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Simplified Statistical Image Reconstruction for
X-ray CT with Beam-Hardening Artifact
Compensation
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and Jeffrey A. Fessler, Senior Member, IEEE

Abstract—CT images are often affected by beam-hardening
artifacts due to the polychromatic nature of the X-ray spectra.
These artifacts appear in the image as cupping in homogeneous
areas and as dark bands between dense regions, such as bones.
This paper proposes a simplified statistical reconstruction method
for X-ray CT based on Poisson statistics that accounts for the
non-linearities caused by beam hardening. The main advantages
of the proposed method over previous algorithms is that it
avoids the preliminary segmentation step, which can be tricky,
especially for low-dose scans, and it does not require knowledge
of the whole source spectrum, which is often unknown. Each
voxel attenuation is modeled as a mixture of bone and soft
tissue by defining density-dependent tissue fractions, maintaining
one unknown per voxel. We approximate the energy-dependent
attenuation corresponding to different combinations of bone
and soft tissue, so called beam-hardening function, with the 1D
function corresponding to water plus two parameters that can be
tuned empirically. Results on both simulated data with Poisson
sinogram noise and two rodent studies acquired with the ARGUS-
CT system showed a beam hardening reduction (both cupping
and dark bands) similar to analytical reconstruction followed by
post-processing techniques, but with reduced noise and streaks in
cases with low number of projections, as expected for statistical
image reconstruction.

Index Terms—X-ray computed tomography, polyenergetic,
beam hardening, image reconstruction, penalized likelihood.
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I. INTRODUCTION

HE traditional image reconstruction method for X-ray

CT, filtered back projection (FBP), faces challenges with
non-standard scanning geometries like cone-beam and multi-
slice helical CT and with truncated projection data. Statistical
reconstruction methods are preferable for low-dose scans,
can model any geometry and can accommodate measurement
physics including beam hardening, partial-volume effects, and
scatter [1], at the price of more computation time. X-ray tubes
used in CT scanners are polyenergetic, producing a beam
having a range of photon energies. Due to the energy depen-
dence of mass attenuation coefficients, low-energy photons are
preferably absorbed, causing a shift of the mean energy of the
X-ray beam to higher values. Since attenuation coefficients
are energy dependent, different projection measurements will
‘see’ the same object as having different attenuation values,
leading to data inconsistencies in the Radon sense and, if un-
corrected, reconstruction artifacts: ‘cupping’ in homogeneous
areas, ‘dark bands’ or ‘shadows’ between bones, and ‘spill
over’ of bone areas into soft tissue [2].

Most scanners use the ‘linearization method’, which as-
sumes that all the materials in the scan field have X-ray atten-
uation characteristics equivalent to water, which are measured
in a previous calibration [2]-[4]. This simplification leads to a
suboptimal correction for inhomogeneous objects, especially
in the presence of high-density areas, like bone. Dual-energy
imaging enables quantitative CT reconstruction free of artifacts
based on the acquisition of two scans at different voltages,
typically 80 kVp and 120 kVp in clinical studies [5]-[7].
Although it is useful for tissue characterization, it needs longer
scan times and/or more sophisticated scanner hardware, poten-
tially increasing the dose significantly. Joseph and Spital [8]
proposed a post-processing technique modeling the corrected
data with a second-order polynomial dependent on the amount
of bone traversed, which is obtained by a forward projection of
the bone voxels segmented from an initial FBP reconstruction.
This bone projection provides an estimate of the line-integral-
dependent nonlinearity for each measurement that is then used
to correct the projection data [8]-[11] followed by a second
FBP. A similar approach was proposed in [12], but obtaining
the linear combination in the image domain. Both approaches
need knowledge of the spectrum and attenuation coefficients
to find the optimum linear combination. Kyriakou et al. [13]
obtained the optimum coefficients by maximizing the flatness
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of the soft tissue, thus avoiding the need of spectral informa-
tion. However, enforcing flatness in soft tissue areas may lead
to a reduction of soft-tissue contrast. Following a similar idea,
Park et al. [14] based the optimization of the coefficients on
the minimization of the sparsity of the Laplacian. Schiiller et
al. [15] substituted the bone segmentation step required in the
previous methods by an automatic histogram transformation to
create the bone images. Optimum parameters are then obtained
by minimizing the entropy of the image. Nevertheless, this
method was shown to produce an overcompensation of the
beam-hardening artifacts in real studies. In all the mentioned
post-processing techniques, the result strongly depends on the
quality of the bone segmentation, which may be challenging in
low-dose studies or images highly affected by beam-hardening
artifacts.

