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Abstract—One of the challenges facing the adoption of digital
pathology workflows for clinical use is the need for automated
quality control. As the scanners sometimes determine focus
inaccurately, the resultant image blur deteriorates the scanned
slide to the point of being unusable. Also, the scanned slide
images tend to be extremely large when scanned at greater or
equal 20X image resolution. Hence, for digital pathology to be
clinically useful, it is necessary to use computational tools to
quickly and accurately quantify the image focus quality and
determine whether an image needs to be re-scanned. We propose
a no-reference focus quality assessment metric specifically for
digital pathology images, that operates by using a sum of even-
derivative filter bases to synthesize a human visual system-like
kernel, which is modeled as the inverse of the lens’ point spread
function. This kernel is then applied to a digital pathology image
to modify high-frequency image information deteriorated by the
scanner’s optics and quantify the focus quality at the patch level.
We show in several experiments that our method correlates better
with ground-truth z-level data than other methods, and is more
computationally efficient. We also extend our method to generate
a local slide-level focus quality heatmap, which can be used for
automated slide quality control, and demonstrate the utility of
our method for clinical scan quality control by comparison with
subjective slide quality scores.

Index Terms—no-reference focus quality assessment, whole
slide imaging, digital pathology, out-of-focus heatmap, human
visual system, MaxPol derivative library

I. INTRODUCTION

CLINICAL pathology is witnessing a paradigm shift
by transferring from glass tissue slides (observed by

optical microscopy) to digital slides scanned with whole
slide imaging (WSI) systems. WSI scanners generate high
resolution (submicron) images that can aid in the diagnosis of
disease by permitting convenient visualization and navigation
of tissue slide images. In clinical pathology departments,
hundreds to thousands of tissue slides are processed each
day and the number of cases has been steadily increasing,
creating a challenging workload for digital pathology [1].
Routine diagnosis of pathology slides requires high quality high-
throughput images, which are directly affected by the dynamic
environment of the physical optics and sensor electronics of
the scanner [2]–[4].
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High quality images from the slides must be displayed
in a consistent and reliable manner to assist pathologists in
interpreting these images accurately and efficiently. Existing
digital pathology solutions, however still face challenges. For
example, many WSI scanners need a manual inspection of
digital slides for focus quality control (FQC), which is a tedious
and laborious task. In high-throughput scanning systems, which
contain hundreds of slides for processing, making it impractical
to perform a manual FQC check for each individual slide. A
robust, highly reliable automated solution (one-click mode)
eliminates the need for manual FQC checking, and makes the
integrated imaging software user friendly. The computational
complexity of any automated FQC assessment technique should
also be compatible with widely available scanning platforms,
without the requirement of custom hardware. It can be a cost
effective solution for digital pathology departments.

In discrete computational modeling, there exist several no-
reference (NR) focus quality assessment (FQA) (together called
NR-FQA) metrics that can be applied in synthetic or natural
imaging applications for sharpness assessment such as using
gradient map [5]–[9], contrast map [10]–[12], phase coherency
[13], [14], and deep learning solutions [15]–[17]. Please refer
to [18] and the references therein for more information on the
methodologies. The performance accuracy of these metrics is
usually evaluated by comparison with the subjective scores of
a test database where the blur level of the image is scored
by an individual subject. This score is correlated with the
objective scores provided by NR-FQA metric for accuracy
measurement. Despite their effectiveness for synthetic blur
assessment, the correlation accuracy of such methods is usually
low for naturally blurred images, partly because such images
are usually captured in different blurring types, various scales,
and illumination conditions. Beyond such irregularities, high
accuracy NR-FQAs in the literature are highly complex in
terms of computational speed, which makes them impractical
for real-time applications.

The general application of NR-FQA metrics developed for
blurred images is different from out-of-focus blur in digital
pathology. In fact, when it comes to the digital pathology,
imaging is done in a controlled environment where (a) the
magnification is consistent through the image, with most
manufacturers using a similar pixel pitch, (b) image uniformity
is controlled by the quality of illumination optics to uniformly
distribute light at the tissue located at the focal plane of the
objective lens, and (c) poor focusing is the dominant factor
of image blur in scanned images while image blur caused by
motion of slide in the direction of scan is comparatively very

ar
X

iv
:1

81
1.

06
03

8v
1 

 [
ee

ss
.I

V
] 

 1
4 

N
ov

 2
01

8

mahdi.hosseini@mail.utoronto.ca
mahdi.hosseini@mail.utoronto.ca


THIS WORK HAS BEEN SUBMITTED TO THE IEEE FOR POSSIBLE PUBLICATION 2

small. Various methods take advantage of the scan control
environment to employ simplified approaches for NR-FQA
development in digital pathology. To meet the needs for
efficiency and fast computational speed, these methods employ
statistical measurements for feature extraction that are related to
absolute image blurriness. For detailed review of these methods
please refer to [19]–[26] and references therein.

