation, we perform local 
entropy filtering on a lower resolution (2.5 ×) version of the 
WSI.  

 
1) Comparative Results: In this experiment, we evaluate 

the significance of different sub-components of the proposed 
model, including 𝐿ఏ , 𝐿௦௖ , and 𝐿ூ௢ோ . Another important aspect is 



 
 

to evaluate the significance of the parameterized policy for 
selecting relevant ROIs and how it affects the performance if 
we select ROIs randomly instead of following a certain policy. 
For random selection of ROIs, we perform two main 
experiments: a) select ROIs randomly from the entire 𝐼 and b) 
select ROIs randomly from only DAB regions of 𝐼. In the first 
approach of random selection, we predict the HER2 score of 
given ROIs (𝑖௧) and select the next location randomly without 
consulting the context and current state of the model. Fig. S-1 
in Supplementary Material-I shows the qualitative results for 
randomly selected regions and locations selected by the 
parameterized policy. Random selection correctly predicts 
HER2 score for images where most of the area is covered by 
discriminative tissue regions. However, it is susceptible to 
selecting regions that contain mostly background and sparse 
DAB regions. For the second approach, we perform stain 

deconvolution [34] on 𝐼 by estimating the stain matrix using 
[35]. DAB regions contain low luminance and therefore for 
binarizing the DAB channel using 𝜏(𝐼஽஺஻  ), we empirically 
chose a relatively high threshold value of 0.8. The 𝜏(𝐼஽஺஻  ) is 
then followed by morphological operations to exclude the 
noisy (small) components of the DAB channel. Table I shows 
the results for both experiments. Evidently, the second method 
is a relatively direct way of selecting 𝑖௧  and therefore yields 
higher performance as compared to the first approach for 
random selection. However, it offers some limitations as 
compared to the proposed model: the first major limitation is 
the absence of 𝐿ூ௢ோ , that enables the model to explore spatially 
distinct locations. The 𝐿ூ௢ோ  restrains the proposed model from 
overemphasizing on particular locations by penalizing the 
learnable parameters and encourages the model to learn 
discriminative features from different tissue regions. One way 

Fig. 5: Example of four image tiles with selected regions-of-interest (ROIs) predicted by our method, for each HER2 score (0-3+), respectively. 
The first column shows the input images and colored disks shows the predicted locations. The remaining columns show the selected regions at 
40× and 20× around the selected locations 𝐥𝐭, 𝐭 = 𝟏, 𝟐, … , 𝟔. The first selected region is shown with blue bounding box and the last selected 
region is shown with red bounding boxes. 



 
 

of handling the absence of 𝐿ூ௢ோ is to introduce a set of hard-
constraints for selecting spatially distinct 𝑙௧(𝑥, 𝑦). However, 
defining a set of generalized hard-constrained is a non-trivial 
task and it may influence the model performance on images 
where we have sparse DAB representation (3rd row of Fig. 5). 
Secondly, it has no longer access to the overall 𝐼↓ଵ଺ and the 
context module. Consequently, this variant of our proposed 
model could be considered a departure from the routine 
clinical practice, where a pathologist glances through a coarse 
representation of input image at a higher level and then selects 
ROIs at lower levels before concluding the outcome. 
Therefore, it is imperative to follow a parameterized policy 
that incorporates the context and offers a temporal connection 
(via LSTM) between the selected locations.  

Further, we investigate the implications of the context 
module, task-specific regularization (𝐿௦௖) and IoR (𝐿ூ௢ோ). The 
context module allows the model to analyze a coarse 
representation of the overall environment and use that to 
predict 𝑙௧ାଵ(𝑥, 𝑦). Existing attention based models [23][36] 
including RMVA (recurrent model for visual attention) have 
no mechanism to prevent models from revisiting the 
previously attended regions. Besides, RMVA also 
incorporates a strong location prior to the model, which is 
irrelevant in histology image analysis mainly due to the 
random orientation and morphological appearance of 
underlying tissue. Table I gives patch-based classification 
results of the proposed model with different settings. Overall 
the results are in favor of the proposed method (𝐿ఏ, 𝐿௦௖ , 𝐿ூ௢ோ). 
Fig. 5 shows a sample of representative patches with selected 
ROIs. The most challenging images were from HER2 class 1+ 
and 2+, where resemblance in morphological appearance was 
present due to tumor heterogeneity, as shown in 2nd and 3rd 
rows of Fig. 5. In Fig. 5, the image patch for score 2+ contains 
relatively smaller extent of DAB expression and most of the 
tissue region belongs to 0/1+. In that case, the model starts 
with a relatively less informative region and sequentially learn 
to focus on the informative regions of the image to predict the 
correct outcome.   