Alternatively, several iterative reconstruction methods inher-
ently account for the nonlinearities of the beam-hardening ef-
fect. Yan et al. [16] developed an iterative non-statistical beam-
hardening correction method, assuming two known substances
and iteratively computing their volume fraction at each pixel.
Elbakri and Fessler [17] presented a statistical algorithm also
assuming that the sample was composed by known substances
that had to be segmented in an initial image. They improved
the method in [18] by including the sepmentation in the
cost function to be updated at each iteration and allowing
pixels to contain mixtures. Both approaches needed tabulated
measurements of the line integrals of bone and water over an
appropriate range of object thicknesses for the CT system's
spectrum. De Man et al. [1] proposed a statistical approach
decomposing the linear attenuation coefficient into a photo-
electric component and a Compton scatter component. The
relative weight of these components was constrained based
on prior material assumptions. The method did not require a
preliminary bone segmentation but it still needed knowledge
of the polyenergetic source spectrum. This was substituted
by Srivastava and Fessler in [19] with the same calibration
data and tuning parameters as Joseph and Spital. However,
the proposed model makes an approximation that can lead
to nonphysical negative values prone to cause CONVETgence

problems.

In an earlier conference paper [20], we explored in more
depth the work in [19], proposed an improved approximation
function, and presented preliminary 2D simulation results. The
method modeled the tissue fractions in the voxels as functions
of the density similarly to what was done in [18]. This
paper improves the algorithm and illustrates its performance
with real 3D CT data. The algorithm iteratively minimizes
the Poisson likelihood, providing better solutions than PWLS
[21], and uses ordered subsets [22] for acceleration. Including
scatter estimates, if available, in the algorithm is straightfor-
ward. We tested the algorithm on simulated data under low-
sampling conditions using synthetic phantoms and a CT of the
anthropomorphic PBU-60 thorax phantom (Kyoto Kagaku Co.,
Kyoto, Japan). In addition, the algorithm was tested on two
sparse-view rodent studies acquired with the CT subsystem of
an ARGUS/CT (SEDECAL) scanner [23].

2

II. MATERIALS AND METHOD

We use the usual polyenergetic model [17] for the mean of
the i-th measured sinogram data valoe

— J plrp.z.z)

Y, = ff,(sje

where u(x)y,zc) denotes the unknown energy-dependent at-
tenuation coefficient map of the object. The integral in the
exponent is taken over the path of the i-th ray, L, and the
“spectrum”™ I;(=) incorporates the energy dependence of both
the incident ray, a bowtie filter, and the detector sensitivity. The
term ri can account for scatter and other background signals
and is assumed known here. The goal is to reconstruct p from
the noisy measurements ¥; having mean given in (1).

ds + 1y, (1)

A Object model: Sepmentation free implementation

For an object composed of K different substances, we
express the attenuation coefficient at pixel j using the following
model:

K
py(€) = me(€)py fi
k=1
where p; denotes the unknown density, my(c) denotes the
known mass attenuation coefficient of the &-th substance,
and fi/ denotes a unitless tissue fraction that quantifies the
contribution of material & to attenuation in voxel j. As in
previous methods, we assume that the object consists of only
two substances: bone and soft tissue. The rationale behind
this assumption comes from the dependence of the attenuation
properties with energy for different tissues in the body, as most
tissues behave like water and only bone differs significantly
(see Fig. 1 in [18]).