Analysis of blur using such methods is highly effective
for calculating the relative difference between images where
structural similarity is preserved across different focus levels,
known as the in-depth Z-stacks [27]. However, using statistical
measurements for focus quality assessment of image patches
at the whole slide level is a challenge. The diversity of both
structures (tissue morphology patterns) and focus quality levels
across different positions in WSIs makes NR-FQA metric
development a hard problem to solve. In fact, very few methods
exist in the literature to address NR-FQA so as to create a
local quality map (like a heatmap) to reliably assess the in-
focus vs out-of-focus regions in a WSI. Recent developments
tend to solve this problem either by statistical regression
of blur features [26], [28], [29] or by developing a deep-
learning solution with convolutional neural networks (CNNs)
[30]. Unfortunately, the lack of (a) generalization to a broad
spectrum of tissue types and (b) computational efficiency are
the main drawbacks of such methodologies. This makes the
NR-FQA still an unresolved problem in digital pathology for
focus quality assessment in WSI.

We propose an NR-FQA metric called FQPath 1 which
extracts focus-related features from a digital pathology image
that requires no prior knowledge from the user for reliable
analysis of the blur levels to (a) grade the image quality across
different patches in a WSI and (b) grade the WSI scan quality
across slides of different tissue types. The key idea behind
our solution is the synthesis of a convolution filter using the
MaxPol derivative kernel library [31], [32], that mimics the
human visual system response for microscopy applications in
order to equalize the frequency spectrum of the image for
blur feature extraction. We use this feature to develop our
NR-FQA metric which is a variant of the method detailed in
a previous paper for general-application NR-FQA [33]. The
proposed NR-FQA metric i.e. FQPath extracts features with
this synthesized kernel instead of fixed derivative kernels, and
accuracy is measured by correlation with scanning z-level
instead of subjective score.

In this paper, we make the following contributions to
improving WSI in digital pathology:
• We develop a novel method for measuring how close

the specimen was to the object plane at the time of
acquisition using a NR-FQA. This method is based on
the human visual systems characteristic equalization of
spatial frequency expression in an image, which allows
us to distinguish between subtle changes in sharpness as
a result of defocusing.

• We leverage the NR-FQA metric to generate a focus
quality heatmap of whole slide images by applying the
metric on small image patches. We propose an inverse

1https://github.com/mahdihosseini/FQPath

Gaussian mapping of the metric scores to further improve
the usability of the heatmap.

• We introduce a database of 200 WSI scans of histology
slides stained with H&E containing a variety of tissue
types. From these images, we create a subjective scoring
protocol to grade the focus quality at the WSI level.

• We conduct two sets of experiments to (a) compare ten
state-of-the-art NR-FQA metrics based on their correlation
to actual z-level; and (b) provide a quality control tool to
aid in rapid grading of the focus level of WSI scans and
provide the means to define a pass/fail threshold based
on subjective scoring of images.

The work accomplished in this paper is described in sections
below as follows. In Section II we introduce the concept
of HVS convolution kernel synthesis based on out-of-focus
imaging in optical microscopy. In Section III we adopt the
HVS convolution kernel and propose an NR-FQA metric that
we apply on digital image patches. In Section IV we construct
a focus quality heatmap of WSI scans while in Sections
V and VI we describe two sets of experiments to validate
the proposed approach of focus quality assessment of digital
pathology images. Finally, conclusions and recommendations
are presented in Section VII.

II. HUMAN VISUAL RESPONSE-MICROSCOPY LIKE
KERNEL SYNTHESIS

In this section, we explain our approach to model the out-
of-focus characteristics of a digital pathology scanner that
is caused by focal depth offset between the tissue slide and
the scanner’s objective lens. In particular, we synthesize a
human visual system (HVS)-like kernel for optical microscopy
(called HVS-Microscopy, or HVS-M for short) from derivative
basis filters. This HVS-M kernel is then used to partly correct
the high-frequency fall-off in the scanned image’s amplitude
response caused by the microscope’s optics being out-of-focus
relative to the plane of the sample. The corrected image is
used to extract focus quality-related features.

A. Out-of-Focus in WSI Scanning System

One common practice in whole slide imaging (WSI) to
determine the focus map of a tissue specimen on a glass slide
is to pre-measure the focus positions at several locations on the
slide and interpolate a surface that passes through the measured
focus points. This is accomplished with a fast low-resolution
(≤ 1X) preview scan of the whole tissue slide. A region or
regions-of-interest (ROIs) are defined to be scanned at high-
resolution (≥ 20X). Within these regions (or a single region), a
set of focus points are defined on the tissue. At each point, the
scanner will perform a through-focus scan, typically a volume
image, from which one lateral dimension may be discarded.
The resulting xz-scans or xy-scans (one from each focus point)
are run through an algorithm to determine the row or column
of the image corresponding to the sample being at best focus.
Since the image capture was synchronized with a stage encoder,
the focus positions can be determined from these images. Using
the known (xi,yi) coordinates of each measurement of zi, a
surface can be interpolated through all measured points. This

https://github.com/mahdihosseini/FQPath
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interpolated surface is used to compute the optimal z position
for each frame during final high-resolution image acquisition.

During acquisition, errors may occur, which can lead to
some or all parts of the image being out of focus. Some of
these factors may be:
• thermal effects in the mechanical system, which affect

the repeatability of the position of the sample in relation
to the indicated encoder value

• internally or externally generated vibration
• errors in the focus determination algorithm
• errors in the generation of the focus map
• insufficient number of focus points to define an accurate

focus map
• errors in tissue preparation, such as folds or lifting off

the slide surface
These factors cause the sample to pass either above or below
the object plane of the objective lens, which leads to a blurred
image at the camera sensor. In our approach, we attempt to
quantify the image quality deterioration based on defocus,
which may be caused by any of these factors.

