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Classification of Volumetric Images Using
Multi-Instance Learning and Extreme Value

Theorem
Ruwan Tennakoon, Gerda Bortsova, Silas Ørting, Amirali K. Gostar, Mathilde M. W. Wille, Zaigham Saghir,

Reza Hoseinnezhad, Marleen de Bruijne, and Alireza Bab-Hadiashar.

Abstract—Volumetric imaging is an essential diagnostic tool
for medical practitioners. The use of popular techniques such as
convolutional neural networks (CNN) for analysis of volumetric
images is constrained by the availability of detailed (with local
annotations) training data and GPU memory. In this paper, the
volumetric image classification problem is posed as a multi-
instance classification problem and a novel method is proposed
to adaptively select positive instances from positive bags during
the training phase. This method uses the extreme value theory to
model the feature distribution of the images without a pathology
and use it to identify positive instances of an imaged pathology.
The experimental results, on three separate image classification
tasks (i.e. classify retinal OCT images according to the presence
or absence of fluid build-ups, emphysema detection in pul-
monary 3D-CT images and detection of cancerous regions in 2D
histopathology images) show that the proposed method produces
classifiers that have similar performance to fully supervised
methods and achieves the state of the art performance in all
examined test cases.

Index Terms—Multiple instance learning,weakly supervised
learning, CNN, OCT, CT, Macular Edema, Emphysema, COPD.

I. INTRODUCTION

VOLUMETRIC medical imaging is frequently used for
disease diagnostics [1], [2]. Due to high memory usage

and limited availability of training data, applying state-of-
the-art classification techniques such as deep convolutional
neural network (CNN) to volumetric image classification is
challenging [3]. A typical 3D medical image contains in the
order of 512 × 512 × 400 voxels and feeding such images
directly to a CNN would result in large memory usage. One
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option, as used in natural image classification, is to down-
sample the image. The fine details that are important for
diagnosis are often contained in a small area and down-
sampling can easily obscure those instances.

The second common approach to address the above issue is
to partition the image into compact volumes (i.e. instances),
and train a CNN using human expert annotation of each
instance (analogous to object detection framework) [4], [5]. At
inference, the outputs of the network can then be aggregated
according to some rule or using another classifier to generate
image level predictions. The winning team of the “Data Sci-
ence Bowl 2017” [6] followed a variant of the above approach.
However, in practice, getting localized expert annotations is
an expensive task and relying on those annotations reduce the
applicability of these techniques.

The third common approach is to consider the problem as
a multi-instance classification problem. In this technique, an
image is converted into a bag of instances (in our case, image
patches) and each bag has a label. A model that classify the
input based on preesnce or absence of specific abnormalities
can then be learned using the multiple instance learning (MIL)
assumption [7]: At least one instance in a positive bag is
positive and none of the instances in negative bags are positive.
A recent survey of the use of multiple instance learning in
medical imaging is presented in [8]. It is said that when
the above formulation is used for learning classifiers, utilized
information from the positive images is likely to be limited
to a single instance [9]. In medical image applications with
limited training data, such behaviour would not be desirable.

There have been several works that aim to include more than
one instance from a positive bag during training. The methods
that are closely related to the proposed method are discussed
below. In simple-MIL approach [10], [11], [12] bag labels are
propagated to instance labels and all the instances are used
in training an instance classifier. Similarly, in mi-SVM [13],
instance labels are initialized with bag labels and then updated
iteratively in the training process by thresholding the classifier
output. State-of-the-art examples of formulations that use more
than one instance from a positive bag in learning CNN features
include: 1) MIL based whole mammogram classification [9]:
This work proposed to use the top-k instances from a positive
bag as positive and the rest as negative. As the authors of
the paper pointed out, defining a k that is appropriate for
all images is challenging. As a possible solution, the authors
proposed a soft method (i.e. sparse multi-instance learning),
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which adds a sparsity constraint on the number of positive
instances to the cost function. However, implementing such
constraints is not feasible in problems where the full bag
cannot be loaded to memory at once for back-propagation. 2)
CNN based whole slide tissue image classification [14]: The
method defines hidden variables to flag instances containing
discriminative information and then uses an EM algorithm
to infer both the hidden variable and the CNN parameters,
iteratively. Similarly, inferring the hidden variable requires a
threshold and the authors note that using a simple threshold-
ing scheme would ignore the useful instances that fall near
the decision boundary. As such, they proposed an elaborate
thresholding scheme consisting of two neural networks, spa-
tial smoothing and image (and class) level thresholds (again
requiring tuned parameters) to address this.

For many medical imaging applications including detection
of emphysema in CT and retinal fluid presence in Optical
Coherence Tomography (OCT), defining thresholds indicating
how many positive instances are likely to be in a given image,
as required by some of the above-mentioned methods, is
challenging. One such example is elaborated in Fig. 1 which
shows the number of positive instances per image for the
three tasks in OCT image classification dataset [15]. The
number of positive instances per image in this dataset has
large variation and defining a fixed threshold would not be
useful. An instance in the OCT dataset is an image patch
with dimensions [512 × 320 × 1] and is labelled positive if
there is at least one positive pixel (identified using ground
truth annotations) within the patch. Therefore, the number of
positive instances would vary with the severity of the disease.
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Fig. 1: Histograms of positive instances per image for three
OCT image classification tasks [15]. The number of positive
instances per image in this dataset has a large variation and
cannot be properly segmented by a simple threshold.

