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Constrained Magnetic Resonance
Spectroscopic Imaging by Learning
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Abstract— Magnetic resonance spectroscopic imag-
ing (MRSI) is a powerful molecular imaging modality but
has very limited speed, resolution, and SNR tradeoffs.
Construction of a low-dimensional model to effectively
reduce the dimensionality of the imaging problem has
recently shown great promise in improving these tradeoffs.
This paper presents a new approach to model and recon-
struct the spectroscopic signals by learning a nonlinear
low-dimensional representation of the general MR spectra.
Specifically, we trained a deep neural network to capture
the low-dimensional manifold, where the high-dimensional
spectroscopic signals reside. A regularization formulation
is proposed to effectively integrate the learned model and
physics-based data acquisition model for MRSI reconstruc-
tion with the capability to incorporate additional spatiospec-
tral constraints. An efficient numerical algorithm was
developed to solve the associated optimization problem
involving back-propagating the trained network. Simulation
and experimental results were obtained to demonstrate the
representation power of the learned model and the ability
of the proposed formulation in producing SNR-enhancing
reconstruction from the practical MRSI data.

Index Terms— MR spectroscopic imaging, spectroscopy,
low-dimensional models, neural network, manifold learning,
spatiospectral constraint.

I. INTRODUCTION

MAGNETIC resonance spectroscopic imaging (MRSI) is
a potentially powerful noninvasive, label-free molecular

imaging modality. It allows for simultaneous detection and
quantification of the spatiotemporal variations of many endo-
geneous molecules in the human body [1]–[3]. However, due
to the high dimensionality of the underlying imaging problem
to produce spatially-resolved spectra and the inherently low

Manuscript received April 15, 2019; revised July 12, 2019 and
July 18, 2019; accepted July 18, 2019. Date of publication July 23,
2019; date of current version February 28, 2020. (Corresponding author:
Fan Lam.)

F. Lam is with the Department of Bioengineering, Beckman Institute
for Advanced Science and Technology, University of Illinois at Urbana–
Champaign, Urbana, IL 61801 USA (e-mail: fanlam1@illinois.edu).

Y. Li is with the Department of Bioengineering, University of Illinois at
Urbana–Champaign, Urbana, IL 61801 USA.

X. Peng is with the Beckman Institute for Advanced Science
and Technology, University of Illinois at Urbana–Champaign, Urbana,
IL 61801 USA.

This article has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the author.

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMI.2019.2930586

SNR as the molecules of interest typically have very low con-
centrations, in vivo applications of MRSI have been limited to
single-voxel spectroscopy or low-resolution, time-consuming
acquisitions [2], [3].

In the past several years, a number of constrained MRSI
methods have been proposed to improve the speed, resolution
and SNR tradeoffs. The key methodologies in these works
typically rely on constructing a reduced-complexity signal
model of the high-dimensional MRSI data, by exploiting either
sparsity in the spatial and/or spectral domains [4]–[10] or
low-rankness of the desired spatiospectral function [11]–[17].
Additional spatial constraints have also been introduced to
further take advantages of other anatomical prior information
readily available in an MR experiment [18]–[21]. Recently,
a subspace MRSI method called SPICE has been developed
to successfully achieve fast, high-resolution MRSI by jointly
designing both data acquisition and processing in a subspace
imaging framework [22]–[24]. The key feature of this
approach is modeling individual voxel spectra as a linear
combination of a small number of basis functions, which can
be predetermined using specially designed navigator data, thus
significantly reducing the degrees-of-freedom and allowing
better tradeoffs for speed, resolution and SNR. However,
to capture more complicated spatiospectral variations, the
dimension of the linear subspace can increase substantially,
reducing its efficiency, thus motivating the need for a more
general nonlinear low-dimensional model.

Learning a general nonlinear model for high-dimensional
functions is a challenging problem. In the context of MRSI,
locally linear embedding (LLE) [25] and Laplacian eigen-
maps (LE) [26] have been applied to classify spectra from
normal and diseased tissues by estimating the low-dimensional
manifolds where each class of spectra was assumed to reside.
But incorporating such classification models into the imaging
process is difficult for which more accurate representation
is required. Meanwhile, the recent success of deep neural
network based methods in learning complex functional map-
ping and extracting nonlinear features from high-dimensional
data presents new opportunities to address the model learning
problem [27]–[29]. A number of works have been proposed
in MRSI, mainly focusing on spectral quantification [30]–[32]
or spectral artifact removal [33]. A common approach among
these methods is to directly learn the entire inverse function
that maps the noisy and artifact-containing signals to the
desired artifact-free ones or the spectral parameters (e.g.,
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molecule concentrations or lineshape parameters), by training
a deep neural network (DNN) [30], [33], [34]. This approach
requires the learned function to simultaneously capture all
the nuances in the noise, artifacts, as well as underlying true
signals at all the possible SNRs, thus dramatically increasing
the complexity of this function and the learning problem.
Moreover, it is also sensitive to SNR levels and data acquisi-
tion designs.