In optical microscopy, the point spread function (PSF)
describes a general diffraction model of the optical spreading,
for both in-focus and out-of-focus behavior, that results when
a focused imaging lens is (by definition) aligned with the
target specimen in the lateral plane, i.e. (X,Y) coordinates,
but not necessarily along the optical axis, i.e. Z coordinate.
For different focal depth offsets (Z) from the optimal value,
a different lateral characteristic will be observed. We chose
to model the digital pathology scanner optical characteristic
using the Born & Wolf model [34].

hPSF (r, z) =

∣∣∣∣C ∫ 1

0

J0(k
NA

n
rρ)e−

1
2 ikρ

2z( NAn )2ρdρ

∣∣∣∣2 (1)

where,
r - the radial distance from the optical axis along the lateral
plane (r =

√
x2 + y2, where x and y are the lateral Cartesian

coordinates)
z - the distance between the imaging plane and the in-focus
position along the optical axis
C - a normalization constant
J0 - zero-order Bessel function of the first kind
k - angular wavenumber of the lightsource (k = 2π

λ )
NA - the numerical aperture of the objective lens
n - the refractive index of the medium
i - the imaginary number
ρ - the normalized coordinate in the exit pupil.

In Figures 1(a) and 1(b), we show a mathematical model
of the PSF function using Equation 1 in the axial plane (YZ)
at two different x-levels. When the objective lens is in focus
with respect to lateral plane X i.e. x = 0, the extent of the
frequency domain-PSF is much wider in the y-direction than
when the x-level is out-of-focus x = 4, shown in Figures 1(e)
and 1(f). This shows the importance of proper lateral alignment
of the objective lens to mitigate lateral diffraction.

In Figures 1(c) and 1(d), we show the PSF in the lateral
plane (XY) at two different z-levels. Note that the lens is in-
focus along the optical axis when the z-level is zero, causing
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Fig. 1. 2D Plots of the PSF model defined in 1, displayed at different x- and
z- cut levels shown in both the spatial i.e. first row from (a)-(e) and frequency
domains i.e. second row from (e)-(h)

the model to contain only optical aberration (mainly wavefront)
effects. A non-zero z-level corresponds to an out-of-focus lens
along the optical axis, causing the model to contain both optical
aberration and out-of-focus effects. The frequency plots are
also shown in Figures 1(g) and 1(h).

The corresponding one-dimensional PSF models are also
shown in Figure 2 where they are taken along y = 0 (indicated
by the dotted red line) from the two-dimensional models shown
in Figure 1. Note how the one-dimensional spatial-domain PSF
is limited in amplitude for the out-of-focus case (i.e. z 6= 0)
compared to the in-focus case (z = 0).
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Fig. 2. The corresponding 1D PSF models taken along y = 0 (see the red
dashed lines from z- cuts in Figure 1) from the 2D models are: (a) z ∈ {0, 4}
in spatial domain, (b) z ∈ {0, 4} in frequency domain.

B. HVS-M Kernel Design

In the overall digital pathology process, the PSF described
in 1 i.e. hPSF can be seen as a low-pass filter (LPF) applied
to a natural image, causing its high-frequency components
to attenuate and appear blurred. It is also known [35]–[37]
that the human visual system (HVS) uses a visual sensitivity
response to boost the high frequency response of an image
that can be seen as a deblurring operation. See Figure 3 for a
diagram of this process.

Inspired by the human visual system’s high-frequency-
boosting behavior, we propose to synthesize a HVS-like kernel
to reverse the high-frequency attenuating behavior in digital
pathology images resultant from the PSF of the scanner. We
hypothesize that, by boosting the high-frequency information of
a scanned digital pathology image that is known to characterize
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Fig. 3. Out-of-focus blurry microscopy image observed by the human visual
system (HVS). The in-focus image of a tissue specimen has a high frequency
fall-off characteristic, which is further aggravated by the PSF response of the
microscope. The human visual system is known to boost the high-frequency
information and perform a deblurring operation, and our synthesized HVS-M
kernels are designed to mimic this behavior.

image focality, we will be able to characterize the overall image
focus quality.

Here, we design a frequency-equalizing kernel hHVS-M to
mimic the behavior of the human visual system in boosting the
high-frequency information attenuated by the modeled PSF:

hPSF(r, z∗) ∗ hHVS-M(r) = δ(r), r ∈ [−rmax, rmax]. (2)

Note that z∗ is the optimal microscope objective focal length
where by accurate adjustment of this distance we count for both
out-of-focus blur and natural image frequency falloff behavior.
In particular, we are interested in balancing the frequency
falloff in a bounded Fourier transform domain

ĥHVS-M(ω) = ĥPSF(ω, z∗)−1, ω ∈ [−ωc, ωc]. (3)

We model such an enhancement by defining the HVS filter
as a linear combination of even-derivative operators

hHVS-M(r, z∗) ≡
N∑
n=1

cnd2n(r) (4)

where d2n(r) = d2n/dr2n is the 2nth derivative operator. The
Fourier transform of the model in 4 gives

ĥHVS-M(ω, z∗) =

N∑
n=1

cnd̂2n(ω) =

N∑
n=1

(−1)ncnω
2n. (5)

The unknown coefficients {cn}Nn=1 are determined by fitting
the response 5 to the inverse of the modeled PSF up to a
threshold frequency ωt

argmin
{cn}Nn=1

||ĥ−1PSF (ω)−
N∑
n=1

cn(−1)nω2n||2, ω ∈ [0, ωt]. (6)

This threshold is defined such that to avoid fitting instability
on high frequency bands (ĥ−1PSF (ω) ≤ 30 in our design case).

