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Simplified Statistical Image Reconstruction for
X-ray CT with Beam-Hardening Artifact

Compensation
Monica Abella, Cristóbal Martínez, Manuel Desco, Juan José Vaquero, Senior Member, IEEE,

and Jeffrey A. Fessler, Senior Member, IEEE

Abstract—CT images are often affected by beam-hardening
artifacts due to the polychromatic nature of the X-ray spectra.
These artifacts appear in the image as cupping in homogeneous
areas and as dark bands between dense regions, such as bones.
This paper proposes a simplified statistical reconstruction method
for X-ray CT based on Poisson statistics that accounts for the
non-linearities caused by beam hardening. The main advantages
of the proposed method over previous algorithms is that it
avoids the preliminary segmentation step, which can be tricky,
especially for low-dose scans, and it does not require knowledge
of the whole source spectrum, which is often unknown. Each
voxel attenuation is modeled as a mixture of bone and soft
tissue by defining density-dependent tissue fractions, maintaining
one unknown per voxel. We approximate the energy-dependent
attenuation corresponding to different combinations of bone
and soft tissue, so called beam-hardening function, with the 1D
function corresponding to water plus two parameters that can be
tuned empirically. Results on both simulated data with Poisson
sinogram noise and two rodent studies acquired with the ARGUS-
CT system showed a beam hardening reduction (both cupping
and dark bands) similar to analytical reconstruction followed by
post-processing techniques, but with reduced noise and streaks in
cases with low number of projections, as expected for statistical
image reconstruction.

Index Terms—X-ray computed tomography, polyenergetic,
beam hardening, image reconstruction, penalized likelihood.
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I. INTRODUCTION

THE traditional image reconstruction method for X-ray
CT, filtered back projection (FBP), faces challenges with

non-standard scanning geometries like cone-beam and multi-
slice helical CT and with truncated projection data. Statistical
reconstruction methods are preferable for low-dose scans,
can model any geometry and can accommodate measurement
physics including beam hardening, partial-volume effects, and
scatter [1], at the price of more computation time. X-ray tubes
used in CT scanners are polyenergetic, producing a beam
having a range of photon energies. Due to the energy depen-
dence of mass attenuation coefficients, low-energy photons are
preferably absorbed, causing a shift of the mean energy of the
X-ray beam to higher values. Since attenuation coefficients
are energy dependent, different projection measurements will
‘see’ the same object as having different attenuation values,
leading to data inconsistencies in the Radon sense and, if un-
corrected, reconstruction artifacts: ‘cupping’ in homogeneous
areas, ‘dark bands’ or ‘shadows’ between bones, and ‘spill
over’ of bone areas into soft tissue [2].

Most scanners use the ‘linearization method’, which as-
sumes that all the materials in the scan field have X-ray atten-
uation characteristics equivalent to water, which are measured
in a previous calibration [2]–[4]. This simplification leads to a
suboptimal correction for inhomogeneous objects, especially
in the presence of high-density areas, like bone. Dual-energy
imaging enables quantitative CT reconstruction free of artifacts
based on the acquisition of two scans at different voltages,
typically 80 kVp and 120 kVp in clinical studies [5]–[7].
Although it is useful for tissue characterization, it needs longer
scan times and/or more sophisticated scanner hardware, poten-
tially increasing the dose significantly. Joseph and Spital [8]
proposed a post-processing technique modeling the corrected
data with a second-order polynomial dependent on the amount
of bone traversed, which is obtained by a forward projection of
the bone voxels segmented from an initial FBP reconstruction.
This bone projection provides an estimate of the line-integral-
dependent nonlinearity for each measurement that is then used
to correct the projection data [8]–[11] followed by a second
FBP. A similar approach was proposed in [12], but obtaining
the linear combination in the image domain. Both approaches
need knowledge of the spectrum and attenuation coefficients
to find the optimum linear combination. Kyriakou et al. [13]
obtained the optimum coefficients by maximizing the flatness
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ofthesofttissue,thusavoidingtheneedofspectralinforma-
tion.However,enforcingflatnessinsofttissueareasmaylead
toareductionofsoft-tissuecontrast.Followingasimilaridea,
Parketal.[14]basedtheoptimizationofthecoefficientson
theminimizationofthesparsityoftheLaplacian.Schülleret
al.[15]substitutedthebonesegmentationsteprequiredinthe
previousmethodsbyanautomatichistogramtransformationto
createtheboneimages.Optimumparametersarethenobtained
byminimizingtheentropyoftheimage.Nevertheless,this
methodwasshowntoproduceanovercompensationofthe
beam-hardeningartifactsinrealstudies.Inallthementioned
post-processingtechniques,theresultstronglydependsonthe
qualityofthebonesegmentation,whichmaybechallengingin
low-dosestudiesorimageshighlyaffectedbybeam-hardening
artifacts.