We proposed in this work a different approach to learn a
nonlinear low-dimensional model that captures the inherent
degrees-of-freedom in spectroscopic signals and to incorporate
such a learned representation for constrained MRSI recon-
struction. Specifically, we recognized that a general NMR
spectrum can be characterized by a small number of parame-
ters based on the well-defined spectral quantification model,
thus should reside in a low-dimensional manifold embedded in
the original high-dimensional space. Accordingly, we designed
a deep autoencoder network (DAE) to capture this mani-
fold. The effectiveness of DAE in learning nonlinear low-
dimensional representation for high-dimensional data has been
well-documented [27]–[29] but requires a large amount of
training data. To this end, we acquired a small amount
of training data to estimate the distributions of molecule-
dependent parameters and then used the spectral fitting model
to generate the data needed to train the DAE. A regularization
formulation was devised to integrate the learned representation
and the spatiospectral encoding model for constrained MRSI
reconstruction. An efficient algorithm was developed to solve
the associated optimization problem. The proposed model
was evaluated against linear dimensionality reduction and
demonstrated a more efficient representation of MRSI data.
Simulation and experimental results were obtained to demon-
strate the capability of the proposed method in producing
improved spatiospectral reconstructions over existing methods.

The rest of the paper is organized as follows. Section II pro-
vides background on MR spectroscopy modeling and the need
for nonlinear dimension reduction, as well as a brief review
of autoencoder based neural networks. Section III presents
details on the proposed DAE-based learning method, recon-
struction formulation, and optimization algorithm. Section IV
summarizes the experimental results followed by discussion
and conclusion in Sections V and VI.

II. BACKGROUND

A. Spectroscopy Signal Modeling

The imaging problem in MRSI can be defined as recovering
a high-dimensional spatiotemporal function ρ(r, t) from a set
of (k,t)-space measurements dp(k, t) that can be expressed as

dp(k, t)=
∫

V
sp(r)ρ(r, t)ei2πδ f (r)t e−i2πkrdr + n p(k, t), (1)

where V is the imaging volume of interest, sp(r) is the
sensitivity map for the pth coil used in data acquisition,
δ f (r) denotes the B0 field inhomogeneity, k the coordinates
for the Fourier encoding space and n p(k, t) the measurement
noise. The k-space sampling can be designed based on res-
olution and time requirements. While ρ(r, t) is very high-
dimensional and challenging to recover at a high resolution

from the typically noisy dp(k, t), there is abundant prior
information that can be exploited for improved reconstruction.
Specifically, the FID signals at individual voxels can be
generally modeled as

ρ(r, t) =
M∑

m=1

cm(r)φm(t)em(t; θm(r)), (2)

where cm and φm(t) represent the concentration and time-
domain basis function of the mth molecule, respectively, and
em(t; θm) captures molecule-dependent time-domain modula-
tion functions that can be described by a few experiment and
physiology relevant parameters in θm . The Fourier transform
of φm(t) is a resonance structure containing the relative
frequencies, amplitudes and phases of different spectral peaks
for the mth molecules, which is data independent and can be
predicted by spin physics. A most common specification of
em(t; θm) is the exponential lineshape model below [35]:

ρ(r, t) =
M∑

m=1

cm(r)φm(t)e−t/T ∗
2,m(r)+i2πδ fm (r)t e−β(r)t2

, (3)

where {T ∗
2,m} and {δ fm} denote the tissue and physiological

condition dependent lineshape and frequency shifts for each
molecule, respectively, and e−β(r)t2

captures additional line-
shape distortion due to system imperfection such as intravoxel
B0 inhomogeneity and eddy currents. Accordingly, all spectral
signals specified by Eq. (3) with varying {cm}, {T ∗

2,m}, {δ fm}
and β can be treated as points residing on a low-dimensional
manifold embedded in the high-dimensional vector space
[36], [37]. This manifold can be well-approximated by a
linear subspace if the parameters are in a relatively narrow
range. This property has been exploited in the recent
subspace-based reconstruction and spectral quantification
methods to successfully achieve fast, high-resolution MRSI
(by modeling spectroscopic signals as a linear combination of
a number of basis functions) [22]–[24], [38]. However, as the
ranges of the parameters increase, e.g., due to physiological
variations, increased system nonideality or the presence of a
certain pathology, the dimension of the subspace can increase
substantially to ensure an accurate approximation, reducing
its efficiency. Therefore, a general nonlinear low-dimensional
model that can accurately capture all the physiologically
relevant spectral variations is desired. A toy example is shown
in Fig. S1 (Supplementary Materials) to illustrate this point.

B. Deep Autoencoders

A number of methods have been developed to learn nonlin-
ear features from MRSI data for classification purpose, e.g.,
[25], [26], [39]. The incorporation of learned features into
constrained reconstruction requires representations with much
higher accuracy and flexibility. Motivated by the recent success
of deep neural network in representation learning [27]–[29],
we propose in this work to use a deep autoencoder to learn
an accurate and efficient low-dimensional model for MR
spectroscopy signals. To provide a context for the proposed
method, we present in this section a brief introduction to
autoencoders and deep autoencoders.
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Fig. 1. Illustration of AEs: (a) A basic three-layer AE with fully connected
layers and a hidden layer to extract nonlinear features of the data;
(b) A DAE constructed by stacking the basic AEs shown in (a) with
multiple nonlinear hidden layers, which can be trained to extract hierarchi-
cal features from high-dimensional data and for nonlinear dimensionality
reduction.