Once the optimum coefficients {c∗n}Nn=1 are obtained from
6, we construct the discrete model to the filter design in 5.
We synthesize the even-order derivative filters d̂2n as low-
pass filters up to a cutoff frequency ωc (in order to balance
fitting spurious high-frequency noise and retaining useful high-
frequency information) using the MaxPol filter library solution
[31], [32] which is optimized to approximate

d̂2n(ω) ≈

{
(−1)nω2n, 0 ≤ ω ≤ ωc
0, ω ≥ ωc

. (7)
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Fig. 4. Approximation of HVS-M kernel using MaxPol filter library solution.
The optimal coefficients {c∗n}Nn=1 are approximated and used to weigh the
linear combination of MaxPol even derivative kernels for inverse kernel
reconstruction. The inverse spectrum ĥPSF(ω, z∗)−1 shown above corresponds
to the PSF shown in Figure 2 for z = 4.

Figure 4 demonstrates an example of an approximated HVS-
M kernel. The inverse profile ĥPSF(ω, z∗)−1 is first fitted by
the frequency polynomials defined in (6), and the optimal
coefficients {c∗n}7n=1 are attained. These coefficients are used
to combine different MaxPol even-derivative filters to construct
the HVS-M kernel. All of the MaxPol filters are regulated by
a cutoff frequency ωc = 2 for discrete approximation.

III. PATCH-BASED LEVEL FOCUS QUALITY ASSESSMENT

The constructed HVS-M kernel defined in the previous
section can now be applied as a convolution operation to partly
modify the frequency amplitudes of an out-of-focus image in
order to extract sharpness features for focus quality grading in
WSI image patch. The HVS-M kernel provides a meaningful
transformation where the edge features across a wide frequency
spectrum are balanced and become comparable with each other,
and are known to be related to focus quality. Furthermore, by
assigning a single focus quality score for each patch enables
localized focus quality heatmap generation described in the
next section.

Our metric requires the input image patch to be a grayscale
image sized 1024×1024. The focus score procedure is defined
in Algorithm 1 and a select step-by-step visualization of the
procedure is shown in Figure 5. The algorithm requires three
parameters z∗, ω∗c , m∗ to be tuned as follows:
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Algorithm 1: Proposed FQPath scoring for WSI patches

Data: Digital pathology image patch I ∈ RN1×N2×3,
Out-of-Focus Microscopy PSF hPSF (z∗) ∈ R2rmax+1,
optimal parameters {z∗, ω∗c ,m∗}
Result: Out-of-focus score s ∈ R

1 Synthesize inverse response of out-of-focus kernel

{c∗n}Nn=1 ← argmin
cn

||ĥPSF(ω)−1 −
N∑
n=1

cn(−1)nω2n||2
for ω ∈ [0, ωt]

2 Construct HVS-M using MaxPol lowpass derivatives

hHVS-M[k] =
N∑
n=1

c∗nd2n[k]

3 Decompose grayscale image features using HVS-M
(Fx, Fy) = I ∗ (hTHVS-M, hHVS-M)

4 Activate features FRx = max(Fx, 0), FRx = max(Fy, 0)

5 Vectorize only positive features v ≡ vec(FRx
+
, FRy

+
)

6 Find 95th percentile of cumulative distribution function of
the feature vector σ0.95 = CDF(v, 95%)

7 Find the proportion of features to be retained by
P = 0.25(1− tanh(60(σ0.95 − 0.095))) + 0.09

8 Find the #pixels to be retained Npix = PN1N2

9 Find the `1/2-norm feature vectors F = ||(FRx
+
, FRy

+
)|| 1

2

10 Retain F = sortdescend(F )k, k ∈ {1, . . . , Npix}
11 Calculate µm∗ = E[(F − µ0)m

∗
], where µ0 = E[F ]

12 Record the score value by s = − logµm∗

• z-axial PSF coordinate z∗ used for the PSF model
hPSF(z∗) defined in (1)

• Cutoff frequency ω∗c used for setting the cutoff response
of the MaxPol lowpass derivative basis filters

• Central moment m∗ used for quantifying the m∗th order
energy of the focus feature vector

To tune these parameters, we performed a grid search to
yield the best correlation accuracy between the subjective
(ground-truth z-levels) and objective quality scores in our
tuning database, which was a subset of full-FocusPath database
introduced in [18].