To prevent an increase of the number of unknowns and avoid
preliminary segmentation, we define a model for the tissue-
fraction value in the pixel, f/, as a function of the estimated
density in that pixel, similarly to what was proposed in [18].
For the two-material case we assume

(2)

2
() =Y me(e)py fi (pg) =

k=1
(ms(2) (o) + mu(e) (1)) 1.

with tissue fraction functions, f/(p;) and fi/(p;), built follow-
ing the displacement model in [18] that considers materials
occupying distinct spatial regions and mixed pixels at the
boundaries. The soft-tissue fraction of the model in [18] was
non zero for air, resulting in an increment of density values in
air-filled areas inside the sample through subsequent iterations.
To avoid it, we propose the piecewise third-order polynomials
for the sofi-tissue and bone fractions shown in Fig. 1, given

by

(3)

0.336p + 16.234p% — 27.057p° 0<p<04
1 04<p<1.1
fs ={ _sa20+ 133.6p — 105507 + 27.1p° 11 <p<15
0 15<p
(4)
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1
1.5
(3
where p has units g/cm®. Taking into account the values
provided by NIST, we assume soft tissue density is between
0.4 and 1.1 g/fcm’ and set a threshold for bone density of 1.5
glem’. The coefficients were obtained as the result of a third-
order polynomial fitting using a linear least-squares regression.

[ A =

0 0
fo = { 55.3 + 133.6p + 105.50% — 27.15° 1.
1 1.

oA,
M 1A =
™A

Tiesua frachan. fig)

a 0.5 1 15 2 25

o lfem?]

Fig. 1. Third-order polynomial tissue-fraction functions for soft tissoe, fa(p),
and bone, fi(p).

Based on (1) and (3), solving for the unknown values at each
voxel requires knowledge of the X-ray spectrum emitted by the
source, which is often difficult to characterize. The following
section describes our proposal to overcome this problem.

B. Forward model: Beam hardening function

With the model explained above, we express (1), i.e., the
mean of the measured data along the path of the i-th ray, L;,
as

Y. (p) =-[1'= {E}E—msts}ti[p‘.l—mhtshti{.u‘.ldg_H-h (6)

where #,'(p) and 1,'(p) denote the contributions of each tissue
type to the line integral along the i-th ray having units g/cm”
and given by

P P

t(p) =Y ayfi(p)es, o) = aufllpdes, M
J=1 =1

where a;; denotes elements of the system matrix (having units

cm). Grouping the energy dependent terms into the exponent
yields

Yi(p) = I:E_F{Ei(p}‘r':‘(p}} +ry L= fff (e)dz.  (8)

The function F characterizes the beam hardening and is
defined by

P (i) =~ [ T exp (cm(e)ts ~ mo@)ce ).

9
where we drop the dependence on ray i for simplicity. One
could calculate the 20 function F analytically if the X-ray
spectrum were known, which is often not the case. On the
other hand, tabulating the 2D function experimentally would
be cumbersome. MNevertheless, the 1D version of F corre-
sponding to water, which has attenuation properties similar
to soft tissue, is usually available for most scanners (Fig. 2).

3

i et e o 3 ——EH affected vales o
- = = Il Vahos - == < Il Viakss -
4 - 28 -
g - i -
3 o 2 -
Fi "'-.‘" 18 _."" .
: 20 S
it
st
8
[ 5 10 15 20 8 1 02 3 4 5 8
wcm] xfcm]

Fig. 2. Beam-hardening (BH) function used for the so-called water comection
(linearization). Left: Simulation coresponding to waker for a 100 kVp
spectrum. Right: Calibration of the real scanner ARGUS/CT using a PMMA
phantom for a 40 kVp spectrum.

