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Abstract— We present a deep convolutional neural net-
work for breast cancer screening exam classification,
trained, and evaluated on over 200 000 exams (over
1 000 000 images). Our network achieves an AUC of 0.895 in
predicting the presence of cancer in the breast, when
tested on the screening population. We attribute the high
accuracy to a few technical advances. 1) Our network’s
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novel two-stage architecture and training procedure, which
allows us to use a high-capacity patch-level network to
learn from pixel-level labels alongside a network learning
from macroscopic breast-level labels. 2) A custom ResNet-
based network used as a building block of our model,
whose balance of depth and width is optimized for high-
resolution medical images. 3) Pretraining the network on
screening BI-RADS classification, a related task with more
noisy labels. 4) Combining multiple input views in an opti-
mal way among a number of possible choices. To validate
our model, we conducted a reader study with 14 readers,
each reading 720 screening mammogram exams, and show
that our model is as accurate as experienced radiologists
when presented with the same data. We also show that
a hybrid model, averaging the probability of malignancy
predicted by a radiologist with a prediction of our neural
network, is more accurate than either of the two sepa-
rately. To further understand our results, we conduct a
thorough analysis of our network’s performance on dif-
ferent subpopulations of the screening population, the
model’s design, training procedure, errors, and properties
of its internal representations. Our best models are pub-
licly available at https://github.com/nyukat/breast_cancer_
classifier.

Index Terms— Deep learning, deep convolutional neural
networks, breast cancer screening, mammography.

I. INTRODUCTION

BREAST cancer is the second leading cancer-related
cause of death among women in the US. In 2014,

over 39 million screening and diagnostic mammography
exams were performed in the US. It is estimated that in
2015 232,000 women were diagnosed with breast cancer and
approximately 40,000 died from it [1]. Although mammogra-
phy is the only imaging test that has reduced breast cancer
mortality [2]–[4], there has been discussion regarding the
potential harms of screening, including false positive recalls
and associated false positive biopsies. The vast majority of
the 10–15% of women asked to return following an incon-
clusive screening mammogram undergo another mammogram
and/or ultrasound for clarification. After the additional imaging
exams, many of these findings are determined as benign and
only 10–20% are recommended to undergo a needle biopsy for

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4953-5933
https://orcid.org/0000-0003-3522-1869
https://orcid.org/0000-0002-7726-2514
https://orcid.org/0000-0001-5242-0291
https://orcid.org/0000-0002-0900-0459
https://orcid.org/0000-0003-0549-1446


WU et al.: DEEP NEURAL NETWORKS IMPROVE RADIOLOGISTS’ PERFORMANCE IN BREAST CANCER SCREENING 1185

further work-up. Among these, only 20–40% yield a diagnosis
of cancer [5]. Evidently, there is an unmet need to shift
the balance of routine breast cancer screening towards more
benefit and less harm.

Traditional computer-aided detection (CAD) in mammog-
raphy is routinely used by radiologists to assist with image
interpretation, despite multicenter studies showing these CAD
programs do not improve their diagnostic performance [6].
These programs typically use handcrafted features to mark
sites on a mammogram that appear distinct from normal
tissue. The radiologist decides whether to recall these findings,
determining clinical significance and actionability. Recent
developments in deep learning [7]—in particular, deep convo-
lutional neural networks (CNNs) [8]–[12]—open possibilities
for creating a new generation of CAD-like tools.