 
2) Number of ROIs: The aim of this experiment is to 
investigate the effect of number of ROIs for a given image 𝐼.  
We evaluate the performance of the proposed model by using 
4, 5, 6 and 8 number of ROIs. For this contest dataset, we 
observed the best performance with 6 ROIs, as shown in Fig. 
6. One of the main reasons for relatively low performance 

with 8 ROIs is the images containing tissue boundary regions, 
where most of the image region is covered by background 
glass. Therefore, in those cases, selecting more locations may 
confound the model in predicting the correct outcome. 
Another interesting aspect is the reduction of inference time 
and gain in the overall performance (as discussed in Section 
IV.D), in a conventional patch-based setting, for a given 
image 𝐼 of size 2048 × 2048 × 3 at 40 ×. The model needs to 
process all 64 ROIs (each of size 256 × 256 × 3). In contrast, 
the proposed model can predict the HER2 score after 
consulting a handful of ROI patches accompanied with down-
sampled version of 𝐼. However, although computing time may 
not be the most decisive aspect in clinical practice, it may be 
an important factor in high-volume diagnostic settings and for 
high-throughput IHC screening.  

 
3) Selection of multiple resolution regions: This experiment 
compares the performance of the proposed model for selecting 
a suitable combination of magnification levels.  We perform 
this experiment with three sets of magnification levels 
including 40 ×, 20 ×, and 10 ×. We observed that for IHC 
HER2 scoring, ROIs selected from 40 × and 20 × yield the 
best performance. The results for mean scoring accuracy for 
all 4 classes are shown in Table II. ROIs selected at higher 
resolutions offer more detailed information regarding HER2 
expression at cell levels. On the other hand, ROIs selected at 
10 × or lower magnification offer more context information, 
but they are also more likely to contain background or 
irrelevant tissue regions, including non-invasive hematoxylin 
stained regions. 
 
4) Size of ROI: The main objective of this experiment was to 
evaluate the performance of the proposed model on different 
sizes of ROIs. After selecting the location 𝑙௧(𝑥, 𝑦), it is 

TABLE I 
COMPARATIVE RESULTS 

Method 0 1+ 2+ 3+ Acccomb 

RMVA [31] 0.702 0.446 0.275 0.275 0.355 

random ROIs,  𝐿ఏ , 𝐿௦௖  0.868 0.671 0.632 0.803 0.743 

random DAB ROIs 𝐿ఏ , 𝐿௦௖ 0.822 0.615 0.677 0.874 0.764 

Proposed – without CM 0.982 0.452 0.568 0.721 0.652 

Proposed – 𝐿ఏ  0.982 0.538 0.703 0.782 0.733 

Proposed – 𝐿ఏ, 𝐿௦௖ 0.963 0.532 0.721 0.825 0.753 

Proposed – 𝐿ఏ, 𝐿௦௖ , 𝐿ூ௢ோ 0.919 0.772 0.661 0.837 0.794 

Acccomb denotes combined accuracy and CM (in 3rd row) denotes the context     
module. In DAB ROIs, the locations were randomly selected from the   
diaminobenzidine (DAB) regions. 

 
Fig. 6: Comparative results for different numbers of ROIs. 

TABLE II 
SIGNIFICANCE OF CONTEXT 

Method 0 1+ 2+ 3+ Acccomb 

Proposed 40 ×, 20 × 0.919 0.772 0.661 0.837 0.794 

Proposed 40 ×, 10 × 0.881 0.613 0.676 0.807 0.742 

Proposed 20 ×, 10 × 0.802 0.592 0.608 0.711 0.65 

Acccomb – combined accuracy  
 



 
 

worthwhile to quantify the extent of context required for 
predicting the correct outcome. Recent studies in 
computational pathology have also emphasized the 
significance of visual context [37]. We perform this 
experiment on three different patch sizes, including 48 ×
48, 64 × 64, and 128 × 128, with results in Fig. 7. We 
noticed the best performance with ROIs of size 128 × 128. As 
expected, the performance of the proposed model increases 
with increase in the context. However, in HER2 scoring, it is 
important to limit the ROI size to prevent the inclusion of 
irrelevant tissue regions.   
 

D. Contest Leaderboards: 

This subsection covers the description for scaling the patch 
level results to WSIs and performance of the proposed 
algorithm on the contest tasks.  
 