Alternatively,severaliterativereconstructionmethodsinher-
entlyaccountforthenonlinearitiesofthebeam-hardeningef-
fect.Yanetal.[16]developedaniterativenon-statisticalbeam-
hardeningcorrectionmethod,assumingtwoknownsubstances
anditerativelycomputingtheirvolumefractionateachpixel.
ElbakriandFessler[17]presentedastatisticalalgorithmalso
assumingthatthesamplewascomposedbyknownsubstances
thathadtobesegmentedinaninitialimage.Theyimproved
the methodin[18]byincludingthesegmentationinthe
costfunctiontobeupdatedateachiterationandallowing
pixelstocontainmixtures.Bothapproachesneededtabulated
measurementsofthelineintegralsofboneandwateroveran
appropriaterangeofobjectthicknessesfortheCTsystem’s
spectrum.De Manetal.[1]proposedastatisticalapproach
decomposingthelinearattenuationcoefficientintoaphoto-
electriccomponentandaComptonscattercomponent.The
relativeweightofthesecomponentswasconstrainedbased
onpriormaterialassumptions.Themethoddidnotrequirea
preliminarybonesegmentationbutitstillneededknowledge
ofthepolyenergeticsourcespectrum.Thiswassubstituted
bySrivastavaandFesslerin[19]withthesamecalibration
dataandtuningparametersasJosephandSpital.However,
theproposedmodelmakesanapproximationthatcanlead
tononphysicalnegativevaluespronetocauseconvergence
problems.

Inanearlierconferencepaper[20],weexploredinmore
depththeworkin[19],proposedanimprovedapproximation
function,andpresentedpreliminary2Dsimulationresults.The
methodmodeledthetissuefractionsinthevoxelsasfunctions
ofthedensitysimilarlyto what wasdonein[18].This
paperimprovesthealgorithmandillustratesitsperformance
withreal3DCTdata.Thealgorithmiterativelyminimizes
thePoissonlikelihood,providingbettersolutionsthanPWLS
[21],andusesorderedsubsets[22]foracceleration.Including
scatterestimates,ifavailable,inthealgorithmisstraightfor-
ward. Wetestedthealgorithmonsimulateddataunderlow-
samplingconditionsusingsyntheticphantomsandaCTofthe
anthropomorphicPBU-60thoraxphantom(KyotoKagakuCo.,
Kyoto,Japan).Inaddition,thealgorithmwastestedontwo
sparse-viewrodentstudiesacquiredwiththeCTsubsystemof
anARGUS/CT(SEDECAL)scanner[23].

II. MATERIALSANDMETHOD

Weusetheusualpolyenergeticmodel[17]forthemeanof
thei-thmeasuredsinogramdatavalue

Yi= Ii(ε)e
−
Li

µ(x,y,z,ε)

dε+ri, (1)

whereµ(x,y,z,ε)denotestheunknownenergy-dependentat-
tenuationcoefficientmapoftheobject.Theintegralinthe
exponentistakenoverthepathofthei-thray,Li,andthe
“spectrum”Ii(ε)incorporatestheenergydependenceofboth
theincidentray,abowtiefilter,andthedetectorsensitivity.The
termricanaccountforscatterandotherbackgroundsignals
andisassumedknownhere.Thegoalistoreconstructµfrom
thenoisymeasurementsYihavingmeangivenin(1).