An autoencoder (AE) is a special type of artificial neural
network that is typically composed of fully connected layers
and has been developed to learn the underlying representation
of data of various types [27]. Figure 1a illustrates a commonly
used basic autoencoder with the first layer being linear units to
represent an input vector x ∈ RD , the middle layer being a set
of nonlinear units to capture the “encoded features” h ∈ RD′

of x, and the last layer being also linear units to represent an
output vector x̂ with the same dimension as x. The mapping
from x to h is referred to as the encoder, denoted as f (x),
while the mapping from h to x̂ is referred to as the decoder,
denoted as g(h). For the simple AE in Fig. 1a, the relationships
between x, h and x̂ can be mathematically expressed as:

h = f (x) = a (W1x; b) , (4)

x̂ = g(h) = W2h (5)

where W1 and W2 denote the weights from the input layer
to the hidden layer and hidden layer to the output layer,
respectively, and a(·) contains element-wise nonlinear activa-
tion functions with bias vector b. This model allows one to
extract nonlinear low-dimensional features of data for which
linear dimension reduction techniques do not offer satisfactory
performance. Theoretical connections to nonlinear manifold
modeling have also been made [40], [41].

Deep autoencoders (DAEs) are deep neural networks that
are constructed by stacking multiple nonlinear encoding and
decoding layers from the standard AEs (Fig. 1b). The multiple
nonlinear layers introduce more complexity, thus offering
stronger representation and feature extraction powers than
the standard AEs. Mathematically, the features extracted
from the multiple nonlinear layers can be denoted as h =
aL(WL · · · a2(W2a1(W1x; b1); b2) · · · ; bL) ({al}L

l=1 being
nonlinear functions at different layers); and the multi-layer
encoders and decoders can be expressed generally as f (x; θ f )
and g(h; θg), respectively. The vectors θ f and θ g contain all
the weights and bias in the encoding and decoding layers.
DAEs have been trained to learn compact low-dimensional
representations of complicated, high-dimensional data (e.g.,
audios and images) [27], [29]. Specifically, the training can be
done by solving the following problem that minimizes an error
metric ε with respect to θ f and θ g such that the output of the
network x̂s = g( f (xs; θ f ); θ g) can accurately approximate

the corresponding input xs (s being the sample index), i.e.,

{θ̂ f , θ̂ g} = arg min
θ f ,θg

1

N

N∑
s=1

ε
(
xs, g( f (xs; θ f ); θg)

)
. (6)

Regularization can be imposed on θ f , θ g , f (·; θ f ) and/or
g(·; θg) such that the encoded features are not required to
be lower-dimensional than the input and still being able to
avoid overfitting or simply learning an identity transform
[28], [42], [43]. A common choice for ε is the L2 error,
i.e., ε = ∥∥xs − x̂s

∥∥2
2. Applications of DAEs to MR image

reconstruction and MRSI spectral quantification have been
recently explored [32], [44], where the networks were trained
to generate images or spectral parameters directly from the
measured data by extracting low-dimensional features.

III. PROPOSED METHOD

A. Low-Dimensional Spectral Model Learning Using DAE

Recognizing that an inherent low-dimensional representa-
tion should exist for the MR spectra specified by Eq. (3),
we propose here a strategy to learn this general nonlinear
model for MR spectroscopic signals using a DAE. Two major
issues arise for this learning task. First, deep neural networks
require a large number of high-quality training data which
is a generally luxury for many MRSI applications. Secondly,
proper designs of architecture and training procedure are
needed to learn a representation of the signals that can be
useful in the imaging process (e.g., reconstruction from noisy
measurements).

We address the first issue by combining the physical
model in Eq. (3), quantum mechanical (QM) simulations,
and experimentally acquired training data. More specifically,
the molecule basis functions, φm(t), can be obtained from
QM simulations [45], [46]. These resonance structures are
molecular structure specific and can be assumed to be invariant
with respect to different subjects and experiments. Mean-
while, we acquired high-SNR, low-resolution CSI data from
healthy volunteers. These data were subject to spectral fitting
from which empirical distributions of the spectral parameters,
i.e., cm , T ∗

2,m , and δ fm , were obtained. The empirical dis-
tributions were fitted to parametric Gaussian distributions to
allow the generation of more randomly distributed parameters
(Fig. 2). Finally, a large collection of FIDs can then be
synthesized by combining φm(t) and randomly generated cm ,
T ∗

2,m , and δ fm for training a DAE. Randomly distributed β
corresponding to Gaussian linewidths with 1 Hz mean and
0.5 Hz standard deviation were generated and incorporated
into the training data. Additional metabolite-dependent phases
can also be incorporated to better capture realistic signal varia-
tions which were assumed to follow a uniform distribution for
simplicity. To effectively extract the low-dimensional features
of these complex-valued signals, a special multi-layer DAE
was designed. More specifically, we rearranged all the data by
concatenating the real and imaginary parts as inputs. The first
hidden layer of the proposed DAE was designed to have more
units than the input layer such that the data can be lifted to a
higher-dimensional space to i) increase the model’s capacity
and ii) enable the extraction of complex nonlinear features.
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Fig. 2. The proposed strategy to learn a nonlinear low-dimensional representation of spectroscopic signals: (Most left column) Metabolite resonance
structures are obtained by quantum mechanical simulations and spectral parameters are generated from distributions estimated from empirical data.
This information is fed into the commonly used spectral fitting model (blue box) to generate a large collection of FID data for training, denoted as X.
(Most right column) A DAE network with fully-connected layers was trained to encode X into L-dimensional features which can accurately reconstruct
the original data. The mean-squared error was minimized for training. See the texts for detailed descriptions of the network design.