We propose to approximate the complete 2D beam-hardening
function by using the 1D function corresponding to water plus
two additional parameters that we tune empirically. The idea
is inspired by the post-reconstruction correction method of
Joseph and Spital [8], which uses the concept of ‘effective
density’, that is, the amount of water that would produce
the same beam-hardening effect as the given amount of bone
traversed. We introduce this concept in the forward model
of an iterative algorithm by rewriting the beam hardening
function as

F (t;,tp) = Flts + o(ts, tp), 0) = Fy(te), (10)

where F(t)=F{t,0) is the beam hardening function corre-
sponding to water and r, is the line integral of the effective
density, i.e. water equivalent

The full X-ray spectrum would be needed to determine
oty i) exactly, just like for the function F(r,tp). Fig. 3 shows
calculated plots of o(t,,tp) for a typical polyenergetic spectrum.

‘—-—-—-.‘nfl_"z_____ =L
=
wl
o = 20 grom”
-E”’_'_'_'_L_“—-———' Eﬁ- t, =80 griemr
315-—-_.___1._-&&?‘_____- E:,., 1 =0 griam®

0 1 L
gt | F
1] i} 40 =] =] ] W i} 3 40

1, lgeem’]

Fig. 3. Simulation of o, ty). Left: profiles versus ts where each line

comesponds to different values of £, Right profiles versus &, comesponding
to the minimum and maximum ¢, values,

As we can see in the left panel of Fig. 3, the dependence on
t; can be considered negligible when the amount of bone in
the object is small, which is the case in clinical studies. Joseph
and Spital suggested in [8] a power series approximation of
the function that defines the measured projection depending
only on #;. Hsieh [10] described a similar approach, based on

(11)

where A and B are parameters that one can tune. Although
approximation (12) works adequately for FBP reconstruction,
it can fail when used in the forward model of a statistical

reconstruction method because it can yield negative values.

o1 (ty) = Aty — Bi},
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o 1‘1] JI:I 3:1] 40
Fig. 4. Two examples of approximations for o(fs, tw).

Furthermore, one can verify that ofr..f;) is a2 monotone
increasing function of both of its arguments, whereas (11)
is not (see Fig. 4). To overcome this drawback of (11), we
investigated the following alternative approximation:

Aty
] {t‘b} = 1+ %t‘h
where, as in (11), A is unitless and B has units cm®/g. This
function is monotone nonnegative and matches (10) for small
values of tp. Substituting (12) into (10) and (8) leads to our
proposed forward model:

— —Fol| tf _#__’“"{’}
Yi {P} _ I’:e (c,{ﬂ)+1+ li{i‘]) 4=
2 £ (A e)e; )

% E o)

(12)

(13)

i=1

—F, (ﬁ a;; 17 (pj 1o+
I-;E

C. Algorithm

An accurate model of the physics of CT acquisition needs
to account for the energy-integrating detection process and the
additive detector read-out noise. On the other hand, sophisti-
cated models often lead to more difficulties in optimizing the
associated penalized-likelihood. For simplicity, in this work
we approximate the measurement statistics as independently
distributed Poisson random variables [24]:

Y; ~ Poisson {?1} , i=1.,N (14)

The corresponding negative log-likelihood for independent
Poisson measurements is given by

N
—L{p)= Zh: (Fu(te(p)))

=1

(13)

with

hy (I) = =Y, log (I,e_l + ri} +Let 4, (16)
where r accounts for mean contamination by extra background
counts caused primarily by scatter. Because data is noisy and
tomography is an ill-posed problem, we use regularization by
adding a penalty term to the likelihood function that controls
how much the object p departs from prior assumptions about
image properties. In this work we used a 3D roughness penalty
function with the convex edge-preserving Huber potential:

NFI
R(p)=) 5 > wik-¥(ps — )i

=1 keN;

Ie?
ﬂ’f”={.5|f|_g

(17)
It < &
It >&°

4

where N; is a neighborhood of pixels near pixel j, wy=w;; and
1 is the convex edge-preserving Huber potential. This penalty
function is modified as described in [25] to improve spatial
resolution uniformity. The penalized cost function is now:

2(p) =—L(p) +BR(p), (18)

where the scalar parameter 5 controls the tradeoff between the
data-fit and penalty terms.