A.Objectmodel:Segmentationfreeimplementation

ForanobjectcomposedofK differentsubstances, we
expresstheattenuationcoefficientatpixeljusingthefollowing
model:

µj(ε)=
K

k=1

mk(ε)ρjf
j
k (2)

whereρjdenotestheunknowndensity,mk(ε)denotesthe
known massattenuationcoefficientofthek-thsubstance,
andfk

jdenotesaunitlesstissuefractionthatquantifiesthe
contributionofmaterialktoattenuationinvoxelj.Asin
previousmethods,weassumethattheobjectconsistsofonly
twosubstances:boneandsofttissue.Therationalebehind
thisassumptioncomesfromthedependenceoftheattenuation
propertieswithenergyfordifferenttissuesinthebody,asmost
tissuesbehavelikewaterandonlybonedifferssignificantly
(seeFig.1in[18]).
Topreventanincreaseofthenumberofunknownsandavoid
preliminarysegmentation,wedefineamodelforthetissue-
fractionvalueinthepixel,fk

j,asafunctionoftheestimated
densityinthatpixel,similarlytowhatwasproposedin[18].
Forthetwo-materialcaseweassume

µj(ε)≈
2

k=1

mk(ε)ρjf
j
k(ρj)=

ms(ε)f
j
s(ρj)+mb(ε)f

j
b(ρj)ρj,

(3)

withtissuefractionfunctions,fs
j(ρj)andfb

j(ρj),builtfollow-
ingthedisplacementmodelin[18]thatconsidersmaterials
occupyingdistinctspatialregionsand mixedpixelsatthe
boundaries.Thesoft-tissuefractionofthemodelin[18]was
nonzeroforair,resultinginanincrementofdensityvaluesin
air-filledareasinsidethesamplethroughsubsequentiterations.
Toavoidit,weproposethepiecewisethird-orderpolynomials
forthesoft-tissueandbonefractionsshowninFig.1,given
by

fS=






0.336ρ+16.234ρ2−27.057ρ3 0≤ρ≤0.4
1 0.4≤ρ≤1.1
−54.29+133.6ρ−105.5ρ2+27.1ρ3 1.1≤ρ≤1.5
0 1.5≤ρ

(4)
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fB=






0 0≤ρ≤1.1
55.3+133.6ρ+105.5ρ2−27.1ρ3 1.1≤ρ≤1.5
1 1.5≤ρ

(5)
whereρhasunitsg/cm3.Takingintoaccountthevalues
providedbyNIST,weassumesofttissuedensityisbetween
0.4and1.1g/cm3andsetathresholdforbonedensityof1.5
g/cm3
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.Thecoefficientswereobtainedastheresultofathird-
orderpolynomialfittingusingalinearleast-squaresregression.

Fig.1.Third-orderpolynomialtissue-fractionfunctionsforsofttissue,fs(ρ),
andbone,fb(ρ).

Basedon(1)and(3),solvingfortheunknownvaluesateach
voxelrequiresknowledgeoftheX-rayspectrumemittedbythe
source,whichisoftendifficulttocharacterize.Thefollowing
sectiondescribesourproposaltoovercomethisproblem.

B.Forwardmodel:Beamhardeningfunction

Withthemodelexplainedabove,weexpress(1),i.e.,the
meanofthemeasureddataalongthepathofthei-thray,Li,
as

Yi(ρ)= Ii(ε)e
−ms(ε)t

i
s(ρ)−mb(ε)t

i
b(ρ)dε+ri, (6)

wherets
i(ρ)andtb

i(ρ)denotethecontributionsofeachtissue
typetothelineintegralalongthei-thrayhavingunitsg/cm2

andgivenby

tis(ρ)=

p

j=1

aijf
j
s(ρj)ρj, t

i
b(ρ)=

p

j=1

aijf
j
b(ρj)ρj, (7)

whereaijdenoteselementsofthesystemmatrix(havingunits
cm).Groupingtheenergydependenttermsintotheexponent
yields

Yi(ρ)=Iie
−F(tis(ρ),t

i
b(ρ))+ri; Ii≡ Ii(ε)dε. (8)

ThefunctionFcharacterizesthebeamhardeningandis
definedby

F(ts,tb)=−log
I(ε)

I
exp(−ms(ε)ts−mb(ε)tb)dε ,

(9)
wherewedropthedependenceonrayiforsimplicity.One
couldcalculatethe2DfunctionFanalyticallyiftheX-ray
spectrumwereknown,whichisoftennotthecase.Onthe
otherhand,tabulatingthe2Dfunctionexperimentallywould
becumbersome.Nevertheless,the1DversionofF
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corre-
spondingtowater,whichhasattenuationpropertiessimilar
tosofttissue,isusuallyavailableformostscanners(Fig.2).