This layer was then followed by a “bottleneck” structure that
gradually reduces the dimensionality with the middle layer
being linear to ensure a sufficient dynamic range for the final
encoded low-dimensional features. The overall data generation
and DAE-based learning strategy are illustrated in Fig. 2. More
comparison on the network designs can be found in the supple-
mentary materials. The entire trained network is denoted by a
function mapping C(·) with fixed parameters, which minimizes
the error between input and output, i.e., ‖C(X) − X‖2

2.
We will use 31P spectroscopy data in this work to demon-

strate the capability of the proposed approach considering their
clearly defined spectral features, absence of nuisance signals
and macromolecule baseline (see Discussion for more details
on extensions to MRSI of other nuclei). To this end, the QM
simulated resonance structures include the commonly observed
31P-containing metabolites, as described in [46]. The CSI data
to estimate the empirical parameter distributions were acquired
on a 7T scanner (more details in the Results section).

B. Constrained MRSI Using the Learned Model

With the trained DAE C(·) to extract the low-dimensional
features of spectroscopy data, the key issue is how to incor-
porate this learned model into the imaging process. To this
end, we proposed a constrained reconstruction formulation
that allows an effective integration of the imaging acquisi-
tion model and the learned model through a regularization
functional. Specifically, the reconstruction is formulated as
follows:

X̂ = arg min
X

‖d − �{FB � X}‖2
2 + λ2 ‖DwX‖2

F

+λ1

N∑
n=1

‖C(Xn) − Xn‖2
2 (7)

where X is a matrix representation of the spatiotemporal
function of interest with a size of N × T and each row being
a length-T voxel FID, B models the effects induced by B0
inhomogeneity, � denotes a point-wise multiplication, F the
Fourier transform, � the sampling operator, and d is a vector
containing the (k, t)-space data. The first term enforces the
imaging acquisition model and data consistency, the second
term imposes spatial edge-preserving regularization with Dw

being a weighted finite-difference operator [20], [22], and
the third term incorporates the prior that each reconstructed
FID (Xn) should reside in the low-dimensional manifold
captured by C(·). ‖·‖F denotes the Frobenius norm. Compared
to the common approach of directly learning the highly
complex inverse mapping (through either a single neural
network or cascaded neural networks), the proposed method
represents a different but rigorous way of integrating physics-
based forward modeling and data-driven priors within a unified
formulation. Solving the optimization problem in Eq. (7) is
challenging, as it requires nonlinear programming to handle
the regularization term containing the learned neural network,
which however is not efficient for the linear least-squares
terms.

C. Optimization Algorithm

We describe here an efficient algorithm to solve Eq. (7).
Specifically, to decouple the linear least-squares and the
nonlinear regularization functional, we introduce an auxiliary
variable S = B � X and rewrite the problem as

X̂ = arg min
X

‖d − �{FS}‖2
2 + λ2

∥∥DwB̄ � S
∥∥2

F

+λ1

N∑
n=1

‖C(Xn) − Xn‖2
2

s.t . B � X = S. (8)

B̄ represents the conjugate of B (element-wise). With this
form, the alternating direction method of multipliers (ADMM)
can then be applied to solve this equivalent problem [47].
The ADMM algorithm decomposes the original problem into
simpler subproblems which can be solved efficiently. More
specifically, the following three steps were performed itera-
tively in our proposed algorithm:

(I) Update X with fixed S(i) and Y(i) with i denoting the
iteration number and Y the Lagrangian multiplier

X(i+1) = arg min
X

λ1

N∑
n=1

‖C(Xn) − Xn‖2
2

+μ

2

∥∥∥∥∥B � X − S(i) + Y(i)

μ

∥∥∥∥∥
2

F

. (9)
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(II) Update S with fixed X(i+1) and Y(i)

S(i+1) = arg min
S

‖d − �{FS}‖2
2 + λ2

∥∥DwB̄ � S
∥∥2

F

+μ

2

∥∥∥∥∥B � X(i+1) − S + Y(i)

μ

∥∥∥∥∥
2

F

. (10)

(III) Update Y

Y(i+1) = Y(i) + μ
(

B � X(i+1) − S(i+1)
)

. (11)

The first subproblem requires general unconstrained opti-
mization solvers due to the highly nonlinear function C(·).
Although the original problem has high dimensionality, it can
be solved in a voxel-by-voxel fashion as the Frobenius norm
is separable. Furthermore, based on the auto-encoder network
design, we can derive the expression of the gradients for
individual voxels. More specifically, denote

fn(Xn) = λ1 ‖C(Xn)−Xn‖2
2+ μ

2

∥∥∥∥∥
[

B � X−S(i)+ Y(i)