We derived an iterative algorithm based on separable
quadratic surrogates using the principles of optimization trans-
fer [26], resulting in the following update:

Pt =p" = DTIVE(p"), (19)

where I} is a diagonal matrix that influences the rate of
convergence. Instead of designing D to ensure that the al-
gorithm monotonically decreases the cost function we choose
the elements of I} approximately as suggested in [17][26] by
using the following pre-computed curvature:

N
dj‘ = {Kms {EEIIHE Z ayq (Z ﬂ;j) Kt‘. (20}
i=1 i
where we include K as tuning parameter for the step size.
The final algorithm is shown in Algorithm 1, where DReg
and D2Rep are first and second order derivatives of the
surrogate of the regularization term as explained in [24] and G
is the system matrix. Four projections and one backprojection
are performed at each iteration.

Algorithm 1 Proposed algorithm
1 ¥x=fbpu

2: denom=G"« (yi.w~ (G« (ones(size(x))))
3: for 1 to iterations

4: hxs = x«f3(x)

5: hxt = xw«ft(x)

E&: hxsDeriv = x«Dfs(x)

T: hxtDeriv = x«Dft (x)

B: ti = Gehxt

91 Bi = Gehxs

10: te = sit+sigma(A,B,ti)

11: F = fwite)

12: hFs = Dfw(te)

13z m = Iwexp(-Fl+r

14: Ni = (y/m—-1)«I+exp(-F}

15: Nijs = hFs«Ni;

16: Njhuxl = Gs (fs(x)+hxDeriv)

17: Njhux2 = G (ft (x)+hxtDeriv)

18: NjAux = Njhuxl+Dsigma (A,B,ti)«MNijAux2
19: Nj = G"« (NjRux«NHi=s)

20: num = Njtbeta«DReg

21: den = denomsw (E«Dfw(0})*2+ beta«DZReg
22: ¥ = ¥X+num/den

23: x = max(x,0)

24: end

We use an ordered subsets approximation of (19) to increase
speed [22]. The 2D version on this algorithm will be incorpo-
rated to the Michigan Image Reconstruction Toolbox (MIRT),
available at http//www.eecs.umich.edu/-fessler'code.

D. Performance assessment

We simulated four polyenergetic spectra, with 80, 100, 120
and 140 kVp, and 0.25 cm aluminum filtration at the source
to give a spectrum shape similar to clinical practice (Fig. 5).
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Fig. 5. X-ray spectra used for simulations.

Based on this model for the source, we generated a set
of transmission polyenergetic Poisson X-ray projections with
parallel beam geometry using the MIRT toolbox.

The detector was modeled as a simple photon-counting
device. The projection data had 512 radial bins with 0.1 cm
ray spacing and 180 angular steps over 180 degrees. We did
not simulate scatter. The blank scan value was 10° and 10°
counts per detector element to simulate high- and low-SNR
scenarios respectively.

We first evaluated if our approach in (12) is physically
reasonable using a basic ellipsoidal phantom made of water,
with density 1.0 g/cm®, containing two disks of bone, with
density 1.9 g/cm?®. We tested A values from O to 2 in steps of
0.001 and B from 0 to 0.1 cm?/g in steps of 0.001 cm?/g. The
optimum A and B were those that minimized the root mean
square error (RMSE) with respect to the FBP reconstruction
from monoenergetic data (reference image) measured in the
rectangle shown in the left panel of Fig. 6. We then evaluated
the dependency of these values with bone size using them to
reconstruct a phantom made of soft tissue with bone inserts of
different sizes and densities equal to 1.9 g/cm3 and 2.1 g/cm?
and two inserts of fat with density 0.95 g/cm?, shown in middle
panel of Fig. 6. We used the same phantom to evaluate the
performance of the method under low-SNR and low-sampling
conditions, using 45 projections over 180 degrees.

Fig. 6. Left: Ellipsoidal phantom made of soft tissue with 30 cm and 20 cm
diameter sizes and two bone inserts with 4 cm diameter; dotted lines indicate
areas used for measurements. Middle: Phantom with inserts of different sizes
and densities. Right: Slice of the PBU-60 thorax phantom.