Fig.2.Beam-hardening(BH)functionusedfortheso-calledwatercorrection
(linearization).Left:Simulationcorrespondingto waterfora100kVp
spectrum.Right:CalibrationoftherealscannerARGUS/CTusingaPMMA
phantomfora40kVpspectrum.

Weproposetoapproximatethecomplete2Dbeam-hardening
functionbyusingthe1Dfunctioncorrespondingtowaterplus
twoadditionalparametersthatwetuneempirically.Theidea
isinspiredbythepost-reconstructioncorrectionmethodof
JosephandSpital[8],whichusestheconceptof‘effective
density’,thatis,theamountofwaterthatwouldproduce
thesamebeam-hardeningeffectasthegivenamountofbone
traversed. Weintroducethisconceptintheforwardmodel
ofaniterativealgorithmbyrewritingthebeamhardening
functionas

F(ts,tb)=F(ts+σ(ts,tb),0)=Fw(te), (10)

whereFw(t)=F(t,0)isthebeamhardeningfunctioncorre-
spondingtowaterandteisthelineintegraloftheeffective
density,i.e.waterequivalent.
ThefullX-rayspectrumwouldbeneededtodetermine
σ(ts,tb)exactly,justlikeforthefunctionF(ts,tb).Fig.3shows
calculatedplotsofσ(ts,tb)
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Fig.3. Simulationofσ(ts,tb).Left:profilesversustswhereeachline
correspondstodifferentvaluesoftb.Right:profilesversustbcorresponding
totheminimumandmaximumtsvalues.

AswecanseeintheleftpanelofFig.3,thedependenceon
tscanbeconsiderednegligiblewhentheamountofbonein
theobjectissmall,whichisthecaseinclinicalstudies.Joseph
andSpitalsuggestedin[8]apowerseriesapproximationof
thefunctionthatdefinesthemeasuredprojectiondepending
onlyontb.Hsieh[10]describedasimilarapproach,basedon

σ1(tb)=Atb−Bt
2
b, (11)

whereAandBareparametersthatonecantune.Although
approximation(12)worksadequatelyforFBPreconstruction,
itcanfailwhenusedintheforwardmodelofastatistical
reconstructionmethodbecauseitcanyieldnegativevalues.
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Fig.4. Twoexamplesofapproximationsforσ(ts,tb).

Furthermore,onecanverifythatσ(ts,tb)isa monotone
increasingfunctionofbothofitsarguments,whereas(11)
isnot(seeFig.4).Toovercomethisdrawbackof(11),we
investigatedthefollowingalternativeapproximation:

σ2(tb)=
Atb

1+BAtb
, (12)

where,asin(11),AisunitlessandBhasunitscm2/g.This
functionismonotonenonnegativeandmatches(10)forsmall
valuesoftb.Substituting(12)into(10)and(8)leadstoour
proposedforwardmodel:

Yi(ρ)=Iie
−Fw tis(ρ)+

Atib(ρ)

1+B
A
ti
b
(ρ) +ri=

Iie

−Fw






p

j=1
aijf

j
s(ρj)ρj+

A
p

j=1
aij(fjb(ρj))ρj

1+B
A

p

j=1
aij(fjb(ρj))ρj






+ri.

(13)

C.Algorithm

AnaccuratemodelofthephysicsofCTacquisitionneeds
toaccountfortheenergy-integratingdetectionprocessandthe
additivedetectorread-outnoise.Ontheotherhand,sophisti-
catedmodelsoftenleadtomoredifficultiesinoptimizingthe
associatedpenalized-likelihood.Forsimplicity,inthiswork
weapproximatethemeasurementstatisticsasindependently
distributedPoissonrandomvariables[24]:

Yi∼Poisson Yi , i=1,...,N (14)

Thecorrespondingnegativelog-likelihoodforindependent
Poissonmeasurementsisgivenby