μ

]
n

∥∥∥∥∥
2

2
(12)

as the cost function for the nth voxel, the gradient for fn(·)
can be written as

∇ fn(Xn) = 2λ1 (JC − I)T (C(Xn) − Xn)

+μBH
(n)

(
B(n)Xn − S(i)

n + Y(i)
n

μ

)
. (13)

where JC ∈ RT ×T is the Jacobian for the neural network
mapping C(·), I is a T × T identity matrix and B(n) denotes a
diagonal matrix formed by the nth row of B. For a neural
network with L layers and a final linear layer, JC can be
derived through back-propagation as

JC = WT
L ×

L−1∏
l=1

UlWT
l , (14)

where Wl contains the linear weights for the lth layer
and Ul’s are diagonal matrices containing the derivatives
for the nonlinear activation functions at the lth layer. For
instance, if the rectified linear unit (ReLU) is chosen,
the diagonal elements in Ul are simply unit step functions
u(

[
Xl−1Wl + bl

]
k) with bl being the bias vector and k the

output index. These separable problems can then be solved
in parallel and efficiently using a quasi-Newton algorithm,
i.e., the Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method [48], [49].

With the updated X(i+1), the second subproblem is equiva-
lent to solving the following linear equations

FH�H�{FS} + λ2B � DH
w DwB̄ � S + μ

2
S

= FH�H {d} + μ

2

(
B � X(i+1) + Y(i)

μ

)
, (15)

which can be easily solved by exploiting the special structures
of FH�H�F and DH

w Dw as suggested in [50]. The iterations
were terminated when either i reaches a certain number or the
relative changes in X(i+1) and X(i) fall below a given threshold
(e.g., 10−3).

D. Single-Voxel Spectroscopy Denoising

The proposed method can also be applied to spectroscopy
data acquired without spatial encoding. In this case, the for-
mulation in Eq. (7) can be simplified into

x̂ = arg min
x

‖d − x‖2
2 + λ1 ‖C(x) − x‖2

2 (16)

where x is a vector representing the desired noiseless FID and
d is the acquired data. This can be viewed as a special case
of the problem in Eq. (12), with the following gradient

∇ f (x) = 2(x − d) + 2λ1 (JC − I)T (C(x) − x) . (17)

The problem can again be solved efficiently using the
BFGS or other nonlinear optimization algorithms. This
simplification can be useful for many single-voxel
spectroscopy experiments where denoising has mostly
been limited to time-domain or wavelet-based filtering using
only the noisy data [2], [51]. The proposed method allows an
effective and flexible means to incorporate data-driven priors
obtained from other high-quality data to improve the results
of general single-voxel acquisitions.

E. Training and Other Implementation Details

We generated 300,000 31P MR spectra as described in
Section III.A for model learning. The molecules we consid-
ered in this work are 31P-containing compounds commonly
observed during in vivo 31P MRS/MRSI experiments, i.e., PCr,
α-ATP, β-ATP, γ -ATP, Pi, tNAD, PE, PC, GPC, GPE, and
MP [46]. The empirical Gaussian distributions for the spectral
parameters were estimated from 5 brain CSI data acquired
on a 7T scanner (Siemens Magnetom). The T ∗

2,m values were
lower bounded by 5 ms and upper bounded by 200 ms, and the
relative concentrations cm were bounded between 0 and 2. For
tNAD, GPC, GPE and MP with unreliably estimated spectral
parameters (large variances), the literature values were used
with a standard deviations at half of the mean values [46], [52].
Metabolite-dependent phases uniformly distributed between
−π/4 and π/4 were included. Among the 300K FIDs, 200K
samples were used for training and the remaining 100K for
testing. We first implemented the DAE in TensorFlow [53],
which was constructed with fully-connected layers in both the
encoder and decoder with a dimension structure of T −1000−
250 − 100 − L − 100 − 250 − 1000 − T (T = 512). ReLU
activation functions were used in the hidden layers except the
middle layer. Training was performed using the mean-squared
error (MSE) loss and stochastic gradient descent (SGD) with
an Adam optimizer [54], with a batch size of 500, learning
rate 0.001, 300 epochs and default parameters for the moment
estimates. The trained parameters of the DAE were then ported
to Matlab and integrated into the proposed formulation and
algorithm.

IV. RESULTS

A. Numerical Simulations

Simulation studies have been conducted to evaluate the
proposed low-dimensional model learning and reconstruction
method. We first investigated the approximation accuracy
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Fig. 3. Approximation accuracy of the learned model: (a) Relative �2
errors for the test signals reconstructed from L-dimensional features
encoded by the proposed DAE (red curve), compared to the linear
dimension reduction (blue curve); (b) Reconstructions of a single spec-
trum using 16-dimensional DAE and subspace, respectively. Improved
accuracy offered by the DAE is clearly visible. The black arrows in
(b) indicate spectral features lost by the linear subspace approximation
but recovered by our learned model.

of our learned low-dimensional representation by comparing
the dimensionality reduction errors at different model orders
(denoted as L) with those from a linear dimensionality reduc-
tion. The linear dimension reduction was done by projecting
the data onto an L-dimensional subspace determined by PCA
of training data ( [12], [22]). The results are shown in Fig. 3.
As can be seen, the learned DAE-based model yielded higher
approximation accuracy (lower relative �2 errors) than the
linear subspace approximation across different model orders
(Fig. 3a), especially at a smaller L. As L increases, the dif-
ference becomes smaller. The better representation efficiency
offered by the learned model is further demonstrated by com-
paring the approximations of a fitted experimentally acquired
in vivo spectrum (Fig. 3b). A low-dimensional subspace
approximation (L = 16) leads to noticeable distortion of
spectral features which are captured by the learned model.