In this paper, we propose to use extreme value theory
(EVT) to model the maximum feature deviations (from the
mean feature of negatives) of instances in the negative images
and use this information to identify the probable positive
instances in positive images. The proposed method eliminates
the need for predefined thresholds and provides a mechanism
for memory efficient end-to-end training of CNN in a weakly

supervised setting. While extreme value theory has been used
in computer vision in the past for SVM score calibration
[16] and open-set classification [17], [18], its use for training
weakly supervised multi-instance learning classifiers has not
yet been explored.

The idea of using EVT to identify positive instances in a
MIL setting was outlined in [19]. The current paper builds
upon our earlier work by:

I Modifying the method to reduce the number of hyper-
parameters and use a simplified cost function.

II Providing extended evaluations on multiple datasets from
two different domains.

III Including detailed discussions highlighting the inner-
workings of the proposed method.

The rest of this paper is organized as follows: Section II pro-
vides a brief overview of EVT and volumetric image classifica-
tion using learning methods. Section III describes the proposed
method while Section IV presents the experimental results on
3D OCT image classification and emphysema detection in 3D
CT images. The inner-workings of the proposed method is
examined in detail in Section V. Section VI concludes the
paper.

II. BACKGROUND

A. Deep-learning based volumetric image classification

Methods for deep-learning based volumetric image classi-
fication can be divided into three categories: 1) Patch based
detection, 2) Unsupervised deep representation learning com-
bined with traditional classifiers, 3) Multiple instance learning
based methods.

In a typical patch based detection method, the training data
consist of annotations of the pathology location and region.
This information can be used to train CNN based classifiers
that operate on smaller patches, thereby eliminating the high
memory requirement at training time. At test time, all the
patches in a test image are analyzed for pathology. Such
framework has been employed in detecting pulmonary nodules
[20], colonic polyps [21], and cerebral micro-bleeds [22].

Another possible framework to avoid whole image based
training is to use unsupervised learning techniques to train
a deep model (such as an auto-encoder) that can convert an
input image patch to a low dimensional feature representation.
The features extracted with this model for all the patches in a
given image can be aggregated and used to learn a classifier
with the corresponding whole image label [23]. Unsupervised
learning might learn features that may not be relevant for the
task at hand.

Multiple instance based deep learning methods [8] is a
compromise between the above two approaches (that only
use image level annotations at training time). These methods
have been used in several applications including body part
recognition [24] and mammogram classification [9] to name a
few.

B. Multiple instance learning based classification

Multiple Instance Learning (MIL) is a variation of super-
vised learning where a label is only assigned to a collection
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of observations or bag of instances. This poses additional
challenges compared to standard supervised learning where
each observation accompanies a label. Because the level of
annotations required in MIL is significantly lower than super-
vised learning, it has attracted lot of attention in recent years
particularly in areas including drug discovery, computer vision,
text classification and signal processing [25]. Amores [25]
categorized MIL based classification into three paradigms:
Instance-space (IS), Bag-space (BS) and Embedded-space
(ES).

In instance-space paradigm the discriminative information
is assumed to be contained locally at instance level. The
problem of classifying histopathology images containing can-
cerous regions is an example case where such assumptions is
applicable [26]. As discriminative information exists locally at
an instance level, an instance classifier can be trained using
the standard MIL assumption and the output of this classifier
for all instances in a bag can be aggregated to produce the
bag label [13], [12], [27].

In both Bag and Embedded space paradigms, all instances
in a bag has to be considered simultaneously because the
discriminative information is assumed to lie globally. Triag-
ing in diabetic retinopathy screening is an example of such
problem [28], [29]. Bag-space methods aim to classify bags
directly often by defining kernels or dissimilarity between
bags [30], [31]. On the other hand, in ES paradigm, features
corresponding to each instance in a bag is combined to produce
a single embedding that is then used in a classifier to produce
the bag label [27].

While traditional MIL methods use hand-crafted features to
represent the instances and learn only the classifier, several
methods have emerged in recent years that learn both the
feature representation and the classifier simultaneously [27],
[32]. The method proposed in this paper is an example of
the instance-space paradigm and uses an end-to-end learning
based framework. A detailed review of different MIL methods
is provided in [33], [25], [8], [34].

C. Extreme value Distribution

Extreme value theorem (EVT) [35], which is commonly
used for modelling unusual events in weather and financial
systems, is a counterpart of the central limit theorem. While
the central limit theorem describes the distribution of mean
values, EVT describes the behaviour of extreme values sam-
pled from any underlying distribution. To explain our proposed
method, we first briefly explain the extreme value theorem
[35]:

Theorem 1: For Mn = max(X1, . . . , Xn) where
(X1, X2, . . . ) are a sequence of i.i.d samples drawn from any
distribution. If there exist a sequence of pairs of real numbers
(an, bn) with an > 0 : ∀i such that

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= G (x) (1)

where G is a non-degenerate function, then G must be a
member of one of the following distribution families: Gumbel,
Fréchet and Weibull. �

If samples are bounded from either side, the appropriate
distribution of those extreme values will then be a Weibull
distribution. The i.i.d assumption in the above theorem was
later relaxed to a weaker assumption of exchangeable random
variables in [36].

A more practical form of the above theorem is called
the block maxima method of EVT and is used when there
may exist local dependencies within blocks but not between
blocks [37]. Our proposed modelling of negative instances falls
into this category, where there might be some dependencies
between the instances from a given image but it is reasonable
to assume independence between images when they are of
different subjects.

III. PROPOSED METHOD

Given a training dataset X =
{(
X(i), y(i)

)}N
i=1

containing
N volumetric images, X(i) ∈ Rhi×wi×zi , and the corre-
sponding expert annotations, y(i) ∈ {0, 1} (indicating whether
a particular abnormality is present or not), our intention is
to learn a model that can predict whether the particular
abnormality is present in an unseen image X(·).