−L(ρ)=
N

i=1

hi(Fw(te(ρ))) (15)

with
hi(l)=−YilogIie

−l+ri +Iie
−l+ri, (16)

whereraccountsformeancontaminationbyextrabackground
countscausedprimarilybyscatter.Becausedataisnoisyand
tomographyisanill-posedproblem,weuseregularizationby
addingapenaltytermtothelikelihoodfunctionthatcontrols
howmuchtheobjectρdepartsfrompriorassumptionsabout
imageproperties.Inthisworkweuseda3Droughnesspenalty
functionwiththeconvexedge-preservingHuberpotential:

R(ρ)=

Np

j=1

1

2
k∈Nj

wjk·ψ(ρj−ρk);

ψ(t)=
|t|2

δ
|t|≤δ

δ|t|−δ2 |t|>δ
,

(17)

whereNjisaneighborhoodofpixelsnearpixelj,wjk=wkjand
ψistheconvexedge-preservingHuberpotential.Thispenalty
functionismodifiedasdescribedin[25]toimprovespatial
resolutionuniformity.Thepenalizedcostfunctionisnow:

Φ(ρ)=−L(ρ)+βR(ρ), (18)

wherethescalarparameterβcontrolsthetradeoffbetweenthe
data-fitandpenaltyterms.
Wederivedaniterativealgorithmbasedonseparable
quadraticsurrogatesusingtheprinciplesofoptimizationtrans-
fer[26],resultinginthefollowingupdate:

ρn+1=ρn−D−1∇Φ(ρn), (19)

whereDisadiagonal matrixthatinfluencestherateof
convergence.InsteadofdesigningDtoensurethattheal-
gorithmmonotonicallydecreasesthecostfunctionwechoose
theelementsofDapproximatelyassuggestedin[17][26]by
usingthefollowingpre-computedcurvature:

dj=(Kms(εeff))
2
N

i=1

aij





j

aij



Yi, (20)

whereweincludeKastuningparameterforthestepsize.
ThefinalalgorithmisshowninAlgorithm1,whereDReg
andD2Reg arefirstandsecondorderderivativesofthe
surrogateoftheregularizationtermasexplainedin[24]andG
isthesystemmatrix.Fourprojectionsandonebackprojection
areperformedateachiteration.

Algorithm1Proposedalgorithm
1:x=fbpu
2:denom=G’*(yi.*(G*(ones(size(x))))
3:for1toiterations
4:hxs=x*fs(x)
5:hxt=x*ft(x)
6:hxsDeriv=x*Dfs(x)
7:hxtDeriv=x*Dft(x)
8:ti=G*hxt
9:si=G*hxs
10:te=si+sigma(A,B,ti)
11:F=fw(te)
12:hFs=Dfw(te)
13:m=I*exp(-F)+r
14:Ni=(y/m-1)*I*exp(-F)
15:Njs=hFs*Ni;
16:NjAux1=G*(fs(x)+hxDeriv)
17:NjAux2=G*(ft(x)+hxtDeriv)
18:NjAux=NjAux1+Dsigma(A,B,ti)*NjAux2
19:Nj=G’*(NjAux*Njs)
20:num=Nj+beta*DReg
21:den=denoms*(K*Dfw(0))̂2+beta*D2Reg
22:x=x+num/den
23:x=max(x,0)
24:end

Weuseanorderedsubsetsapproximationof(19)toincrease
speed[22].The2Dversiononthisalgorithmwillbeincorpo-
ratedtotheMichiganImageReconstructionToolbox(MIRT),
availableathttp://www.eecs.umich.edu/~fessler/code.

D.Performanceassessment

Wesimulatedfourpolyenergeticspectra,with80,100,120
and140kVp,and0.25cmaluminumfiltrationatthesource
togiveaspectrumshapesimilartoclinicalpractice(Fig.5).
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Fig. 5. X-ray spectra used for simulations.

Based on this model for the source, we generated a set
of transmission polyenergetic Poisson X-ray projections with
parallel beam geometry using the MIRT toolbox.

The detector was modeled as a simple photon-counting
device. The projection data had 512 radial bins with 0.1 cm
ray spacing and 180 angular steps over 180 degrees. We did
not simulate scatter. The blank scan value was 106 and 105

counts per detector element to simulate high- and low-SNR
scenarios respectively.