In our proposed focus quality scoring in algorithm 1, first,
we fit the inverse PSF in the frequency domain with frequency
polynomials up to the N th order to obtain the optimized
coefficients {c∗n}Nn=1. Then, the coefficients are used to weight
the linear combination of one-dimensional even-derivative
MaxPol filters for synthesizing the HVS-M filter (this filter is
calculated once and fixed for subsequent image scoring). We
then separate the input image with the HVS-M filter along
the horizontal and vertical axes (see Figures 5(f) and 5(g))
and exclude negative features with the ReLU function to
avoid blurring adjacent features with redundant information
(see Figures 5(d) and 5(e)). The feature map is vectorized
and an adaptive proportion of the largest values are retained,
using a nonlinear function, based on the 95th percentile of the
feature vector’s probability distribution function (PDF). This
ensures that only the most dominant focus-relevant features
are preserved. The energy of the horizontal and vertical feature
is taken in `1/2-norm space to promote feature sparsity along

the horizontal and vertical directions (see Figure 5(b)). Finally,
we calculate the m∗th central moment of the most dominant
values from the feature vector (see Figure 5(c)) and take its
negative logarithm to obtain the final focus quality score. Note
that the focus quality score is inversely proportional to the
focus quality, i.e. a lower score indicates better focus quality.

(a) Original Image (b) F
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Fig. 5. Demo images after each single operation for metric analysis defined in
Algorithm 1. The input image is decomposed by HVS-M kernel (d) horizontally
and (e) vertically. The positive features are activated from both decomposed
images shown in (f) and (g), where the superimposed feature map is shown
in (b). The features are sorted in (c) and an adaptive threshold is applied to
keep Npix largest feature values.

IV. WSI-BASED LEVEL FOCUS QUALITY ASSESSMENT

Previously, we explained the focus quality measure at the
WSI patch level, but for this measurement to be useful in a
routine digital pathology workflow, it needs to be conducted
at the tissue slide level. This way, the focus quality measure
can be used to generate a local focus quality map (known as a
heatmap) for an entire scanned slide. For a given whole slide
image, we propose to divide it into patches of size 1024×1024
px, calculate the focus quality score for each patch separately,
apply an inverse Gaussian projection (to linearize the focus
quality gradation), and combine the patch scores into a slide-
level focus quality heatmap. In this section, we describe the
WSI database that we used for testing, our proposed inverse
Gaussian projection linearization technique, and the subjective
whole-slide scoring we conducted to validate our generated
heatmaps.

A. Inverse Gaussian Projection

One additional step is used to prepare the patch-based focus
quality measure discussed in the previous section for slide-
level heatmap generation - inverse Gaussian projection. This
ensures that the score-z profile (the relationship between the
focus quality score and the known ground-truth z-level) is
accurately linearized, which is important for proper visual
perception of focus quality gradations and local extrema, since
a non-linearized scale causes the heatmap to saturate near
high and low focus quality values. We selected the inverse
Gaussian projection to be the linearizing operation because we
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Fig. 6. Plots of z-profile scores, showing the individual profiles as grey dotted
lines, the mean profiles as red asterisks, and the linear/Gaussian fits as blue
solid lines, with the central grey region representing the fitting window: (a)
Regular training z-profile scores, (b) Projected training z-profile scores, (c)
Regular testing z-profile scores, (d) Projected testing z-profile scores

noticed that the score-z profiles tended to form an inverted
Gaussian-like bell shape (as seen in Figures 6(a) and 6(c)).

To implement and validate the inverse Gaussian projection,
we take the full, unreleased version of the FocusPath database
[18] (540 lateral profiles×16 z-levels=8640 images in total) to
be the training set for calibrating the projection, and a separate
set of digital pathology images to be the test set (90 lateral
profiles×16 z-levels=1440 images in total) for validating the
calibration. All profiles have ground-truth z-levels attached
to them (integer values ranging from -7 to 8, inclusive). To
train (or calibrate) the inverse Gaussian projection, we obtained
the regular focus quality scores for these 540 training profiles,
plotted them at their respective ground-truth z-levels, and found
the mean focus quality score for each z-level (see the grey
dotted lines and red asterisks respectively in Figure 6(a)). Then,
we fitted a Gaussian f(z) = ae−(z−b)

2/c to the inverse mean
focus quality score in the middle z-level values (i.e. the central
grey region z ∈ [−3, 3] in Figure 6(a)) to prioritize fitting in the
high focus quality region (the optimal values were determined
to be a∗ = 5.389, b∗ = 0.005248, c∗ = 5.301). For testing, we
first inverted the regular focus quality score, passed it through
a threshold to ensure a non-negative argument to square root,
and then applied the inverse of the fitted Gaussian to the score.
See algorithm 5 for details on the training and testing phases
of the projection.

Algorithm 2: Inverse Gaussian projection on FQPath scores
Data: Training set of FQPath scores st(n, z) ∈ R, where

n = {1, · · · , 540} and z = {1, · · · , 16}
Single test FQPath score s ∈ R
Result: Projected testing FQPath score sP ∈ R

1 Find the mean train set profile s̄t(z) = En[st(n, z)]
2 Calculate inverse mean profile s̄t inv(z) = max(s̄t)− s̄t(z)
3 Fit Gaussian model to inverse mean profile
{a∗, b∗, c∗} ← argmin

{a,b,c}
||s̄t inv(z)− ae−( z−b

c )2 ||2, where

z ∈ {−3,−2, . . . , 2, 3}
4 Invert and threshold test set score

sinv = min(max(s̄t)− s, a∗)
5 Map test score by inverse Gauss. sP = c∗

√
− log sinv

a∗ + b∗

As can be seen in Figure 6, the score-z profiles are
significantly more linear near inside the grey fitting window
after projection (Figures 6(b) and 6(d)) than before projection
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Fig. 7. Sample heatmap before and after projection. Note the greater visual
saliency of low focus quality regions in the heatmap after projection.