A numerical phantom was constructed to validate the pro-
posed MRSI reconstruction method using the learned nonlin-
ear model. Specifically, segmented brain tissue compartments,
i.e., gray matter (GM), white matter (WM) and cerebrospinal
fluid (CSF), were obtained from an experimentally acquired
T1-weighted structural image. Regional concentrations and
linewidth parameters for the 11 molecules mentioned above
were assigned based on literature values [46], [52].1 These
compartmental images (constant concentrations and linewidths
in each region) were then combined using the tissue frac-
tion maps (obtained from segmentation) as weightings to
generate continuously varying concentration and linewidth
maps, which along with the metabolite basis {φm} were
fed into Eq. (3) to synthesize spatially varying 31P spectra.
To mimic a more practical scenario, we simulated voxel-
dependent random frequency shifts for different molecules
(mean zero and a standard deviation of 10 Hz) and residual
B0 field inhomogeneity induced spectral shifts (mean zero
and a standard deviation of 10 Hz). A lesion-like feature was
also included to evaluate the proposed method’s capability in
discerning novel spatiospectral features. The concentrations of

1The linewidths for the white matter region was randomly increased by
15%-20% for different molecules to account for the T2 differences. The
concentrations for all molecules in the CSF were assigned to be 0.1% of
the concentrations in gray matter.

Fig. 4. The computational phantom for evaluating different reconstruc-
tion methods. The top row shows maps of PCr, α-ATP and Pi, illustrating
distinct contrasts for different molecules. The bottom row shows maps
of T∗

2 (PCr), B0 inhomogeneity and random frequency shifts used in
simulation. Representative voxel spectra from the GM and simulated
lesion are shown on the most right (locations marked by red symbols).

PCr and ATP were reduced by a factor of 2 in the lesion
area compared to the GM, while the concentrations of Pi, PE,
and PC were increased by a factor of 3. Figure 4 shows the
simulated maps of PCr, α-ATP, and Pi as well as representative
voxel spectra from the GM and lesion, respectively. The T ∗

2 ,
B0 inhomogeneity and random frequency shift maps used
for simulation are also illustrated. Noisy data were simulated
by adding complex white Gaussian noise corresponding to
different SNRs for the PCr peak. The SNR is defined as the
ratio between the maximum PCr peak amplitude and noise
standard deviation (σ ), i.e.,

SNR = max |ρ(r, fPCr)|
σ

. (18)

A set of denoising results obtained by the proposed
method from simulation data with an SNR of 20 is shown
in Fig. 5, with comparison to the noisy data (obtained
by the standard Fourier reconstruction) as well as results
produced by a spatially regularized reconstruction [20] and
a subspace constrained reconstruction (SPICE) also with the
spatial regularization term [12], [22]. The spatially regularized
reconstruction is equivalent to solving Eq. (7) with λ1 = 0. For
the SPICE reconstruction, we used a 24-dimension subspace
estimated from the same data used for training the DAE.
Normalized mean-squared errors (MSEs) were calculated for
each method. The regularization parameters were manually
selected to minimize the MSE for the spatially constrained
and SPICE reconstructions. As shown by the results (Fig. 5),
the spatially constrained reconstruction improved the SNR but
tends to oversmooth the images and leads to additional spectral
lineshape distortions (third row). The subspace method
provided further improved reconstruction (fourth row), while
the proposed method produced the best result (last row), both
qualitatively and quantitatively, as demonstrated by the recon-
structed metabolite maps (obtained by peak integration), voxel
spectra and the normalized MSEs. Figure 6 further compares
the errors for different methods under various SNRs. The
proposed method consistently achieved the lowest errors in all
cases. It is worth noting that the spatial regularization serves
an auxiliary role to provide additional improvement in the
proposed method thus λ2 was not optimized and set to a small
value, which helps avoid oversmoothing. To further investigate
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Fig. 5. Simulation results showing spatiospectral reconstructions from the ground truth (Gold Standard), noisy data (Noisy Data), anatomically
constrained reconstruction (Spatial), SPICE reconstruction (Subspace) and the proposed method (Proposed), respectively. The normalized MSEs
are shown for each case under the method labels. The first three columns compare the reconstructed maps of PCr, α-ATP and Pi, and the last
three columns show selected voxel spectra from the GM, WM and lesion areas. As can be seen, the proposed method produces significant SNR
enhancement and the lowest error while preserving spatiospectral features.