This paper makes several technical contributions towards
the goal of developing neural networks to support radiologists
in interpreting breast cancer screening exams. (i) We introduce
a novel two-stage neural network for incorporating global and
local information with an appropriate training procedure. This
allowed us to use a very high-capacity patch-level network
to learn from pixel-level labels alongside a network learning
from macroscopic breast-level labels. With this strategy, our
model not only achieves a human-competitive performance
but also produces interpretable heatmaps indicating locations
of suspicious findings. Additionally, we show the utility of
pixel-level labels even in a regime where we have a lot
of image-level labels. (ii) We demonstrate the feasibility of
training and evaluating the network with over 1,000,000 high-
resolution mammographic images–an extremely large data set
in medical imaging, not just for breast cancer screening. This
has a significant value in both informing future research design
priorities as well as showing a proof-of-concept and proof-of-
value of this approach. We further perform a careful error
analysis of our predictions, and identify patterns that our
network was incapable of capturing, which will inform future
architecture designs. (iii) To use as a building block of our
network, we propose a novel variant of a ResNet specifically
designed for medical imaging, which has a balance of depth
and width that allows the model to process a very large
image while maintaining reasonable memory consumption.
(iv) We evaluate the utility of pretraining the network using
a related task with a more noisy outcome (screening BI-
RADS classification) and find it to be a very important part
of the pipeline that markedly improves the performance of
our models. This is of particular significance in medical
imaging where most data sets are small. (v) We evaluate
a number of ways to combine information from different
mammographic views within a single neural network. The
results of this analysis are also of value to a broader audience–
including radiologists, particularly pertaining to the margin in
performance between models trained on a subset of the views.
We are not aware of any prior analysis like this, even though it
is common for medical imaging tasks to have multiple inputs.
(vi) We have made the code and weights of our best models
available at https://github.com/nyukat/breast_cancer_classifier.
With this contribution, research groups that are working on
improving screening mammography, who may not have access

Fig. 1. Examples of breast cancer screening exams. First row: both
breasts without any findings; second row: left breast with no findings and
right breast with a malignant finding; third row: left breast with a benign
finding and right breast with no findings.

to a large training dataset like ours, will be able to directly use
our model in their research or use our pretrained weights as
an initialization to train models with less data. By making our
models public, we invite other groups to validate our results
and test their robustness to shifts in the data distribution.

II. DATA

Our retrospective study was approved by our institutional
review board and was compliant with the Health Insurance
Portability and Accountability Act. Informed consent was
waived. This dataset1 is a larger and more carefully curated
version of a dataset used in our earlier work [14], [15].
The dataset includes 229,426 digital screening mammography
exams (1,001,093 images) from 141,473 patients. Each exam
contains at least four images,2 corresponding to the four
standard views used in screening mammography: R-CC (right
craniocaudal), L-CC (left craniocaudal), R-MLO (right medi-
olateral oblique) and L-MLO (left mediolateral oblique). The
images in the dataset are coming from four types of scanners:
Mammomat Inspiration (22.81%), Mammomat Novation DR
(12.65%), Lorad Selenia (40.92%) and Selenia Dimensions
(23.62%). A few examples of exams are shown in Fig. 1.

To extract labels indicating whether each breast of the
patient was found to have malignant or benign findings at
the end of the diagnostic pipeline, we relied on pathology
reports from biopsies. We have 5,832 exams with at least one
biopsy performed within 120 days of the screening mammo-
gram. Among these, biopsies confirmed malignant findings for

1Details of its statistics and how it was extracted can be found in a separate
technical report [13].

2Some exams contain more than one image per view as technologists may
need to repeat an image or provide a supplemental view to completely image
the breast in a screening examination.



1186 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 4, APRIL 2020

Fig. 2. An example of a segmentation performed by a radiologist.
Left: the original image. Right: the image with lesions requiring a biopsy
highlighted. The malignant finding is highlighted with red and benign
finding with green.

TABLE I
NUMBER OF BREASTS WITH MALIGNANT AND BENIGN FINDINGS

BASED ON THE LABELS EXTRACTED FROM THE PATHOLOGY

REPORTS, BROKEN DOWN ACCORDING TO WHETHER

THE FINDINGS WERE VISIBLE OR OCCULT

985 (8.4%) breasts and benign findings for 5,556 (47.6%)
breasts. 234 (2.0%) breasts had both malignant and benign
findings. For the remaining screening exams that were not
matched with a biopsy, we assigned labels corresponding to
the absence of malignant and benign findings in both breasts.

For all exams matched with biopsies, we asked a group
of radiologists (provided with the corresponding pathology
reports) to retrospectively indicate the location of the biopsied
lesions at a pixel level. An example of such a segmentation
is shown in Fig. 2. We found that approximately 32.8% of
exams were mammographically occult, i.e., the lesions that
were biopsied were not visible on mammography, even retro-
spectively, and were identified using other imaging modalities:
ultrasound or MRI. See Table I for more details.