We used the same A and B values on simulated human data
using a slice of the PBU-60 thorax phantom (right panel of
Fig. 6). Density values for bone areas (spine and ribs) and soft
tissue were 1.9 g/cm® and 1.06 g/cm? respectively.

We reconstructed the data using uncorrected FBP, water-
corrected FBP, FBP corrected by the Joseph and Spital (JS)
method, a monoenergetic statistical algorithm (ordered subsets
separable paraboloidal surrogates [26]), and the proposed
polyenergetic algorithm. We used a Hanning window with
cut-off frequency of 80% Nyquist in the FBP reconstruction

to achieve a spatial resolution comparable to that of the
statistical algorithms. Tissue fraction functions shown in Fig.
1 were applied to the water-corrected FBP image providing
the segmentation required by the JS technique. The proposed
method ran for 50 iterations, § = 30 and § = 0.002 g/cm3
for high-SNR and 100 iterations, § = 145 and § = 0.002
g/cm?® for low-SNR and low-sampling in (17) and (18). The
monoenergetic method ran for 50 iterations with 15 subsets, /3
=4 and 6 = 0.001 g/cm®. We chose constants A = 1.475 and
B =0.0100 cm?/g in (14).

In addition to qualitative assessment of artifact reduction,
we quantified the performance in terms of noise, streaks due to
undersampling and bias of the different algorithms. Noise and
undersampling-induced streaks were assessed as the coefficient
of variation (CV) in the homogeneous region depicted in the
left panel of Fig. 7. Bias was calculated as the RMSE relative
to the reference image for the whole soft-tissue area (middle
panel of Fig. 7) and for the area with the strongest beam
hardening artifact, close to the ribs (right panel of Fig. 7).

A B
il
Fig. 7. ROIs obtained by thresholding and erosion/dilation to measure CV
(A), and RMSE (B and C) in soft tissue.

Finally, the algorithm was tested on two rodent studies
acquired with the CT subsystem of an ARGUS/CT (SEDE-
CAL) scanner, a cone-beam micro-CT scanner based on a
flat-panel detector [23]. We focus on low-SNR and sparse-
sampling scenarios because these are the cases that derive the
greatest benefit from iterative methods such as that proposed.

We obtained 180 views of a volume of 516x516x301
voxels with 0.121 mm? voxel size, covering 360 degrees with
a source voltage of 40 keV. We reconstructed the images using
uncorrected FDK, JS-corrected FDK, the monoenergetic sta-
tistical algorithm and the proposed polyenergetic algorithm. A
3D version of these algorithms was implemented substituting
the MIRT-CPU kernels by the GPU-accelerated kernels from
FUX-Sim [27]. We obtained the segmentation required by
the JS technique using the same tissue fractions used for the
proposed method, shown in Fig. 1, on the water corrected FDK
image.

Parameters in this case were A = 2.458 and B = 0.49 cm?/g
in (14) and 8 = 0.06 and § = 0.04 g/cm? for the proposed
method and 8 = 0.55 and § = 0.02 g/cm? for the monoenergetic
algorithm in (17) and (18).

Both monoenergetic and proposed polyenergetic methods
were ran for 200 iterations on a computer with an Intel
Core i7-4790 CPU, 32 GB RAM and an NVIDIA GeForce
GTX960. Runtime was 70 and 100 seconds per iteration,
respectively. The reason for higher computational burden of
the polyenergetic algorithm, compared to the monoenergetic
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TABLE I
OPTIMIZED A AND B PARAMETERS FOR DIFFERENT
VOLTAGES
Voltage JS method Proposed method
(kVp) A B (cm?/g) A B (cm?/g)
140 0.228 0.0045 1.3 0.0075
120 0.275 0.0045 1.4 0.01
100 0.335 0.0045 1.475 0.01
80 0.41 0.0045 1.8 0.0325

case, is the higher number of projections per iteration needed.
No effort was made to optimize execution time.