(Figures 6(a) and 6(c)). Note that, in both the training and
testing after-projection profiles, a minority of individual profiles
undesirably stagnate near zero within the range z ∈ [−2, 2].
This is caused by the threshold operation required for the
inverse Gaussian. When applied to an entire slide for heatmap
generation, as shown in Figure 7, it is clear that the inverse
Gaussian projection linearizes the heatmap colour scale, en-
abling better visual perception of focus quality gradations and
local extrema.

B. 200-WSI Scan Database

For the purpose of focus quality assessment at the WSI level,
we have collected a slide database consisting of 200 different
WSIs scanned at 40X magnification (0.25µm/pixel resolution)
without compression using a TissueScope LE1.2 scanner. This
database is selected from a larger set of 500 anonymized H&E
tissue glass slides (sized 1”× 3”, 1.0 mm in thickness) mainly
provided by Southlake Regional Hospital and made available
to the authors courtesy of Huron Digital Pathology. The slides
were specifically selected to cover the entire histopathological
colour range and to exclude slides with excessive preparation
imperfections, such as air bubbles and tissue folding. The tissue
sections vary in thickness, organ of origin (e.g. brain, kidney,
breast, liver, heart), and diagnosis (e.g. healthy, tuberculosis,
cancer).

C. Subjective Whole-Slide Scoring

In order to validate the accuracy of the generated focus
quality heatmaps, comparison must be made to a subjective
score. Hence, we trained three human focus quality assessors
to score the subjective quality of each slide at WSI-based level
and compare these scores with the generated heatmaps. The
assessors were trained on ground-truth views of in-focus and
out-of-focus WSI regions displayed at 100% pixel resolution.
A region was labeled focus-rejected when more than half of the
screen view area was out-of-focus. Accordingly, the following
procedure was followed:

1) Open the WSI in the HuronViewer program 2

2) Increase the zoom level to 100% pixel resolution

2HuronViewer is freely available at http://www.hurondigitalpathology.com/
resources/

http://www.hurondigitalpathology.com/resources/
http://www.hurondigitalpathology.com/resources/
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3) Using the thumbnail view, mentally plan the slide naviga-
tion pattern of assessment points to cover as much of the
tissue regions and as evenly as possible (for example see
Figure 8 (left plot))

4) Start a one-minute countdown within view of the slide
5) Using the thumbnail view, navigate the field of view to

the first assessment point
6) Determine the field-of-view (FOV) around the first assess-

ment point to be in-focus (pass) or out-of-focus (fail)
7) Increment the count of passing and failing focus quality

assessment points accordingly
8) Proceed to the next assessment point (according to the

pre-planned slide navigation pattern) and repeat steps 6
to 8 until either one minute has passed or the pre-planned
slide navigation pattern has been completed early
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Fig. 8. Left plot: Sample pre-planned navigation pattern of assessment points
through a slide. The assessor navigates through different positions within the
tissue thumbnail at 100% image resolution and records each as pass/fail. The
ratio of pass points to total points determines the acceptance ratio of WSI
sharpness. Right plot: Statistical distribution of acceptance ratio across 200
WSI database and three different subjective ratings.

As a result, each of the 200 slides was assigned two numbers
(pass and fail counts) by the three assessors and an acceptance
ratio (number of pass points divided by total points) was
calculated from these counts. The statistical distribution of the
slide acceptance ratios in the 200-WSI database is shown in
Figure 8 (right plot). It shows the assessor subjective scores
differ due to their varying expertise and quality criteria. One
can obtain the mean opinion score (as is standard practice
in image quality assessment [38], [39]) to create the relative
subjective scoring of the whole slide image.

V. EXPERIMENT NO.1: PATCH-LEVEL ANALYSIS

In this section, we describe the design, implementation and
execution of several experiments at the WSI patch level to eval-
uate our proposed FQ metric in terms of accuracy, processing
speed, and computational complexity. We compare our metric
against 10 state-of-the-art NR-FQA metrics, including S3 [40],
MLV [5], ARISMC [41], GPC [14], SPARISH [6], RISE [8],
MaxPol [33], HVS-1 and HVS-2 [18], and MIFQ [30].