Our proposed method (EVT-MIL) is to use an iterative sam-
pling based multiple-instance classification framework. In this
approach each image is partitioned into a collection (bag) of
smaller volumes (instances) B(i) := {x(i)1 , . . . , x

(i)
Li
} ; x

(i)
l ⊂

X(i) and, the probability that an abnormality is present in a
particular instance is modelled using a parameterized function,
fθ

(
x
(i)
j

)
⇔ P

(
h
(i)
j = 1 | x(i)j

)
. Here h(i)j is the instance la-

bel, that indicates the presence of abnormality in instance j of
image i. Using the standard MIL assumption, the abnormality
presence probability for the overall image can be inferred as
follows:

p
(
y(·) = 1 | X(·)

)
= max

(
fθ

(
x
(·)
1

)
, . . . , fθ

(
x
(·)
Li

))
. (2)

Now, the challenge is to learn the model parameters θ, given
only the bag labels. We consider the instance labels as hidden
variables and use an expectation-minimization (EM) based
framework, shown in Fig. 2, to learn the model parameters θ.
The remainder of this section describes the two main steps in

[(
x

(1)
1 , . . . , x

(1)
L1

)
, . . . ,

(
x

(N)
1 , . . . , x

(N)
LN

)]

[(
h

(1)
1 , . . . , h

(1)
L1

)
, . . . ,

(
h

(N)
1 , . . . , h

(N)
LN

)]

Update Train	CNN
1	epoch

Infer	hidden	
variables	with	EVT

Class	balance+
Sample	instances	for	

training	
(Hard	negative	mining)

M-stepE-step

Fig. 2: The overall block diagram of the training phase.

the proposed EM based method: 1) Learning the model that
maps an image instance to the current estimate of instance
label h and 2) Inferring the values of h using the EVT.

A. Learning deep CNN model (M step)

In this work, the function fθ is modelled using a CNN.
The architecture of the CNN and the cost function used in the
optimization step are as follows:
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1) CNN architecture: The first stage of the network (i.e.
base model) take raw voxels as input and produce a higher
dimensional feature representation. In our experiments, we
used the convolutional stages of the AlexNet architecture
[38] for OCT segmentation and a 3D variant of Squeezenet
architecture [39] for the emphysema detection, as the base
model. The choice of base model is not restricted to the above
architectures and any suitable CNN architecture can be used
in this step. The details of used networks are provided with
the code1.

The output of the base model is connected to a fully
connected structure through a global average pooling layer
as shown in Fig. 3.
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Fig. 3: Architecture of the proposed neural network model.
Dense-F is the output of a fully connected layer with F units.
The layers marked optional can be included depending on the
task.

2) Cost function: The parameters of the overall network
are obtained by minimizing a cost function consisting of two
terms:

θ∗ = arg min
θ

{
Lcr(ĥ(i)j , h

(i)
j ) + λ1 ‖θb‖2

}
(3)

where λ1 is a hyper-parameter that balance the terms in
the cost function, ‖θb‖2 is the L2-norm of the base model
parameters (acts as a regularizer) and Lcr is binary cross-
entropy function. Weight regularization was not implemented
in the last two fully connected layers, i.e. Dense-F, Dense-1.

B. Inferring instance labels with EVT (E step)

One of the main contributions of this paper is the novel
way that labels are assigned to instances (inferring the hidden
variables). Instead of thresholding the CNN output ĥ(i)j , as
prescribed in [14], we propose to use the extreme value
theorem to model extreme instances in the negative bags and
then use that model to define the probability of being positive
(i.e. positiveness) for instances in the positive bags. Under the
MIL setting, it is assumed that all the instances in a negative
bag are negative. Hence, the instances from negative bags can
be used to approximate the distribution of negative instances.
In our approach, use of a probabilistic model (instead of a
deterministic one such as a fixed threshold) makes the clas-
sifier robust to influences of some incorrectly labelled bags.
Furthermore, Using EVT provides a much sharper cumulative
distribution function (CDF) and does not rely on making
any assumptions about the shape of the underlying feature
distribution. A more detailed analysis of the benefits of using
EVT is provided in Section V.

1https://github.com/RuwanT/EVT-MIL/blob/master/utils/custom networks.py

The proposed EVT modelling is performed on the interme-
diate CNN feature space at dense-F layer, i.e. g(i)j (see Fig
3). To identify the extreme instances in negative bags, we first
estimate the negative mean (µ) and the inverse2 covariance
matrix (Σ−1) using the features of correctly classified nega-
tive instances. The instance with the maximum Mahalanobis-
distance from the mean, in each negative image, is then
identified as extreme instances and a Weibull distribution (as
it is prescribed by the EVT theorem for the measurement
values with finite upper bound) is fitted to those distances
using the maximum likelihood estimation method. It should
be noted that the CNN feature representations can be sparse
and/or may contain highly correlated elements. Furthermore,
the EVT fitting procedure assumes that the features of negative
instances are closer to negative feature mean (µ) than the
positive features. However, a typical neural network classifier,
has no constraint to force the feature representations to have
the above property. As such, the Mahalanobis-distance is a
more appropriate measure of distance in such a feature space
compared to the commonly used Euclidean distance.