III. DEEP CNNS FOR CANCER CLASSIFICATION

As some breasts contain both malignant and benign find-
ings, we formulate breast cancer screening classification as a
learning task using the multi-task learning framework [16].
That is, for each breast, we assign two binary labels: the
absence/presence of malignant findings in a breast (denoted by
yR,m and yL,m), and the absence/presence of benign findings in
a breast (denoted by yR,b and yL,b). With left and right breasts,
each exam has a total of four binary labels. Our goal is to
produce four predictions corresponding to the four labels for
each exam (denoted by ŷR,m, ŷL,m, ŷR,b and ŷL,b). Although
we are primarily interested in accurately predicting presence

Fig. 3. A schematic representation of how we formulated breast cancer
exam classification as a learning task. The main task that we intend
the model to learn is malignant/not malignant classification. The task of
benign/not benign classification is used as an auxiliary task regularizing
the network.

or absence of malignant findings, predicting the presence or
absence of benign findings serves an important role of an
auxiliary task regularizing learning the primary task. As input,
we take four high-resolution images corresponding to the four
standard screening mammography views (denoted by xR−CC,
xL−CC, xR−MLO and xL−MLO). We crop each image to a fixed
size of 2677×1942 pixels for CC views and 2974×1748 pixels
for MLO views.3 See Fig. 3 for a schematic representation.

IV. MODEL ARCHITECTURE AND TRAINING

We trained deep multi-view CNNs of four different
architectures shown in Fig. 5, inspired by prior work of
Geras et al. [14]. All of these networks consist of two core
modules: (i) four view-specific columns, each based on the
ResNet architecture [11] that output a fixed-dimension hidden
representation for each mammography view, and (ii) two fully
connected layers to map the computed hidden representations
to the output predictions. The models differ in how the view-
specific hidden representations from all views are aggregated
to produce the final predictions. We considered the following
variants.

1) The ‘view-wise’ model (Fig. 5(a)) concatenates L-CC and
R-CC representations, and L-MLO and R-MLO represen-
tations. It makes separate predictions for CC and MLO
views, which are averaged during inference.

2) The ‘image-wise’ model (Fig. 5(b)) makes a prediction
for each of the four views independently. Corresponding
predictions are averaged during inference.

3) The ‘side-wise’ (Fig. 5(c)) model first concatenates L-CC
and L-MLO representations, and R-CC and R-MLO
representations, then makes predictions for each breast
separately.

4) The ‘joint’ model (Fig. 5(d)) concatenates the represen-
tations of all four views and jointly predicts malignant
and benign findings for both breasts.

In all models, we used four ResNet-based 22-layer networks
(ResNet-22) as columns computing a 256-dimension hidden

3The sizes and locations of the cropping window for each image are adjusted
to contain as much of the breast tissue as possible using a method explained
in the section 2.D of the technical report on the dataset [13].
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Fig. 4. Architecture of single-view ResNet-22. The numbers in square brackets indicate the number of output channels, unless otherwise specified.
Left: Overview of the single-view ResNet-22, which consists of a set of ResNet layers. Center: ResNet layers consist of a sequence of ResNet
blocks with different downsampling and output channels. Right: ResNet blocks consist of two 3 × 3 convolutional layers, with interleaving ReLU and
batch normalization operations, and a residual connection between input and output. Where no downsampling factor is specified for a ResNet block,
the first 3 × 3 convolution layer has a stride of 1, and the 1 × 1 convolution operation for the residual is omitted.

representation vector of each view. In comparison to the
standard ResNets, this network has a different balance of depth
and width, which is adjusted to very high-resolution images.
The details of the ResNet-22 network are in Section IV-A
below. Experimentally, we found the ‘view-wise’ model to
be the most accurate on the validation set in terms of the
malignant/not malignant prediction task. Unless we explicitly
specify otherwise, we report the results for this model.

A. Single-View ResNet-22

The full architecture of ResNet-22 is shown in Fig. 4.
We tied the weights for the L-CC and R-CC ResNets, as well
as the L-MLO and R-MLO ResNets.4 Likewise, we flipped
the L-CC and L-MLO images before feeding them to the
model, so all breast images are rightward-oriented, allowing
the shared ResNet weights to operate on similarly oriented
images.

An intermediate output of each ResNet is a H × W×
256-dimensional tensor where H and W are downsampled
from the original input size, with H = 42 and W = 31 for
the CC view, and H = 47 and W = 28 for MLO view.
We average-pool this represenation across the spatial dimen-
sions to obtain a 256-dimension hidden representation vector
for each view. For reference, we show the dimensions of the
hidden activations after each major layer of the ResNet-22 in
Table II.