III. RESULTS

Table 1 shows the optimum A and B values found for each
voltage with simulations using the ellipsoidal phantom. Fig.
8 shows good beam-hardening artifact compensation achieved
by the proposed algorithm for different sizes and densities of
bone, proving the feasibility of the approximation of the o
function. For the low-SNR and low-sampling case, we can
also see a dramatic reduction of the undersampling-induced

streaks.
grlem®
25
1.875
1.25
! ! 0.625

Fig. 8. Phantom with different bone sizes reconstructed with FBP (left) and
with the proposed algorithm (right) for the high-SNR (top) and low-SNR and
low-sampling (bottom) cases.

Fig. 9 shows the absolute differences between the reference
and the results of the FBP and the proposed algorithm.

Fig. 10 shows the evolution of the soft-tissue and bone
masks along iterations for the low-dose and low-sampling
case. We can see the improvement of the soft tissue and
bone segmentations through iterations, where both dark bands
and undersampling streaks are reduced, resulting in a more
accurate model.

Figs. 11 and 12 show the results on one slice of the PBU-
60 thorax phantom. The uncorrected FBP image suffered from
beam-hardening artifacts in the form of dark bands between
the ribs and spine. The statistical iterative reconstruction with
no modeling of the polyenergetic spectrum exhibited signif-
icantly lower CV (noise and undersampling-based streaks)
but still suffered from beam-hardening artifacts. The proposed
method eliminates the beam-hardening artifacts, removing the

gr/cm3
0.4

. 0.3

Fig. 9. Absolute difference between the reference and the result of the
proposed algorithm (top) and the FBP (bottom) for the low-SNR and low-
sampling (left) and the high-SNR (right) cases.

Iteration 1 Iteration 10 Iteration 100
gr/cm3

2

1
0.8
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Fig. 10. Soft-tissue and bone segmentations for the low-dose and low-
sampling case at different iterations.

dark bands and recovering the real soft tissue values, while
showing a significant reduction of noise and streaks when
compared with the post-processing JS method.

gr/cm3
1.9

1.425

0.475

0

Fig. 11. 512x512 pixel axial slice of the PBU-60 phantom (A), reconstructed
with FBP (B), FBP+Water correction (C), FBP+JS correction (D), statistical
algorithm using a model incorrectly based on a monoenergetic X-ray source
(E) and the proposed algorithm (F).

Table 2 shows the results of the analysis of noise, streaks
and bias for all the methods. The proposed method achieved a
bias reduction on the same order as the JS method, but with a
significantly higher CV reduction in the soft-tissue area. There
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Fig. 12. Zoom-in view of the area inside the dotted square drawn in Fig. 8
A for images A-F.

TABLE II
CV AND RMSE RESULTS FOR THE PBU-60 PHANTOM
CVe?in RMSE® in RMSE®
Method soft tissue soft tissue close to ribs
(ROI A) (ROI B) (ROI C)
FBP 0.032 0.164 0.178
FBP + water 0.041 0.104 0.175
FBP + JS 0.040 0.046 0.055
Monoenergetic 0.030 0.159 0.179
Proposed method 0.029 0.038 0.052

aCoefficient of variation. ®Units of density g/cm?.

was also a significant reduction of CV in the background,
not visible in Fig. 11 because the window was selected to
show beam-hardening artifacts. The monoenergetic iterative
algorithm resulted in a similar CV reduction as the proposed
method, as expected, but with no bias reduction mainly due
to the beam-hardening effects.

Fig. 13 shows the results for the two rodent studies. Again,
the statistical iterative reconstruction with no modeling of the
polyenergetic spectrum exhibits significantly better noise and
streaks behavior than the FDK-based methods but still suffers
from beam-hardening artifact. The proposed method elimi-
nates the beam-hardening artifact while showing a significant
reduction of noise and streaks when compared with the post-
processing JS method.

IV. DISCUSSION

This work presents a new statistical reconstruction algorithm
for X-ray CT that accounts for beam-hardening effect.