1) Contest Tasks: The performance of the proposed algorithm 
on the WSI level is evaluated by using 3 different criteria, as 
suggested in the contest guidelines: a) agreement points, b) 
weighted confidence and c) combined points. In agreement 
points, a penalty method was introduced that assigned points 
between 0 and 15 to each case based on the clinical 
significance of the difference in predicted and actual scores. 
To resolve tie situation in the first criterion, bonus points were 
also awarded based on a correct prediction of PCMS. A 
weighted confidence was devised to estimate the credibility of 
WSI results predicted by the algorithm. This measure may 
also help in stratifying cases that need further input from 
pathologists. And finally, for each case, a combined point was 
calculated by taking the product of the other two assessment 
criteria. Further details regarding the evaluation criteria is 
explained in [9]. 
 
2) PCMS Estimation: In routine practice, a pathologist 
visually estimates the PCMS on the WSI level, indicating the 
strength of invasive carcinoma cells stained to HER2 protein. 
For our experiments, we split the WSI into manageable image 
tiles 𝐼, depending on the computational resources. The model 
then predicts a HER2 score for each image tile and aggregates 
the results on the WSI level by simply choosing the most 
dominant class as the HER2 score 𝑠 =
𝑎𝑟𝑔𝑚𝑎𝑥 (𝑠଴;  𝑠ଵା;  𝑠ଶା;  𝑠ଷା) where  𝑠଴;  𝑠ଵା;  𝑠ଶା; 𝑠ଷା 

represent the number of image tiles predicted as 
0, 1+, 2+, 𝑎𝑛𝑑 3 +, respectively. The PCMS for invasive 
breast cases was estimated by the WSI output maps. For each 
score map, we simply compute the ratio between the area 
covered by each predicted score over the total area of tissue 
region within the WSI.   
 

3) Combined Leaderboards: One of the most challenging 
aspects in analyzing histology images is to limit the automated 
analysis to diagnostically relevant tissue parts. A fully 
supervised method processes the given image regardless of 
noisy or irrelevant contents. In contrast, recurrent models can 
appropriately tackle such scenarios by only processing the 
relevant ROIs. Fig. S-2 (Supplementary Section-II) shows 
some of the visual results on the image patches from the 
validation dataset. Table III reports the WSI level performance 
of the proposed method on all 3 evaluation criteria. It also 
contains the results of top-10 performing algorithms in the 
contest. The proposed method ranked as 1st amongst all 18 
submissions in the contest, including the combined points 
criterion and point based scoring. The contesting algorithms 
were based on a wide range of the state-of-the-art deep 
convolutional networks including GoogleNet [38], AlexNet 
[39] and LeNet [40]. On 28 WSIs from the test dataset, the 
proposed algorithm correctly classified 26 WSIs. The most 
difficult cases were from borderline class 2+ and 3+. Both the 
false predictions belonged to those classes. It is worth noting 
that the scores of 2+ and 3+ are the most difficult to call for 
expert histopathologists as well. On the other hand, the 
proposed model correctly predicted the scores of 12 out of 14 
WSIs with scores 2+ or 3+.  

E. Glyoxalase-1 protein (Glo1) Scoring: 

In this experiment, we evaluate the performance of the 
proposed method on IHC stained gastroenteropancreatic 
neuroendocrine tumors (GEPs). The over-amplification in 
glyoxalase-1 protein (Glo1) is associated with resistance in 
multidrug tumor chemotherapy [41]. In routine practice, an 
expert pathologist visually examines IHC stained GEP slides 
and reports a score between 1+ and 3+, which represents 
weak, moderate and intense Glo1 immunostaining, 

Fig. 7: Comparative results for different patch sizes of ROIs. 

TABLE III 
COMPARATIVE RESULTS 

Teams Pts Pts+B Cf W.Pts 

The proposed method 405 419 24.1 359.1 

VISILAB-I (GoogleNet [38]) 382.5 404.5 23.55 348 

FSUJena [15] 370 392 23 345 

HUANGCH (AdaBoost) 377.5 391.5 22.62 345.7 

MTB NLP (AlexNet [39]) 390 405.5 22.94 335.7 

VISILAB-II (contour analysis) 377.5 391 21.88 322 

Team Indus (LeNet [40]) 402.5 425 18.45 321.4 

UC-CCSE  [17] 390 395 21.07 316 

MUCS-III [11] 390 411 20.43 300.8 

HERcules (SVM) 360 380 20.57 295.6 

MUCS-II (GoogleNet [38]) 385 413 19.51 290.1 

Description of the notations used above, Pts: points, Pts+B: points with 
bonus, Cf: weighted confidence, and W.Pts: combined leaderboard for 
weighted points  and points with bonus.   