We first evaluated if our approach in (12) is physically
reasonable using a basic ellipsoidal phantom made of water,
with density 1.0 g/cm3, containing two disks of bone, with
density 1.9 g/cm3. We tested A values from 0 to 2 in steps of
0.001 and B from 0 to 0.1 cm2/g in steps of 0.001 cm2/g. The
optimum A and B were those that minimized the root mean
square error (RMSE) with respect to the FBP reconstruction
from monoenergetic data (reference image) measured in the
rectangle shown in the left panel of Fig. 6. We then evaluated
the dependency of these values with bone size using them to
reconstruct a phantom made of soft tissue with bone inserts of
different sizes and densities equal to 1.9 g/cm3 and 2.1 g/cm3

and two inserts of fat with density 0.95 g/cm3, shown in middle
panel of Fig. 6. We used the same phantom to evaluate the
performance of the method under low-SNR and low-sampling
conditions, using 45 projections over 180 degrees.
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Fig. 6. Left: Ellipsoidal phantom made of soft tissue with 30 cm and 20 cm
diameter sizes and two bone inserts with 4 cm diameter; dotted lines indicate
areas used for measurements. Middle: Phantom with inserts of different sizes
and densities. Right: Slice of the PBU-60 thorax phantom.

We used the same A and B values on simulated human data
using a slice of the PBU-60 thorax phantom (right panel of
Fig. 6). Density values for bone areas (spine and ribs) and soft
tissue were 1.9 g/cm3 and 1.06 g/cm3 respectively.

We reconstructed the data using uncorrected FBP, water-
corrected FBP, FBP corrected by the Joseph and Spital (JS)
method, a monoenergetic statistical algorithm (ordered subsets
separable paraboloidal surrogates [26]), and the proposed
polyenergetic algorithm. We used a Hanning window with
cut-off frequency of 80% Nyquist in the FBP reconstruction

to achieve a spatial resolution comparable to that of the
statistical algorithms. Tissue fraction functions shown in Fig.
1 were applied to the water-corrected FBP image providing
the segmentation required by the JS technique. The proposed
method ran for 50 iterations, ß = 30 and δ = 0.002 g/cm3

for high-SNR and 100 iterations, ß = 145 and δ = 0.002
g/cm3 for low-SNR and low-sampling in (17) and (18). The
monoenergetic method ran for 50 iterations with 15 subsets, ß
= 4 and δ = 0.001 g/cm3. We chose constants A = 1.475 and
B = 0.0100 cm2/g in (14).

In addition to qualitative assessment of artifact reduction,
we quantified the performance in terms of noise, streaks due to
undersampling and bias of the different algorithms. Noise and
undersampling-induced streaks were assessed as the coefficient
of variation (CV) in the homogeneous region depicted in the
left panel of Fig. 7. Bias was calculated as the RMSE relative
to the reference image for the whole soft-tissue area (middle
panel of Fig. 7) and for the area with the strongest beam
hardening artifact, close to the ribs (right panel of Fig. 7).

Fig. 7. ROIs obtained by thresholding and erosion/dilation to measure CV
(A), and RMSE (B and C) in soft tissue.

Finally, the algorithm was tested on two rodent studies
acquired with the CT subsystem of an ARGUS/CT (SEDE-
CAL) scanner, a cone-beam micro-CT scanner based on a
flat-panel detector [23]. We focus on low-SNR and sparse-
sampling scenarios because these are the cases that derive the
greatest benefit from iterative methods such as that proposed.

We obtained 180 views of a volume of 516×516×301
voxels with 0.121 mm3 voxel size, covering 360 degrees with
a source voltage of 40 keV. We reconstructed the images using
uncorrected FDK, JS-corrected FDK, the monoenergetic sta-
tistical algorithm and the proposed polyenergetic algorithm. A
3D version of these algorithms was implemented substituting
the MIRT-CPU kernels by the GPU-accelerated kernels from
FUX-Sim [27]. We obtained the segmentation required by
the JS technique using the same tissue fractions used for the
proposed method, shown in Fig. 1, on the water corrected FDK
image.

Parameters in this case were A = 2.458 and B = 0.49 cm2/g
in (14) and ß = 0.06 and δ = 0.04 g/cm3 for the proposed
method and ß = 0.55 and δ = 0.02 g/cm3 for the monoenergetic
algorithm in (17) and (18).