The Weibull distribution has three parameters: shape (kw),
scale (λw) and location (θw). The CDF of the above estimated
Weibull distribution can then be used to define the positiveness
for all instance in positive bags as:

P
(
h
(i)
j = 1 | d(i)j , kw, λw, θw

)
= 1− e

−
(
d
(i)
j

−θw
λw

)kw
(4)

where d(i)j =

√(
g
(i)
j − µ

)
Σ−1

(
g
(i)
j − µ

)
. Given the precise

nature of our positive probability modelling, a simple threshold
(we use Tevt = 0.95 in all of our experiments) or an
importance sampling strategy can be applied to infer the values
of the hidden variables. This threshold is easy to tune and our
experiments, presented in Section V, showed that the final re-
sult is not significantly affected by the value of this threshold.
To make sure that each positive image has at least one positive
instance, we always assign the corresponding hidden variable
of the instance with maximum positive probability to one.

As it is likely to have more negative instances than positive
ones, we sample 75% of instances from each negative image
using the score ŵ

(i)
j as the probability of selecting a given

instance x(i)j . Such sampling strategy (hard negative mining)
would increase the likelihood of including an incorrectly
classified negative instance in the subsequent training iteration.
The overall algorithm for sampling instance labels h(i)j is given
in Algorithm 1. The image level predictions at the test time are
determined using equation (2) on CNN output probabilities.
The overall CNN training procedure is given in Algorithm
2. At the start of training, the hidden variables (h(i)j ) are
initialized with the respective bag labels as shown in step 1
of Algorithm 2. Using bag labels as instance labels has been
suggested for training MIL classifiers [10], [11], [12] and we
will show that the proposed method is capable of significantly
improving a classifier performance from this initial point.

2The Moore-Penrose pseudo-inverse was used in our implementation as the
covariance matrix can be non-invertible.
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Algorithm 1 One iteration of inferring h with the EVT.

Input: CNN features at Dense-F ({g(i)j }), image labels
([y(i)]Ni=1), EVT threshold (Tevt = 0.95), EVT tail size β.
Output: labelled instances {(x(i)j , h

(i)
j )}

1: h
(i)
j ← −1 : ∀ i and j

2: gtn ← Set of true-negative features.
3: µ←Mean(gtn), Σ−1 ← Cov(gtn)+

4: d
(i)
j = sqrt((g

(i)
j − µ)Σ−1(g

(i)
j − µ)) : ∀ i and j

5: M = {M (i) ← max(d
(i)
1 , . . . , d

(i)
Li

) : ∀ i if y(i) = 0}
6: [kw, λw, θw]← FitWeibull(M,β)

7: w
(i)
j ← 1− e−(

−d(i)
j

−θw
λw

)kw : ∀ i and j

8: for i = 1→ N where y(i) = 1, j = 1→ Li do
9: if w(i)

j > Tevt : h(i)j = 1 else h(i)j = 0

10: h
(i)
j∗ = 1 where j∗ = argmax(w

(i)
1 , . . . , w

(i)
Li

)
11: end for
12: Sample 75% instances from each negative image with ac-

ceptance probability w(i)
j and set corresponding h(i)j ← 0.

Algorithm 2 Training procedure for EVT-MIL.

Inputs: Image instances and bag labels {{x(i)j }Lij=1, y
(i)}Ni=1.

Output: Trained CNN model
1: h

(i)
j ← y(i) : ∀ i = 1→ N and j = 1→ Li

2: for i = 1→ #epoch do
3: Train CNN with {(x(i)j , h

(i)
j )}.

4: {g(i)j } ← Extract CNN features at Dense-F.
5: {(x(i)j , h

(i)
j )} ← Infer instance labels with Algorithm 1.

6: end for

IV. EXPERIMENTS

This section describes the experimental set-up used to
measure the performances of the proposed EVT-MIL method
and compare those with some recently published competi-
tive methods on two different volumetric image classification
tasks. The proposed EVT-MIL method was implemented using
keras3 library with TensorFlow backend. The code for the pro-
posed method is publicly available4. The area under the ROC
curve (AUC) is used as the main metric in our performance
evaluations.

A. 3D retinal OCT image classification

The proposed method was first evaluated on the 3D retinal
OCT image classification task in ReTOUCH challenge [15].
OCT is an in-vivo, high resolution imaging technology that
is capable of capturing a 3D volumetric image of the retinal
and the sub-retinal layers as well as their structures. Studies
have shown that OCT signals have strong correlation with
retinal histology and are extremely useful to diagnose Macular
Edema (the swelling of the macula region of the eye, caused by
fluid build-ups due to disruptions in blood-retinal barrier [40])
caused by different diseases. In this challenge, the objective is

3https://github.com/keras-team/keras.git
4https://github.com/RuwanT/EVT-MIL.git

IRF

SRFPED

Fig. 4: An example of an image patch (an instance with
dimensions [512× 320× 1]) from the ReTOUCH challenge
dataset with annotations indicating the existance of three fluid
types: Intra-retinal fluid (IRF), Sub-retinal fluid (SRF) and
Pigment Epithelial Detachment (PED).

to classify OCT images according to the presence (or absence)
of three types of fluids that cause Macular Edema: Intra-retinal
fluid (IRF), Sub-retinal fluid (SRF) and Pigment Epithelial
Detachment (PED) - although the name does not refer to a
fluid, the detachment is marked by existence of excess fluid.
An example image patch from the ReTOUCH challenge with
annotations indicating the three fluid types is shown in Fig. 4.

1) Dataset: The ReTOUCH dataset consists of 112 volu-
metric OCT images of 112 subjects. The images were captured
using a variety of devices from three different manufacturers.
A detailed description of the dataset is provided in Table I.
We have used the train/test split provided by the ReTOUCH
organizers in our experiments (60% Train – 40% Test). The
ReTOUCH dataset also provides expert segmentations as
ground truth (i.e. segmentation masks indicating the presence
or absence of the three fluid types for each voxel) for each
image in the training set. While we did not use those for
training EVT-MIL method, those were used in assessing its
performance.