In most of the previously proposed methods the forward
model requires knowledge of the X-ray source spectrum,
which is often unknown in practice. To overcome this prob-
lem, we modify the projection model by adapting one idea
previously proposed by Joseph and Spital [8]. This idea is
based on the concept of “effective water path length”. We
substitute the 2D beam-hardening function corresponding to
bone and soft tissue with the 1D function corresponding to
water, already available in most scanners, plus two empiri-
cal parameters, A and B in (13). This theoretical model is

thus exact for monochromatic radiation and represents an
approximation in the polychromatic case. The approximation
of o(ty, t,) used here ignores the dependence on t;, which
is a rather accurate assumption when there are only small
areas of bone. Future works might explore more accurate
approximations by including the dependence with #; in the
model. In our implementation, the parameters A and B were
obtained empirically, but it could be interesting to investigate
the possible inclusion of these parameters in the algorithm in
order to perform a joint estimation.

Regarding the model of the object, the most commonly
used approach is to assume that each voxel can only be either
bone or soft tissue and to segment bone from a preliminary
reconstruction obtained with a fast algorithm such as filtered
back-projection. This segmentation can be challenging, espe-
cially in the case of low-dose scans, which suffer from low
SNR and possibly photon starvation. Furthermore, this model
neglects partial volume effects, as voxels are not allowed
to contain a mixture of bone and soft tissue. Our approach
addresses these problems, as we model the attenuation at
each voxel by defining piecewise density-dependent tissue
fractions, which are updated at each iteration, eliminating
possible segmentation problems in low-dose studies. In our
work, selection of the intervals for these functions was based
on the typical densities for soft-tissue and cortical bone found
in NIST. Further evaluation of the effect of the definition of
these intervals on the recovered density values for both clinical
and preclinical data is warranted. Although the bone/soft-tissue
model will suffice for most cases, a three-class model could
be necessary when contrast agents or metallic implants are
present. It might also help to improve the estimation of the
density of fat.

Comparing panels B, C, and D of Fig. 13, it is clear that the
reduction in undersampling-induced streaks and noise using
the statistical method is likely due to noise model and the
edge-preserving penalty, and not a novel result in itself. The
main point are the reduced beam-hardening artifacts going
from Fig. 13-C to Fig. 13-D. We used a noise model based
on simple Poisson statistics for simplicity, but it does not
reflect the actual physics of CT acquisition. The strategy
proposed in (13) also can be used with more accurate sta-
tistical models that account for energy-integrating detection
and additive detector read-out noise, which could improve the
accuracy of reconstruction. One possibility would be a model
that considers the total signal to be a sum of energy-scaled
Poisson processes, each with a different scale factor. This
model is potentially more accurate because it accounts for
the polyenergetic nature of the incident beam in the detection
process. Nevertheless, sophisticated models often lead to more
difficulties in optimizing the associated penalized-likelihood.
Although scattering was not considered in this work, including
scatter estimates in the algorithm is straightforward.

V. CONCLUSION

We present a new statistical reconstruction algorithm for
polyenergetic X-ray CT based on Poisson statistics and a
physical model that accounts for the nonlinearities caused
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Fig. 13. Axial slice of two rodent studies reconstructed with uncorrected FDK (A), FDK+JS (B), the monoenergetic iterative algorithm (C), and the proposed

method (D).

by the beam-hardening effect. The main advantage of our
method over previously proposed iterative algorithms is the
combination of two desirable characteristics: 1) it eliminates
the problem of wrong bone segmentations in low-dose stud-
ies or images highly affected by beam-hardening artifacts,
and 2) it corrects beam-hardening artifacts without requiring
knowledge of the X-ray source spectrum. Results showed
a similar beam-hardening correction as the post-processing
technique proposed by Joseph and Spital, but with reduced
noise and streak artifacts in the low-dose, low-sampling cases,
as expected for statistical image reconstruction with Huber
penalty with edge-preserving regularization.
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