Fig. 6. Reconstruction errors for different methods (identified by different
colored curves) under various SNR levels (SNR defined in texts). As can
be seen, the proposed method consistently yields the lowest errors.

the effects of regularization parameters, we performed
reconstructions with different values of λ1 and λ2 at an
SNR of 20. The errors are compared in Fig. 7 and Fig. S2.
As expected, a too small regularization parameter has minimal
denoising effects (larger errors) while a too large value can
also increase the error. But the reconstruction performance
remains robust to a large range of parameter values.

B. Experimental Studies

The performance of the proposed method under practi-
cal experimental conditions has been evaluated using brain
31P-MRSI data acquired from healthy volunteers on a

Fig. 7. Effects of λ1 and λ2 on the proposed reconstruction. Each curve
plots the MSEs w.r.t. different values of λ1 and a fixed λ2, while the
results with different λ2’s are encoded in different colors.

7T system (Siemens Magnetom) using a double-tuned 31P-1H
surface coil. Data were acquired using a CSI sequence [55]
with the following parameters: TR/TE = 170/2.3 ms, field-of-
view (FOV) = 200×200×100 mm3, matrix size = 32×32×10
(corresponding to a nominal voxel size of approximately
6×6×10 mm3), and 512 FID samples at 5 kHz spectral
bandwidth (BW). The total acquisition time was 26 min with
elliptical sampling and two signal averages. Gaussian distrib-
uted zeroth-order phases were included in generating the data
for training the DAEs used for in vivo reconstruction (with
mean and standard deviation estimated from the experimental
data). The acquisition delay was also considered by defining
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Fig. 8. Reconstructions from the in vivo data acquired using a surface
coil. The first row contains the anatomical images within the imaging
volume (T1w). The maps of PCr, α-ATP and γ-ATP for the corresponding
slices are shown in the subsequent rows and representative voxel spectra
in the last two rows. Results from the Fourier reconstruction were on the
left while those from the proposed method on the right. Apparent SNR
enhancement in both the metabolite maps and spectra can be observed
for the proposed method. The visual differences in the FOVs between the
anatomical and 31P images were due to the different sensitivity profiles
for the 1H and 31P channels.

proper sampling time vectors during data generation and
reconstruction. Spatiospectral reconstructions obtained by the
conventional Fourier reconstruction and the proposed method
are shown in Fig. 8. The Fourier reconstruction produced
very noisy results; the proposed method achieved significantly
improved SNR and spectral quality, revealing spatiospectral
features previously concealed by noise.

Another data set was acquired using a double-tuned volume
31P-1H coil on the same 7T system with matched TR, TE and
spectral BW. The FOV was modified to 220×220×150 mm3

and matrix size to 32×32×8 (total acquisition time of
about 25 min). The spatiospectral reconstruction results from
this data are shown in Fig. 9 and Fig. S3 (Supplementary
Materials). Figure 9 compares the results from the SPICE
(subspace) reconstruction and the proposed method. As can
be seen, the proposed method produced metabolite maps with
higher SNR and qualitatively better spectra. Note that while
the volume coil has larger and more uniform coverage, the raw
data from this experiment were considerably noisier than the
previous case. However, the proposed method was still able to
achieve significant SNR improvement. A more comprehensive
comparison of the noisy Fourier reconstruction, the SPICE
reconstruction and the proposed method is shown in Fig. S3.

C. Special Case: Single-Voxel Spectroscopy Denoising

As discussed in Section III.D, the proposed method can also
be applied to denoise single-voxel spectroscopy (SVS) data by
solving the optimization problem in Eq. (16), which allows
the incorporation of data-driven priors to improve the SNR of

general single-voxel acquisitions. Figure 10 shows an example
of such results to demonstrate this capability. Specifically,
a noisy brain 31P spectrum was acquired in vivo and denoised
by the proposed method. In addition, a “reference” spectrum
was generated by spectral fitting of this data (the residual
was inspected to ensure high-quality fitting) and compared
to the denoising result. As can be seen, the proposed method
achieved effective noise reduction with excellent preservation
of spectral features as compared to the fitted spectrum. The
peaks of PCr, α-ATP, γ -ATP, and even the weak signals of
β-ATP and Pi were well recovered, although the performance
for some of the weaker and overlapping peaks (e.g., GPC and
GPE) can be further improved. A more comprehensive and
quantitative evaluation of the proposed method for SVS studies
will be done in future research.

V. DISCUSSION

The proposed method has several key differences compared
to other learning-based denoising/reconstruction strategies.
First of all, by not directly learning the inverse transform
that maps the noisy, artifact containing data to the desired
signals or parameters, we simplified the learning problem
and allowed the constructed DAE to focus on learning to
extract the physiologically meaningful/molecule-specific low-
dimensional features of spectroscopic data (for a particular
field strength) instead of the nuisance noise and artifacts.
Second, the proposed formulation represents a different way
to incorporate deep learning into the imaging process that
effectively combines the physics-based data acquisition model
and learned signal model. It offers higher flexibility and can
work with different noise levels, acquisition parameters and
other spatiospectral constraints without having to retrain the
network. Third, our algorithm directly solves the resulting
optimization problem as opposed to previous works which
mapped an iterative process to a cascade of networks that
approximately solve a similar regularized reconstruction
formulation (e.g., [56], [57]). These “unrolling” based
methods can be efficient but still fall into the category of
directly learning the entire inverse mapping and can be
sensitive to SNR levels and acquisition designs.