A. Degree of Accuracy Correlation

We perform the accuracy analysis on the regular version
of the digital pathology database FocusPath3 introduced in

3https://sites.google.com/view/focuspathuoft

[18]. The database contains 864 naturally-blurred patches
(sized 1024×1024 px) extracted from whole-slide scans. All
11 candidate metrics are assessed to determine their correlation
with the known ground-truth z-level of each patch, which
is measured using the Pearson linear correlation coefficient
(PLCC), Spearman rank order correlation (SRCC), Kendall
rank correlation coefficient (KRCC) and root mean square
error (RMSE). For more information on these four accuracy
measures, please refer to [38], [39]. PLCC measures linear
correlation, SRCC measures the strength and direction of
monotonicity, KRCC indicates the ordinal association, and
RMSE measures the difference in value. MIFQ by default
operates on patches sized 84×84 (a variant of deep-learning
solution), so for a fair comparison, each FocusPath patch was
divided into 84×84 smaller patches and their average was
computed as the overall patch-level focus score. The results
of the accuracy measures are provided in Table V-A. The top-
three methods for each accuracy measure are shown in bold.
FQPath achieves the highest overall performance across all
four different measurements, ahead of the next best metrics
HVS-2 and MIFQ. When the scores are plotted relative to the
absolute value of the ground-truth z-levels, as in Figure 9, it
is clear that FQPath is by far the most correlated with the
ground-truth.

TABLE I
PLCC, SRCC, KRCC, AND RMSE PERFORMANCE OF DIFFERENT FQA

METRICS ON FOCUSPATH DATABASE. THE TOP THREE METRICS FOR EACH
ACCURACY MEASURE ARE SHOWN IN BOLD. THE STATISTICAL

SIGNIFICANCE (SS) OF PLCC, SRCC, AND KRCC ACCURACY RESULTS
ARE ALSO SHOWN ON RIGHT COLUMN. ’+1’ INDICATES THAT FQPATH IS

SIGNIFICANTLY MORE ACCURATE, ’-1’ INDICATES FQPATH IS
SIGNIFICANTLY LESS ACCURATE, AND ’0’ INDICATES THAT THERE IS NO

SIGNIFICANT DIFFERENCE.

Methods PLCC SRCC KRCC RMSE SS
S3 [40] 0.7906 0.7914 0.6181 1.5141 0
MLV [5] 0.3201 0.3296 0.2347 2.3409 +1
ARISMC [41] 0.2263 0.3043 0.2195 2.4068 +1
GPC [14] 0.7499 0.7811 0.6020 1.6346 0
SPARISH [6] 0.3459 0.3566 0.2626 2.3184 +1
RISE [8] 0.6509 0.6566 0.4903 1.8758 +1
MaxPol [33] 0.7056 0.7191 0.5910 1.7508 0
HVS-MaxPol-1 [18] 0.8212 0.8144 0.6383 1.4100 0
HVS-MAxPol-2 [18] 0.8538 0.8574 0.6852 1.2865 0
MIFQ [30] 0.8286 0.8200 0.6397 1.3834 0
FQPath (proposed) 0.8556 0.8606 0.6888 1.2789 N/A

B. Significance of Accuracy Correlation
To determine the statistical significance of the PLCC and

SRCC accuracy results, we also conducted a one-sided T-test
with a 95% confidence level between the proposed metric and
all other metrics. As shown in Table V-A (right column), the
proposed metric is significantly more accurate than 4 other
metrics and not significantly different from the other 6 metrics.
The overall results from both the accuracy and significance
tests indicate that the proposed FQPath metric outranks the
competing methods and provides a reliable FQ measure for
WSI quality control at the patch level.

C. Computational Complexity Analysis
Another characteristic of a good focus quality metric for

digital pathology is a low computational complexity, since

https://sites.google.com/view/focuspathuoft
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(b) MLV [5]
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(c) ARISMC [41]
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(d) GPC [14]
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(e) SPARISH [6]
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(f) RISE [8]
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(g) MaxPol [33]
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(h) HVS-1 [18]
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(i) HVS-2 [18]
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(j) MIFQ [30]
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Fig. 9. Plots of each competing focus score with the absolute value of their
associated ground-truth z-level for each image patch in FocusPath. Note how
the plot for FQPath shows a consistent linear trend between z-level and score
which is not paralleled by the other metrics.

digital pathology images are usually extremely large in size.
For example, a 1cm×1cm tissue specimen scanned at 40X
resolution is 4.8 GB in size. We designed and executed two
experiments for computational complexity analysis: (1) to
compare the times required by the competing metrics for
images of different sizes, and (2) to compare the competing
metrics by their PLCC accuracy and their run-time per pixel (on
2048×2048 images). Both experiments are done on a Windows
station with an AMD FX-8370E 8-Core CPU 3.30 GHz.
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Fig. 10. Left plot: Computational complexity analysis using run time vs.
image size for different FQ methods. Right plot: PLCC vs. run time per pixel
using different methods. Ideal methods (high accuracy, high computational
speed) are found at the top-left corner.

Figure 10 (left plot) demonstrates the computational com-
plexity of all 11 FQ metrics with respect to different image
sizes. We selected 20 sample images of different patch sizes
i.e. {64, 128, 256, 512, 1024, 2048} and average the the CPU
time over all 20 trials to report the computation time. Note
that the test rank of HVS-MaxPol-1 and FQPath are consistent
over different image sizes. For a 1024× 1024 patch, FQPath

takes 0.06626 s, HVS-MaxPol-2 takes double the time (0.1905
s), and MIFQ takes 74 times (4.234 s).

Figure 10 (right plot) demonstrates the relationship between
PLCC performance and CPU run time. A large y- (vertical)
axis value indicates high accuracy performance and low x-
(horizontal) axis value indicates high speed. Therefore, an ideal
method would be located at the top-left corner, such as FQPath,
HVS-MaxPol-1, and HVS-MaxPol-2. Overall, FQPath performs
excellently in terms of both accuracy and speed, proving to be
highly reliable for digital pathology FQ assessment.