Both monoenergetic and proposed polyenergetic methods
were ran for 200 iterations on a computer with an Intel
Core i7-4790 CPU, 32 GB RAM and an NVIDIA GeForce
GTX960. Runtime was 70 and 100 seconds per iteration,
respectively. The reason for higher computational burden of
the polyenergetic algorithm, compared to the monoenergetic
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TABLE I
OPTIMIZED A AND B PARAMETERS FOR DIFFERENT

VOLTAGES

Voltage JS method Proposed method
(kVp) A B (cm2/g) A B (cm2/g)

140 0.228 0.0045 1.3 0.0075
120 0.275 0.0045 1.4 0.01
100 0.335 0.0045 1.475 0.01
80 0.41 0.0045 1.8 0.0325

case, is the higher number of projections per iteration needed.
No effort was made to optimize execution time.

III. RESULTS

Table 1 shows the optimum A and B values found for each
voltage with simulations using the ellipsoidal phantom. Fig.
8 shows good beam-hardening artifact compensation achieved
by the proposed algorithm for different sizes and densities of
bone, proving the feasibility of the approximation of the σ
function. For the low-SNR and low-sampling case, we can
also see a dramatic reduction of the undersampling-induced
streaks.
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Fig. 8. Phantom with different bone sizes reconstructed with FBP (left) and
with the proposed algorithm (right) for the high-SNR (top) and low-SNR and
low-sampling (bottom) cases.

Fig. 9 shows the absolute differences between the reference
and the results of the FBP and the proposed algorithm.

Fig. 10 shows the evolution of the soft-tissue and bone
masks along iterations for the low-dose and low-sampling
case. We can see the improvement of the soft tissue and
bone segmentations through iterations, where both dark bands
and undersampling streaks are reduced, resulting in a more
accurate model.

Figs. 11 and 12 show the results on one slice of the PBU-
60 thorax phantom. The uncorrected FBP image suffered from
beam-hardening artifacts in the form of dark bands between
the ribs and spine. The statistical iterative reconstruction with
no modeling of the polyenergetic spectrum exhibited signif-
icantly lower CV (noise and undersampling-based streaks)
but still suffered from beam-hardening artifacts. The proposed
method eliminates the beam-hardening artifacts, removing the
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Fig. 9. Absolute difference between the reference and the result of the
proposed algorithm (top) and the FBP (bottom) for the low-SNR and low-
sampling (left) and the high-SNR (right) cases.
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Fig. 10. Soft-tissue and bone segmentations for the low-dose and low-
sampling case at different iterations.

dark bands and recovering the real soft tissue values, while
showing a significant reduction of noise and streaks when
compared with the post-processing JS method.
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Fig. 11. 512x512 pixel axial slice of the PBU-60 phantom (A), reconstructed
with FBP (B), FBP+Water correction (C), FBP+JS correction (D), statistical
algorithm using a model incorrectly based on a monoenergetic X-ray source
(E) and the proposed algorithm (F).

Table 2 shows the results of the analysis of noise, streaks
and bias for all the methods. The proposed method achieved a
bias reduction on the same order as the JS method, but with a
significantly higher CV reduction in the soft-tissue area. There
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Fig. 12. Zoom-in view of the area inside the dotted square drawn in Fig. 8
A for images A-F.

TABLE II
CV AND RMSE RESULTS FOR THE PBU-60 PHANTOM

Method
CVa,b in
soft tissue
(ROI A)

RMSEb in
soft tissue
(ROI B)

RMSEb

close to ribs
(ROI C)

FBP 0.032 0.164 0.178
FBP + water 0.041 0.104 0.175

FBP + JS 0.040 0.046 0.055
Monoenergetic 0.030 0.159 0.179

Proposed method 0.029 0.038 0.052

aCoefficient of variation. bUnits of density g/cm3.

was also a significant reduction of CV in the background,
not visible in Fig. 11 because the window was selected to
show beam-hardening artifacts. The monoenergetic iterative
algorithm resulted in a similar CV reduction as the proposed
method, as expected, but with no bias reduction mainly due
to the beam-hardening effects.