2) Implementation details: For all methods in this section,
we extracted image patches with dimensions 512 × 320 × 1
as instances (full b-scan after cropping the boarder as shown
in Fig. 4). The cost balancing coefficient λ1 of the proposed
method was set to 0.001. Network parameters were optimized
for 100 epoch using “rmsprop” with learning rate 0.001 and
decay 1 × 10−8. The batch size was set to 32. The EVT tail
size was set to the minimum of 30 or the number of negative
training images.

3) Comparative analysis: We compared the performance of
EVT-MIL over three classification tasks (i.e. SRF, IRF, PED
classification) with several competing methods, Full-SUP:
Fully supervised classifier using expert annotated instance
labels derived using the segmentation masks provided with the
training data, TOP-K: Our implementation of top k positive
instances [9], CNN-Th: Inferring h in the proposed method
by thresholding the CNN output instead of using EVT, Atten-
tionDeepMIL: Attention based MIL architecture from [27],
MINet: Max-pooling based feature aggregation performed at
the last feature layer [32] and Simple-MIL: Using bag labels
as instance labels to train CNN. To make the comparisons fair
we used the same architecture and hyperparameters during the
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TABLE I: Details of the ReTOUCH OCT image dataset.

Spectralis Cirrus Topcon
Number of Images 38 38 36
Number of Positives (IRF/SRF/PED) 32/22/19 30/19/18 26/20/16
B-scans Size 512 × 496 512 × 1024 512 × 885/650
Number of B-scans 49 128 128
Axial resolution 3.9µm 2.0µm 2.6/3.5µm

training of each method above.
Fig 5 shows the mean and standard deviation of the test-

set AUC values in image level fluid type classification over
25 repeated runs of each method. As expected, the figure
shows that the Full-SUP method has been able to achieve the
best AUC values across all three fluid types. The proposed
method, trained without any instance level supervision, has
also achieved comparable AUC values in classifying SRF and
PED, indicating that it is possible to learn a good image level
predictor in a weakly supervised manner.

The p-values from a two-sided Wilcoxon signed-rank test
between the pairs of average classification errors (EVT-MIL
and the competing method) for each image in the test set
are provided in Table II. The average classification error for
each image for a given method is the error averaged over
the 25 repeated runs of that method where the treshold of
each classifier is set in such a way that it yields a true-
positive-rate of 80%. Symbol (R) in this table indicates that
the null hypothesis (the difference between the medians of
two methods being zero) can be rejected with 95% confidence.
The results also show that the AUC archived by the proposed
method is significantly better than that of TOP-K in SRF
and PED. This demonstrates the effectiveness of using an
adaptive number of positive instances in the proposed method
compared to using fixed thresholds. The methods Simple-
MIL and CNN-Th also generate poor results, compared to
the proposed method, in SRF and PED classification.

The results of the proposed method have the largest devia-
tion form Full-SUP in IRF fluid type. This can be attributed
to the limited number of negative samples present in IRF
classification task compared to the other two fluid types. As
shown in Table I, the number of negative bags for IRF task
is only 24 compared to 51 for SRF and 59 for PED. The
empirical results shown in Fig 14 also indicate that limiting
the number of negative bags at training time would diminish
the performance of EVT-MIL.

The top performing method in the Re-TOUCH challenge
(i.e. SFU [15]) produces AUC scores of 1.0 for all three fluid
types. However, the above method uses expert annotated fluid
segmentation masks for training and uses an off-the-shelf layer
segmentation method. Considering that our proposed method
only uses image level labels, these results are not directly
comparable.

B. Emphysema detection in pulmonary 3D-CT images

In this section, we evaluate the proposed method for Em-
physema detection in low-dose CT images. Emphysema is
a lung pathology characterized by the destruction of lung
tissue and enlargement of airspaces in a lung. It is part of
chronic obstructive pulmonary disease (COPD), which is a
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Fig. 5: The test-set AUC values in image level fluid type
classification. The plots show the mean and the standard devi-
ation of AUC values over 25 repeated runs for each method.
Full-SUP: Fully supervised classifier trained using expert
annotated instance labels, CNN-Th: Instance labels updated
by thresholding CNN output at each epoch, Simple-MIL: Bag
labels used as instance labels, TOP-K [9], AttentionDeepMIL
[27], MINet [32] and EVT-MIL: Proposed method.

leading cause of mortality and morbidity worldwide [41].
Visual assessment of emphysema based on CT is presumed to
be more sensitive to emphysema than CT densitometry [42].
Examples of lung regions with and without emphysema are
shown in Fig 6.

(a) (b)

Fig. 6: Axial slices of two 3D-CT images with (left) and
without (right) emphysema.

The data used in this section is collected during the Danish
Lung Cancer Screening Trial (DLCST) [43]. The scan parame-
ters as described by [43] are: “All CT scans of the study were
performed on a MDCT scanner (16 rows Philips Mx 8000,
Philips Medical Systems, Eindhoven, The Netherlands). Scans
were performed supine after full inspiration with caudocranial
scan direction including the entire ribcage and upper abdomen
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TABLE II: The p-values from two sided Wilcoxon signed-rank test between EVT-MIL and each competing method on the
three fluid classification tasks. Symbol (R) indicates that the null hypothesis (the difference between the means of two methods
being zero) can be rejected with 95% confidence.