VI. EXPERIMENT NO.2: WSI-LEVEL ANALYSIS

At the whole-slide level, FQPath can be applied (with the
inverse Gaussian projection) to construct a slide focus quality
heatmap and visualize the regions of high and low focus quality.
In this section, we propose two experiments to show the validity
of our approach to whole-slide-level focus quality assessment:
(1) display the FQ heatmaps generated for some select whole
slide images, and (2) correlate the FQ heatmaps with the
subjective slide quality scores.

TABLE II
RAW PYRAMID IMAGES AND HEAT MAPS. (A)-(F) SHOW THE RAW PYRAMID
IMAGES, (G)-(L) SHOW THE CORRESPONDING FOCUS QUALITY HEATMAPS,
AND (M)-(R) SHOW THE CORRESPONDING HEATMAP SCORE CUMULATIVE

SUMMATION CURVES (FASTER-RISING CURVES INDICATING BETTER
OVERALL SLIDE QUALITY). A 10-BIN HISTOGRAM OF ALL THE HEATMAPS
IS TAKEN AND ONE EXAMPLE PATCH TAKEN FROM EACH BIN OF THE SLIDE

(INDICATED BY THE RED ARROWS, WITH LARGER BIN NUMBERS
INDICATING BETTER FOCUS QUALITY). SEE THE PATCHES THEMSELVES

INSIDE FIGURE III.
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A. Heat Map Analysis

In Table II, we show the FQ heatmaps generated for five
select slides. The shade of colors in heatmaps are demonstrated
from blue to red corresponding from low to high focus quality,
respectively. Note how local regions of low focus quality are
easily visible in shades of blue and cyan, and vertical scan
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artifacts in slides 1 and 3 show as stripe-like patterns. The
distribution of patch quality scores in these focus quality
heatmaps is indicative of overall scan quality and decide
whether to accept or reject the scan.

In Table III, we show example patches for each of five
histogram bins for each heatmap. Note how the patches vary in
focus quality from crisp tissue scans to increasing degrees
of blur. This supports the validity of our proposed focus
quality heatmap where the processing metric provides a reliable
and robust analysis of focus measures within intraclass and
interclass of tissue types across different slide images.

TABLE III
EXAMPLE IMAGE PATCHES FROM FIVE SLIDE IMAGES.

Slide-1 Slide-2 Slide-3 Slide-4 Slide-5
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B. Subjective Whole-Slide Scoring

In order to correlate our FQ heatmaps with our subjective
slide quality scores, we considered the heatmap patch quality
scores independently and generated cumulative summation
curves to determine their distribution. In Figure II (third row),
we show these cumulative summation curves for five different
WSIs. In Figures 11 (left plot) we show the PLCC between the
heatmap scores with the subjective slide scores, and determined
the optimal heatmap score threshold to be 1.7688 based on the
PLCC plot. And in Figure 11 (right plot), we plot the optimally-
thresholded heatmap acceptance ratio with the subjective slide
scores. As can be seen, the objective heatmap acceptance ratios
form a linear relationship with the subjective acceptance ratios,
thus indicating the feasibility of using FQPath for slide-level
quality control.

VII. CONCLUSION

This paper presented an accurate and computationally
efficient automated no-reference focus quality assessment (NR-
FQA) technique that is currently needed for digital pathology
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Fig. 11. Left plot: PLCC across different threshold values, between the slide-
level FQPath objective score and the subjective acceptance ratio. Smoothed
plot shown as solid line with objective acceptance threshold of 1.7688
that maximizes correlation between the objective and subjective slide-level
acceptance ratio. Right plot: Objective Acceptance Ratio (using acceptance
threshold of 1.7688) vs. Subjective Acceptance Ratio. Red line indicates IQA
fit through data

workflows. It provides a practical solution for high-throughput
scanning tasks that can be utilized in both image patch (aka
block) and whole slide image (WSI) levels for focus quality
evaluation of image scans. The method estimates the point
spread function corresponding to the out-of-focus of the scanner
imaging optics and synthesizes its inverse response as a sum of
even-derivative filter bases. This kernel behaves similarly to the
human visual system by modifying attenuated high-frequency
image information. A set of digital pathology images are
convolved with this synthesized filter to extract focus quality-
related features and quantified these features to determine the
quality score. The accuracy and computational efficiency of
the proposed method are demonstrated in two fold: (a) the
metric is evaluated at patch level and compared to ten other
state-of-the-art NR-FQA metrics; and (b) the application of the
proposed metric is demonstrated at WSI level to generate local
focus quality maps (heatmaps), which are showed to be usable
for automatically quantifying a slide’s overall focus quality.

The proposed NR-FQA metric retains both accuracy and
speed that can favorably extended in different medical imaging
applications for better engineering of QC control in helping
clinicians/physicians to better serve the public health. Modali-
ties include but not limited to brightfield microscopy, darkfield
microscopy, fluorescence microscopy, confocal microscopy, etc.
The metric could also be used to analyze the relevance of out-
of-focus for developing automated diagnosis tools that have
recently gained attention in computational pathology [42]–[44].
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