The primary consideration in adapting the standard ResNets
for mammograms is the need to process very high resolution
images, without prior downsampling–fitting the forward pass
and gradient computation within GPU memory. In addition,
each processed minibatch needs to be sufficiently large for

4In Section I.B of the Supplementary Material, we show additional results
for a view-wise model in which the weights for all views and sides are tied.

TABLE II
DIMENSIONS OF FEATURE MAPS AFTER EACH LAYER IN RESNET-22,

SHOWN AS H × W × D. D INDICATES THE NUMBER OF FEATURE

MAPS, H AND W INDICATE SPATIAL DIMENSIONS

the model training to be well conditioned. For instance,
we found that batch normalization adversely affects train-
ing for minibatch sizes smaller than four. We make several
changes to create our ResNet-22. First, because the hidden
representations at the lowest layers have undergone the least
amount of downsampling and are thus the largest in size,
we set the first convolutional layer to have relatively fewer
channels: 16 compared to 64 in the standard ResNet models.
To compensate, our model has 5 ResNet blocks compared
to 4 in standard ResNets. As each ResNet block doubles
the number of channels, our final hidden representation has
256 channels, compared to 512 in the case of standard ResNet
models. Effectively, we increase the capacity across channels
later in the model, trading off higher resolutions and fewer
channels early on with smaller hidden represensentions and
more channels later in the model. Lastly, whereas in standard
ResNet models the classification layer is applied directly
after global average pooling, in our model, we additionally
apply two fully-connected layers before the classification layer.
We do this in order to allow more complex interactions
between different views.

1) Training and Inference: We trained the whole model using
the Adam optimization algorithm [17], using a learning rate of
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Fig. 5. Four model variants for incorporating information across the four screening mammography views in an exam. All variants are constrained to
have a total of 1,024 hidden activations between fully connected layers. The ‘view-wise’ model, which is the primary model used in our experiments,
contains separate model branches for CC and MLO views–we average the predictions across both branches. The ‘image-wise’ model has a model
branch for each image, and we similarly average the predictions. The ‘breast-wise’ model has separate branches per breast (left and right). The
‘joint’ model only has a single branch, operating on the concatenated representations of all four images. Average pooling in all models is averaging
globally across spatial dimensions in all feature maps. When heatmaps (cf. Section IV-B) are added as additional channels to corresponding inputs,
the first layers of the columns are modified accordingly.

10−5 and a minibatch of size 4. We applied L2 regularization
to our model weights with a coefficient of 10−4.5. The model
has 6,132,592 trainable parameters (6,135,728 when using the
heatmaps as described in Section IV-B, the only difference
between both architectures is the size of the kernel in the
first convolutional layer to accommodate the difference in the
number of input channels). On an Nvidia V100 GPU, the
model takes about 12 hours to train to the best validation
performance (24 hours when using the heatmaps). A sig-
nificant amount of training overhead is associated with the
time to load and augment the high resolution mammography
images. Details about data augmentation are in Section III in
the Supplementary Material.

Only a small fraction of the exams in our training set contain
images of biopsied breasts. Learning with data uniformly
sampled from the training set would be very slow as the model
would see few positive examples per epoch. To alleviate this
issue, within each training epoch, the model was shown all
exams with biopsies in the training set (4,844 exams) but only
a random subset of an equal number of exams without biopsies
(also 4,844 exams). We early-stopped the training when the
average of the validation AUCs over the four prediction tasks
did not improve for 20 epochs. We then selected the version
of the model with the best validation AUC as our final model
candidate (we show the training and validation curve for
one image-only model and one image-and-heatmaps model in
Section II-A in the Supplementary Material).