Full-SUP TOP-K CNN-Th Simple-MIL AttentionDeepMIL MINet
SRF 4.81E-01 3.83E-02 (R) 9.24E-02 3.49E-05 (R) 7.22E-05 (R) 1.17E-02 (R)
PED 9.87E-01 1.66E-02 (R) 1.19E-02 (R) 2.89E-05 (R) 4.54E-03 (R) 4.43E-03 (R)
IRF 4.46E-04 (R) 5.65E-03 (R) 1.83E-02 (R) 5.35E-06 (R) 3.94E-02 (R) 1.13E-02 (R)

with a low dose technique, 120kV and 40 mAs. Scans were
performed with spiral data acquisition with the following ac-
quisition parameters: Section collimation 16 × 0.75 mm, pitch
1.5, rotation time 0.5 second”. The images were reconstructed
with slice thickness of 1mm, using a hard convolutional kernel.

1) Dataset: We sampled 200 scans (100 with emphysema
and 100 without emphysema) from the DLCST dataset and
used them in our evaluations. The annotations (has emphysema
vs. no emphysema) for each image were derived from the
visual assessments described in Wille et al. [42], where each
lung image was divided into six regions (the regions were
defined as above carina, between carina and lower pulmonary
vein, and below lower pulmonary vein) and two experts as-
sessed the extent of emphysema in each of those regions. The
extent was assessed as a categorical grade ranging from 0 to 5
corresponding to 0%, 1-5%, 6-25%, 26-50%, 51-75% and 76-
100% of emphysema tissue respectively. In our experiments,
we used the annotations from one expert to train and test
the models and use the annotations from the other expert to
calculate the inter-observer agreement. Table III shows the
rater agreement on region level emphysema presence in the
sampled dataset. The data show that the rater agreement is
higher in the upper regions of the lungs compared to lower
regions.

The sampled dataset was divided into four fixed folds and
four-fold cross validation was used in our experiments. The
cross validation splits were selected such that they include the
similar proportion of positives and negatives.

2) Implementation details: 600 possibly overlapping
patches from each image (100 patches from each region)
with dimensions 41× 41× 21 voxels were used as instances
for the proposed method. The distribution of instances and a
randomly selected instance for an example 3D-CT image is
visualized in Fig. 7. The cost balancing coefficients λ1 of the
proposed method was set to 1 × 10−6. Network parameters
were optimized for 60 epoch using “rmsprop” with learning
rate 0.001 and decay 1× 10−8. The batch size was set to 16.
The EVT tail size was set to the minimum of 50 or the number
of negative training images.

3) Comparative analysis: In this section, we compare the
performance of EVT-MIL with three published methods on
the above dataset: 1) Ørting et al. [12]: Simple-MIL based
approach that uses hand-crafted features (i.e. equalized his-
tograms of multi-scale filter representations) within a logistic
regression framework. 2) GAP-Net [44]: Deep learning based
model that takes a whole lung region as input and predicts the
severity score. This method uses the region-level emphysema
precence annotations to generate the training signal. 3) Prop-
Net [44]: Similar to GAPNet but uses an enhanced architecture
specialized for label proportion learning with an improved loss

(a) (b)

Fig. 7: (a) 3D visualization of the distribution of instance
locations within a 3D-CT image. Each blue dot indicate a
center of an instance. (b) A slice plot of an instance with
dimensions 41× 41× 21 voxel.

function. It should be noted that methods EVT-MIL and [12]
uses image level labels where as the other two methods, i.e.
Prop-Net and GAP-Net, use region level labels.

The cross-validation results of the proposed method together
with the three competing methods are shown in Table IV. The
results show that the proposed method has been able to achieve
AUC values that are significantly better than those of [12].
This suggests that the proposed method has been able to learn
features that are superior to the hand-crafted features used by
[12]. The results also show that EVT-MIL trained only with
image level labels has been able to achieve similar accuracy
to Prop-Net, which uses significantly more information during
training (i.e. region level emphysema severity scores). Prop-
Net can be viewed as a fully-supervised deep learning method,
when it comes to region level emphysema prediction, as it uses
a whole image region as input to the network together with
the corresponding emphysema presence label.

It should be noted that using bag labels as instance labels
to train (Simple-MIL) the deep network failed to converge for
this dataset, hence the results were not included (the features
collapsed to a single point in the feature space).

Fig. 8 shows the ROC curves for each competing method
on the emphysema detection task, which again shows that the
proposed EVT-MIL method has been able to achieve high
accuracy comparable to Prop-Net. The figure also shows that
the results of the proposed method is in-line with the inter-
observer agreement (annotations of two different experts).

C. 2D Histopathology image classification

In this section, we evaluate the proposed method on au-
tomatic detection of cancerous regions in 2D histopathology
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TABLE III: Rater agreement on region level emphysema presence in the dataset. Different regions of lung are indicated by:
ERL=right-lower, ERM=right-middle, ERU=right-upper, ELL=left-lower, ELM=left-middle, ELU=left-upper.

ERL ERM ERU ELL ELM ELU Scan
Absent 92.72 96.29 97.24 90.64 95.74 96.69 96.15
Present 68.57 61.53 74.72 68.96 62.71 73.41 71.88

TABLE IV: Four-fold cross-validation results (AUC) for emphysema detection using low-dose CT images. ERL=right-lower,
ERM=right-middle, ERU=right-upper, ELL=left-lower, ELM=left-middle, ELU=left-upper region of lung.