An important issue with the proposed method is the selec-
tion of regularization parameters. As shown by our comparison
of reconstructions obtained with different combinations of λ1
and λ2 (Figs. 7 and S2), the denoising performance remains
robust to a large range of parameter values. Furthermore, the
selection of λ1 can be done by performing single voxel denois-
ing (due to the nature of this constraint), which according
to our simulation and experiment studies serves as a good
initial guess for the overall reconstruction problem. The other
parameter, λ2, can be chosen based on discrepancy principle
and then fine tuned together with λ1 by visual inspection
of spatiospectral reconstruction quality. Meanwhile, a careful
choice of λ2 is not required for effective denoising as the
learned model is the main contributor, as shown by the result
with λ2 = 0 in Fig. S2. More sophisticated parameter selection
strategies can also be explored in future research.

Several other issues are worth investigating in future
research. In particular, the network for learning the nonlinear
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Fig. 9. Results from the data acquired using a volume coil. The maps of PCr and α-ATP are shown for the SPICE (Subspace) and the proposed
method (Proposed), along with spatially-resolved spectra from voxels marked by red symbols in the T1-weighted anatomical images shown on the
most left (T1w). As shown by the metabolite maps and spectra, the proposed method yields a qualitatively better reconstruction. The spectra for a
voxel from outside the brain (diamond-shaped symbol) exhibit less noise-induced bias for the proposed method than the subspace reconstruction,
implying less modeling errors.

low-dimensional representation can be further optimized. For
example, structures for better handling complex-valued data,
different layer designs (convolutional versus fully-connected),
asymmetric encoder and decoder networks, and choices of
activation functions may be studied. Characterizations of the
connections between network complexity, dimensionality of
the nonlinear features, and the complexity of the spectral
functions will be topics of both theoretical and practical
interest. High-quality in vivo data can be acquired to improve
the estimation of spectral parameter distributions or directly
augment the neural network training data, which should make
the learned model more adaptive to experimental variations not
captured by synthesized data alone. One unique advantage of
the proposed nonlinear model is that the dimensionality is not
affected by the range of the spectral parameters, thus more
generalizable to patient populations with larger parameter
changes. However, if there exist novel molecular features in
certain patient groups that are not present in the training data,
patient-specific data need to be collected to adapt the learned
model to capture such features. A more general lineshape
distortion function h(r, t) can be considered, and incorporated
into the system encoding operator and separated from the
ideal spectral signals. For the proposed algorithm, the most
computationally intensive step is solving the subproblem in
Eq. (9), which however is highly parallelizable and should
greatly benefit from translating the current implementation to
parallel computing platforms.

While we demonstrated the capability of the proposed
approach using 31P-MRSI data, application to other nuclei is
possible. Extending the proposed method to 1H-MRSI will
require addressing a number of important issues such as resid-
ual nuisance water/lipid signals, presence of macromolecule
baseline in short-TE data, more spectral features, and poten-
tially stronger lineshape distortion due to larger intravoxel B0
inhomogeneity. These issues, although nontrivial, we believe

Fig. 10. Application of the proposed method to denoise a single-voxel
31P spectrum. The noisy data and denoised spectra are shown in the first
and second rows, respectively, with comparison to a noiseless spectrum
(last row) obtained by performing a spectral fitting of the noisy data.

are addressable. For example, a separate nonlinear low-
dimensional model can be learned for the macromolecule
signals by exploiting their unique spectral structures and
lineshapes [34], [58]. This model can be incorporated into a
modified reconstruction formulation that imposes the learned
models for metabolites and macromolecules separately.

It is also worth mentioning that as the proposed method
integrates the data acquisition model and the learned non-
linear model through a regularization formalism, it can be
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readily extended to incorporate other spatiospectral constraints
(e.g., spatiospectral sparsity using non-quadratic regulariza-
tions) and even potentially learned spatial priors. The improved
SNR can allow faster speeds (e.g., with less number of aver-
ages and/or shorter TRs) and higher resolution acquisitions.
Although we only demonstrated denoising reconstruction,
the proposed formulation can be extended to other scenarios
such as sparse sampling in the (k,t)-space with modifications
of the sampling operator. These directions are currently being
pursued and could lead to new opportunities in synergizing
physics-based modeling and machine learning to push the
resolution and SNR limits of in vivo MRSI.

VI. CONCLUSION

We have presented a new method to model MRSI data by
learning a low-dimensional nonlinear representation and use
the learned model for spatiospectral reconstruction. The model
was learned using a deep autoencoder based neural network
which can accurately capture the inherent low-dimensional
features of high-dimensional spectral variations and enable
effective dimensionality reduction. The proposed constrained
reconstruction method incorporates the learned model through
a regularization formalism which was solved by an efficient
ADMM-based algorithm. Significantly improved spatiospec-
tral reconstruction over conventional methods achieved by the
proposed method has been demonstrated using both simulation
and experimental data. The proposed method represents a new
means to incorporate deep learning into the imaging process
and may be extended in various ways including improved
network designs, training data generation, choices of error
metrics and combinations with other spatiospectral constraints.
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