 
 

respectively. This experiment is conducted on 82 WSIs from 
39 patients with 25 midguts and 14 pancreatic cases, with a 
total number of 22, 33 and 27 WSIs scored by an expert 
pathologist as 1+, 2+ and 3+ respectively. Further details 
regarding the dataset and GEP tumors can be found in [42].   
 The main objective of this experiment is to test the efficacy 
of the proposed IHC scoring method on another IHC stain by 
quantifying the concordance between the pathologist GT score 
and Glo1 score predicted by the proposed method. We first 
split the dataset into two folds and perform cross-validation by 
selecting half of the dataset for training and the remaining half 
for testing. We then repeat the experiment by swapping the 
training and test datasets. For each fold, the training dataset 
was further spilt into training and validation subsets by 
selecting 35 WSIs for training and remaining 6 (≈15% of the 
training data) for validation. Tissue regions from WSIs were 
segmented by performing local entropy filtering on a lower 
resolution (2.5×) version of the WSI. To avoid the class 
imbalance problem, we extracted all the image tiles 
(containing tissue) from 1+ WSIs and randomly sampled equal 
number of image tiles from classes 2+ and 3+. In total, we 
extracted 86,700 tiles each of size 2048 × 2048 × 3 at 40 ×. 
We then retrained the proposed model by retaining the same 
data augmentation methods and hyperparameters (including 
learning rate, lambda, number of ROIs, etc.,) as explained in 
Section IV.B. Optimal weights were selected based on the 
validation set. The final Glo1 score on the WSI level was 
estimated by aggregating the scores of image tiles, as 
explained in Section IV.D.2. 
 Fig. 8 shows two confusion matrices (CF) containing WSI 
results of Glo1 scoring. The CF in Fig. 8(b) shows the results 
for the proposed method and the results for automated 
hormone receptors scoring (HRS) method [14], which was 
initially used in [42], are shown in Fig. 8(c). The overall 
agreement between the GT and the proposed method is 81.7% 
(Glo1 scores for 67 WSIs were correctly predicted), whereas 
the agreement is 60.9% in case of HRS. For IHC scoring, HRS 
relies heavily on pixel intensities for quantifying the 
chromatin and protein content. Therefore, heterogeneous 
morphological characteristics of neuroendocrine cells within 
tumor regions pose the risk of confusing the algorithm in 
extracting the desired features for IHC scoring. Fig. 9 shows 
some of the qualitative results on image tiles with different 
Glo1 scores. Overall, it is encouraging that the proposed 
method outperforms the HRS with a noticeable margin. It is 

worth mentioning that the performance of the proposed 
method may improve by appropriately tuning the 
hyperparameters. Our intention here is to demonstrate to some 
extent the generalizability of the hyperparameters selected 
from HER2 scoring. The IHC scoring of HER2 and Glo1 
cases have some fundamental similarities: a) in both cases the 
GT was provided on the WSI level and therefore, it is 
imperative that the underlying model learns a stochastic policy 
and identifies some of the diagnostically relevant regions in 
predicting the final outcome, and b) similar to HER2 scoring, 
an erroneous scoring of 1+ as 3+ or vice versa may have far 
reaching effects for a patient. It is somewhat necessary to have 
a mechanism that penalizes the learnable parameters for 
overcalling those classes. We also observed that in some tissue 
regions, cells are densely packed and pose difficulties for the 
model in selecting ROIs from the invasive tumor regions. 

V. DISCUSSION 

With the adoption of digital slide scanners in routine 
pathology labs, large-scale WSIs or virtual slides (10ଵ଴ pixels) 
have emerged as a reliable alternative to conventional glass 
slides [43]. Typically, for effective training of deep learning 
models, it is incumbent to train computational models with 
large-scale precisely annotated regions. The ineludible fact is 
that sourcing precise high-resolution annotations of scanned 
slides is a laborious task and not considered as a part of the 
routine clinical practice. Hence, attaining tissue-level 
annotations for a significantly large dataset is one of the 
factors that may delay the acceptability of automated methods 
in clinical practice [44].  
 This study proposes a novel recurrent model for IHC 
scoring of HER2 slides of breast cancer. In some respects, the 
model mimics the pathological behavior by learning a 
parameterized policy to select diagnostically relevant regions. 
Experimental results conducted on a challenging contest 
dataset demonstrate the efficacy of the proposed model by 
outperforming the state-of-the-art methods, as shown in Table 
III. It is worth noting that the proposed model only identifies a 
small number of regions required for predicting the correct 
outcome. Depending on the requirements, the model can be 
extended to assign different scalar rewards to each selected 
ROI. Different rewards may also be interpreted as the 
significance of each selected ROIs. Nevertheless, a challenge 
remains in that some times the model selects regions that may 
not appear to be diagnostically relevant (e.g., non-invasive 

Fig. 8: (a) Description of the number of Glo1 scoring WSIs (b) confusion matrix for the proposed method and (c) confusion matrix for the 
hormone receptors scoring (HRS) method [14]. 