ERL ERM ERU ELL ELM ELU Scan

Ørting et al. [12] Mean 0.75 0.83 0.88 0.74 0.76 0.85 0.84
Std 0.09 0.02 0.07 0.13 0.03 0.07 0.07

GAP-Net [44] Mean 0.92 0.93 0.94 0.93 0.91 0.96 0.93
Std 0.03 0.03 0.02 0.06 0.03 0.00 0.02

Prop-Net [44] Mean 0.90 0.95 0.96 0.96 0.93 0.98 0.95
Std 0.06 0.02 0.02 0.02 0.03 0.02 0.04

EVT-MIL Mean 0.90 0.95 0.96 0.95 0.93 0.96 0.95
Std 0.06 0.01 0.01 0.05 0.01 0.01 0.06
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Fig. 8: ROC curves of different emphysema detection methods.
The figure shows that the proposed EVT-MIL method has been
able to achieve high accuracy. The plot also show the inter-
observer agreement and indicates that the EVT-MIL results
are comparable to the inter-observer agreement.

images of colorectal adenocarcinomas. Although the focus of
this paper is on volumetric images, histopathology images are
often very large (high resolution) and share some of the issues
discussed in this paper related to training deep CNN models
with volumetric images. Furthermore, 2D image classification
experiments simplify the visualization process and help with
understanding EVT-MIL while enable the comparisons with
general MIL methods.

1) Dataset: The used dataset comprises of 100 hematoxylin
and eosin stained whole-slide histopathelogy images of col-
orectal adenocarcinomas. A detailed description of the dataset
can be found in [26]. The locations of 24,444 cell nuclei,
across all the images in the dataset, has been manually anno-
tated together with their associated class label (i.e. epithelial,
inflammatory, fibroblast and miscellaneous). A bag used in
our experiments is composed of 27 × 27 2D image patches
centred on manually annotated cell nuclei. A bag is labelled
positive if it contains one or more patches from the epithelial
class and zero otherwise. In total there are 51 positive bags.

(a) Positive (b) Negative

Fig. 9: A positive and a negative bag from the whole-slide
histopathology image dataset. The rectangle annotations indi-
cate the instance (with dimensions [27× 27]) extracted using
manually annotated cell nuclei (for clarity, only a subset of
instances are visualized). The color of the rectangle indicate
instance label (red for positive and blue for negative).

Two example histopathelogy images from the above dataset
together with a subset of extracted instances are shown in
Fig. 9.

2) Implementation details: We used the classification CNN
architecture proposed in [26] as the base network. The net-
work parameters were optimized for 50 epoch using “Adam”
optimizer with the same hyper-parameters used in [27].

3) Comparative analysis: To analyze the performance of
the proposed method, ten-fold cross-validation results for
EVT-MIL on histopathology classification dataset is reported
in Table V together with the results reported in [27]. In
the latter work, authors proposed an end-to-end trained MIL
network that employed several instance aggregation regimes.
Their main contribution was a weighted averaging of instance
level outputs using a permutation invariant aggregation op-
erator that corresponds to attention mechanism (Attention,
Gated-Attention). Furthermore, they also used non learned
max aggregation, which either operates on instance predictions
(Instance-max) or on feature embeddings (Embedding-max).
Embedding-max, in which feature aggregation is performed
at the last feature layer, is almost equivalent to MI-Net with
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max-pooling [32].
Table V shows that the EVT-MIL, which employs non

learned instance aggregation method, has achieved higher
AUC values compared to other similar methods (Instance-
max, Embedding-max). Furthermore, EVT-MIL has achieved
similar performance to learning based instance aggregation
methods: Attention and Gated-Attention. Several examples of
successful and failed cases for EVT-MIL is visualized in Fig
10.

V. DISCUSSION

The paper presents a novel multiple instance learning based
method for training a deep neural network for volumetric
image classification that can be used when it is not possible
to train a deep network with the whole image due to GPU
memory restrictions. The proposed method can adaptively
select positive instances from positive bags at training time.
The method is aimed at situations where the number of
positive instances in a bag varies in a broad range (hence
defining a fixed threshold indicating the expected number of
positive instances per bag would not be accurate) and where
inclusion of all the positive instances in training is important
(due to limited number of training bags) for learning an
accurate model.

In the following sections, we discuss the key properties of
the proposed method. If not stated otherwise, the results from
the emphysema detection task is used in the analyses (due to
relative large and balanced dataset).

A. Why use EVT modelling?

A main advantage of the proposed method is the use of
extreme value theorem to model the deviation of true negative
features from their mean. To demonstrate the advantage of
using EVT modelling, we extracted the features for all the
instances in the training set at a specified epoch during training
and computed the distances d(i)j as defined in Algorithm 1.
The normalized histogram of those distances for all instances
in positive bags and true negative instances are plotted in
Fig. 11. The figure shows that the distribution of distances of
true-negative instances has an arbitrary shape and assuming a
specific underlying shape to model this distribution would not
be reasonable (e.g. using a Gaussian to model the distribution
of mean-deviation in true-negative instances). EVT does not
assume any underlying distribution and hence is an ideal tool
in such applications.

We have also plotted the Weibull CDF estimated at the
same point in Fig. 11. The plot shows that the EVT estimation
has been able to effectively differentiate the main clusters in
the positive bags. The figure also demonstrates that the EVT
modelling has resulted in a sharp CDF which helps reduce the
sensitivity to the chosen EVT threshold. The results presented
in Fig. 12, which shows the variation of model accuracy with
the EVT threshold, also supports the argument that changing
the EVT threshold in a wide range does not significantly vary
the performance of the proposed method.

To gain a better understanding of the feature representations
learnde by the proposed EVT-MIL method, we have plotted

the t-SNE plot of instance features in Fig. 13. The t-SNE plots
show that features of instances that belong to the negative bags
are clustered around the negative mean, whereas the features of
instances from positive bags show a distinct cluster in addition
to the main cluster which overlaps the instances from negative
bags.The plot shows that the proposed method has learned a
feature representation that is discriminative at instance level.