Fig. 13 shows the results for the two rodent studies. Again,
the statistical iterative reconstruction with no modeling of the
polyenergetic spectrum exhibits significantly better noise and
streaks behavior than the FDK-based methods but still suffers
from beam-hardening artifact. The proposed method elimi-
nates the beam-hardening artifact while showing a significant
reduction of noise and streaks when compared with the post-
processing JS method.

IV. DISCUSSION

This work presents a new statistical reconstruction algorithm
for X-ray CT that accounts for beam-hardening effect.

In most of the previously proposed methods the forward
model requires knowledge of the X-ray source spectrum,
which is often unknown in practice. To overcome this prob-
lem, we modify the projection model by adapting one idea
previously proposed by Joseph and Spital [8]. This idea is
based on the concept of “effective water path length”. We
substitute the 2D beam-hardening function corresponding to
bone and soft tissue with the 1D function corresponding to
water, already available in most scanners, plus two empiri-
cal parameters, A and B in (13). This theoretical model is

thus exact for monochromatic radiation and represents an
approximation in the polychromatic case. The approximation
of σ(ts, tb) used here ignores the dependence on ts, which
is a rather accurate assumption when there are only small
areas of bone. Future works might explore more accurate
approximations by including the dependence with ts in the
model. In our implementation, the parameters A and B were
obtained empirically, but it could be interesting to investigate
the possible inclusion of these parameters in the algorithm in
order to perform a joint estimation.

Regarding the model of the object, the most commonly
used approach is to assume that each voxel can only be either
bone or soft tissue and to segment bone from a preliminary
reconstruction obtained with a fast algorithm such as filtered
back-projection. This segmentation can be challenging, espe-
cially in the case of low-dose scans, which suffer from low
SNR and possibly photon starvation. Furthermore, this model
neglects partial volume effects, as voxels are not allowed
to contain a mixture of bone and soft tissue. Our approach
addresses these problems, as we model the attenuation at
each voxel by defining piecewise density-dependent tissue
fractions, which are updated at each iteration, eliminating
possible segmentation problems in low-dose studies. In our
work, selection of the intervals for these functions was based
on the typical densities for soft-tissue and cortical bone found
in NIST. Further evaluation of the effect of the definition of
these intervals on the recovered density values for both clinical
and preclinical data is warranted. Although the bone/soft-tissue
model will suffice for most cases, a three-class model could
be necessary when contrast agents or metallic implants are
present. It might also help to improve the estimation of the
density of fat.

Comparing panels B, C, and D of Fig. 13, it is clear that the
reduction in undersampling-induced streaks and noise using
the statistical method is likely due to noise model and the
edge-preserving penalty, and not a novel result in itself. The
main point are the reduced beam-hardening artifacts going
from Fig. 13-C to Fig. 13-D. We used a noise model based
on simple Poisson statistics for simplicity, but it does not
reflect the actual physics of CT acquisition. The strategy
proposed in (13) also can be used with more accurate sta-
tistical models that account for energy-integrating detection
and additive detector read-out noise, which could improve the
accuracy of reconstruction. One possibility would be a model
that considers the total signal to be a sum of energy-scaled
Poisson processes, each with a different scale factor. This
model is potentially more accurate because it accounts for
the polyenergetic nature of the incident beam in the detection
process. Nevertheless, sophisticated models often lead to more
difficulties in optimizing the associated penalized-likelihood.
Although scattering was not considered in this work, including
scatter estimates in the algorithm is straightforward.

V. CONCLUSION

We present a new statistical reconstruction algorithm for
polyenergetic X-ray CT based on Poisson statistics and a
physical model that accounts for the nonlinearities caused
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Fig. 13. Axial slice of two rodent studies reconstructed with uncorrected FDK (A), FDK+JS (B), the monoenergetic iterative algorithm (C), and the proposed
method (D).

by the beam-hardening effect. The main advantage of our
method over previously proposed iterative algorithms is the
combination of two desirable characteristics: 1) it eliminates
the problem of wrong bone segmentations in low-dose stud-
ies or images highly affected by beam-hardening artifacts,
and 2) it corrects beam-hardening artifacts without requiring
knowledge of the X-ray source spectrum. Results showed
a similar beam-hardening correction as the post-processing
technique proposed by Joseph and Spital, but with reduced
noise and streak artifacts in the low-dose, low-sampling cases,
as expected for statistical image reconstruction with Huber
penalty with edge-preserving regularization.
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