 
 

tumor regions) due to tumor heterogeneity. An example is 
shown in Fig. 5, the last location of score 1+.  

In computational pathology, diagnostic efficiency may be 
based on two main factors: 1) selecting potential ROIs from a 
given WSI, and 2) extracting discriminative features from 
within the selected ROIs. Some studies on eye movement have 
shown that with the passage of time trainee pathologists 
eventually gain experience in the selection of diagnostically 
relevant ROIs and learn discriminative features. Another 
recent study [45] shows that the overlap ratio between ROIs 
selected by different pathologists is associated with higher 
diagnostic accuracy. An interesting extension of our work 
would be to find correlation between the diagnostically 
relevant ROIs selected by machines and experts. This may 
help in evaluating the diagnostic reliability of computer-
assisted diagnostic systems. The proposed model also offers 
several advantages over the conventional fully supervised 
approaches. First, the model is capable of handling unwanted 
background regions that are often quite common in histology 
images due to several non-standardization factors in slide 
preparation. Second, the proposed model is capable of scaling 
up to WSIs or significantly large tiles of a WSI as the number 
of trainable parameters are directly linked with the size of 
ROIs instead of image tiles. However, in order to perform 
end-to-end training of the proposed model, we need the 
uncompressed representation of all required tiles of a WSI to 
be hosted into the memory and it is worth mentioning that on 
average, a 24-bit representation of an uncompressed WSI at 
40 × requires approximately 56 GB [46] of memory, making 
it intractable to load an entire WSI into the GPU memory. 
Another extension of our work to achieve end-to-end learning 
would be to devise a multi-stage (or scale) attention 

mechanism. In the first stage, model analyzes the given WSI 
at a lower magnification (1.25 × or lower) to identify the 
potential ROIs and in the second stage the attention model 
analyzes selected ROIs at higher resolution (40×, 20 ×) to 
learn the discriminative features. However, such a model 
would require a prudent selection of reward function(s) and 
tuning of hyper-parameters to ensure the inclusion of 
diagnostically relevant regions in the first stage. In addition, 
the model would require a large number of WSIs to effectively 
optimize the weights for the first stage of the attention model. 

The scope of the proposed model is not only limited to 
HER2 antibody quantification. The scoring of other prognostic 
and predictive markers like estrogen receptor (ER), 
progesterone receptor (PR), and proliferation of Ki-67 on the 
WSI level may also be possible with a similar approach.  In 
the United States alone this year (2018), it is expected that 
there will be 266,120 new invasive BCa cases1. Whereas 
visual examination of histological specimens is generally 
influenced by subjectivity measures for learning 
discriminative features. the proposed model may assist experts 
in reducing subjectivity and serve as a semi-automated tool to 
find diagnostically relevant regions that may require the 
pathologist attention.  

VI. CONCLUSIONS 

In this study, we presented a deep reinforcement learning 
approach for automated scoring of IHC stained HER2 slides of 
breast cancer. Unlike fully supervised models that process all 
the regions of a given input image, the proposed model treats 
IHC scoring as a sequential selection task and effectively 
localizes diagnostically relevant regions by deciding where to 
see. The proposed model carries the potential to solve other 
histology image analysis problems where it is difficult to get 
precise pixel-level annotations. A similar approach may also 
eventually assist the pathologist in automated localization and 
classification of potential ROIs in both H&E and IHC stained 
histology images. The evaluation was conducted on a publicly 
available HER2 scoring contest dataset. Detailed comparative 
evaluation is in the favor of the proposed model. This study 
could potentially commence more interpretable incorporation 
of sequential learning and policy gradients in the domain of 
computational pathology. 
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SUPPLEMENTARY MATERIAL – I 
 

 
Fig. S-1: (left) randomly sampled locations (right) location sampled by following the parameterized policy. Colored circles show the predicted 
locations and the sequence is as follows blue, cyan, yellow, magenta, green, and red.  



SUPPLEMENTARY MATERIAL - II 
 
  

 
Fig. S-2: Examples of four images with selected regions-of-interest (ROIs) predicted by the algorithm. Correctly predicted HER2 scores are 1+, 
3+, 2+, and 2+. The first column shows input images and colored circles shows the predicted locations. The first location is shown with blue 
bounding boxes and similarly the last location is shown with red bounding boxes. 