B. Training dataset size vs accuracy.

To measure the effect of training dataset size on the ac-
curacy of the resulting model, we removed different portions
of images from each training fold (randomly sampled) and
calculated the cross-validation values. Those results are shown
in Fig. 14. Test sets for each fold remain unchanged. The
figure shows that the proposed method has been able to learn
accurate models when the dataset size is between 100% (200
images) to 50% of the original dataset size. The accuracy of
the learned models starts to degrade when the training dataset
is reduced to a lesser than 50% of the original dataset size.
At 50% each fold contains around 75 images (approximately
35 images from each class). The results also demonstrate that
the proposed method is capable of learning accurate models
even when the size of the training dataset is fairly limited.

Points M1 and M2 on Fig. 14 show the mean AUC values
for models trained with 65% data where either negative (M1)
or positive (M2) images were removed from the dataset. The
results indicate that the learning process is more sensitive to
loss of negative training data than to the loss of positives. This
can be viewed as a limitation of the proposed method and can
perhaps be explained by the fact that we only use negatives to
estimate the boundary between positive and negative instances.
The extreme value theorem relies on the number of samples
to be large. However, in the above scenario, the number of
samples (the number of negative images in the training dataset)
is limited leading to a sub-standard extreme value estimation.
The above observation points out that it is appropriate to use
the method in circumstances when the number of negative
bags is relatively large. In many practical applications it may
be easier to collect large number of negative images compared
to images containing specific abnormality.

C. Effectiveness of selecting positive instances from positive
bags

All weakly-supervised or MIL classifiers learn to label the
whole image. Predicting the class label of the entire image
alone might not be sufficient for many clinical applications
where it is important to identify regions in the image that lead
to the overall decision. A subset of MIL classifiers that falls
under the instance-space paradigm described in Section II has
the ability to classify individual patches (or instances), thus
these methods can indicate regions with signs of pathology.
The proposed method falls into the latter category, where we
can use the learned EVT model to generate the positiveness
probability for all the instances of a test image. Fig. 10 shows
several example cases from the 2D histopathology image
classification task. Column (d) visualizes the instance level
positiveness probability (generated by EVT-MIL) by scaling
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TABLE V: Ten-fold crssvalidation results (AUC) on histopathology classification dataset [26]. Experiments were run 5 times
and the average and standard deviation of mean is reported. The results for the competing methods are taken from [27].

Instance-max Embedding+max Attention Gated-Attention EVT-MIL
AUC 0.914 ± 0.010 0.918 ± 0.010 0.968 ± 0.009 0.968 ± 0.010 0.966 ± 0.008

(a) (b) (c) (d)

Fig. 10: Depiction of successful or failed cases of the 2D Histopathology image classification task. Columns represent: (a)
Histopathology image, (b) All extracted instances of size 27×27, (c) Ground truth: Patches belong to class epithelial (d) EVT-
MIL prediction: The intensity of each patch in column b is scaled with the positiveness probability predicted by EVT-MIL.
Rows one and two show two cases where EVT-MIL has been successful. The third row shows a case where the predicted bag
label is correct but the instance level predictions of EVT-MIL contain false positives.
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Fig. 11: Normalized histogram of distance to the mean in the
feature space for positive and negative instances together with
the estimated Weibull CDF (red dash line) at a selected point
in the training process.

the intensity of each patch in the image by the positiveness
probability. The first two rows of the figure show that the
positiveness probability from EVT-MIL can be used to identify
the positive lesions in an image correctly. Row three however
shows that in few cases EVT-MIL predicts inaccurate positive-
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Fig. 12: Variation of cross-validation accuracy with values of
EVT threshold in the range of [0.5− 1.0] for the emphysema
detection task.

ness probabilities while predicting the correct bag level label.
Learning sub-optimal decision functions is a known limitation
of MIL or weakly supervised learning methods and detailed
analysis of this shortcoming can be found in [45], [33].

Fig. 15 shows the evolution of the positive instance selection
process during training. The number of positive instances
selected by EVT-MIL method from each positive image gradu-
ally increases during training. This would in turn enable more
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Fig. 13: t-SNE embedding of the learned feature representation
at Dense-F layer for (a) 2D Histopathology image classifica-
tion, (b) Emphysema detection in 3D-CT. The instances from
negative bags are represented by blue crosses whereas, the
instances from positive bags are represented by red plus signs.
The green dots represent extreme instances used in learning the
Weibull parameters and the black star represents the negative
feature mean. The plot shows that the proposed method has
learned a feature representation that is discriminative at an
instance level.
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Fig. 14: Variation of cross-validation accuracy (measured with
AUC) with the size of dataset. The size of the dataset is
represented as a proportion of the original dataset size (200
scans). M1, M2 show the mean AUC values for models trained
with 65% data where only negative images (M1) or positive
images (M2) were removed from the dataset.

accurate models to be learned. Furthermore, the number of
selected positive instances show positive correlation with the
emphysema grade of the scan indicating the effectiveness of
the positive instance selection process of the proposed method.

VI. CONCLUSION

The paper presents a new method for training a deep neural
network for volumetric image classification. In the proposed
method, the original problem is posed as a multi-instance
classification problem and the extreme value theorem is used
to infer the instance level labels given the current state of
intermediate CNN features. The experimental results on fluid
type classification in OCT, Emphysema detection in low-dose
CT images and automatic detection of cancerous regions in 2D
histopathology images show that using the EVT to infer the

instance labels significantly improves over using a threshold
scheme as performed in state-of-the-art methods.
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