In preliminary experiments we noticed that when training
the view-wise model, optimizing the prediction for each view
separately leads to better generalization. Therefore, although
at inference time the prediction for each breast is computed
as an average of predictions for both views of that breast,
the model is actually trained to optimize the loss, which
treats the predictions for the two views separately. That is,

the predictions for each target (as defined in Section III) are
computed as

ŷR,m(xR−CC, xL−CC, xR−MLO, xL−MLO)

= 1

2
ŷCC

R,m(xR−CC, xL−CC) + 1

2
ŷMLO

R,m (xR−MLO, xL−MLO),

ŷR,b(xR−CC, xL−CC, xR−MLO, xL−MLO)

= 1

2
ŷCC

R,b(xR−CC, xL−CC) + 1

2
ŷMLO

R,b (xR−MLO, xL−MLO),

ŷL,m(xR−CC, xL−CC, xR−MLO, xL−MLO)

= 1

2
ŷCC

L,m(xR−CC, xL−CC) + 1

2
ŷMLO

L,m (xR−MLO, xL−MLO),

ŷL,b(xR−CC, xL−CC, xR−MLO, xL−MLO)

= 1

2
ŷCC

L,b(xR−CC, xL−CC) + 1

2
ŷMLO

L,b (xR−MLO, xL−MLO),

while the training loss is computed as

L (yR,m, yL,m, yR,m, yL,m, xR−CC, xL−CC, xR−MLO, xL−MLO)

= �(yR,m, ŷCC
R,m(xR−CC, xL−CC))

+ �(yR,m, ŷMLO
R,m (xR−MLO, xL−MLO))

+ �(yR,b, ŷCC
R,b(xR−CC, xL−CC))

+ �(yR,b, ŷMLO
R,b (xR−MLO, xL−MLO))

+ �(yL,m, ŷCC
L,m(xR−CC, xL−CC))

+ �(yL,m, ŷMLO
L,m (xR−MLO, xL−MLO))

+ �(yL,b, ŷCC
L,b(xR−CC, xL−CC))

+ �(yL,b, ŷMLO
L,b (xR−MLO, xL−MLO)),

where � denotes binary cross-entropy.
The observation that when one of the two input modalities

is more predictive than the other one, the network tends to
ignore the less predictive modality is consistent with prior
results [18]. In our experiments, we found that CC view
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Fig. 6. The original image (left), the ‘malignant‘ heatmap over the image
(middle) and the ‘benign‘ heatmap over the image (right).

is more predictive than MLO view (see Section I-C in the
Supplementary Material).

B. Auxiliary Patch-Level Classification Model and
Heatmaps

The high resolution of the images and the limited memory
of GPUs constrain us to use relatively shallow ResNets within
our model when using full-resolution images as inputs. To
further take advantage of the fine-grained detail in mammo-
grams, we trained an auxiliary model to classify 256 ×
256-pixel patches of mammograms, predicting presence or
absence of malignant and benign findings in a given patch.
The labels for these patches are determined based on the
pixel-level segmentations of the corresponding mammograms
produced by clinicians. We refer to this model as a patch-
level model, in contrast to the breast-level model described
in the section above which operates on images of the whole
breast.

Subsequently, we apply this auxiliary network to the
full resolution mammograms in a sliding window fashion
to create two heatmaps for each image (an example in
Fig. 6), one containing an estimated probability of a malignant
finding for each pixel, and the other containing an esti-
mated probability of a benign finding. Altogether, we obtain
eight additional images: xm

R−CC, xb
R−CC, xm

L−CC, xb
L−CC,

xm
R−MLO, xb

R−MLO, xm
L−MLO, xb

L−MLO. These patch classifica-
tion heatmaps can be used as additional input channels to
the breast-level model to provide supplementary fine-grained
information. That is, the modified inputs to the network
then are: [xR−CC; xm

R−CC; xb
R−CC], [xL−CC; xm

L−CC; xb
L−CC],

[xR−MLO; xm
R−MLO; xb

R−MLO], [xL−MLO; xm
L−MLO; xb

L−MLO].
Using separate breast- and pixel-level models as described

above differentiates our work from approaches which utilize
pixel-level labels in a single differentiable network [19] or
models based on the variations of R-CNN [20]. Our approach
allows us to use a very deep auxiliary network at the patch
level, as this network does not have to process the entire high-
resolution image at once. Adding the heatmaps produced by
the patch-level classifier as additional input channels allows
the main classifier to get the benefit from pixel-level labels,
while the heavy computation necessary to produce the pixel-
level predictions does not need to be repeated each time
an example is used for learning. We can also initialize the
weights of the patch-level classifier using the weights of
networks pretrained on large off-domain datasets such as

Fig. 7. BI-RADS classification model architecture. The architecture
is largely similar to the ‘view-wise’ cancer classification model variant,
except that the output is a set of probability estimates over the three
output classes. The model consists of four ResNet-22 columns, with
weights shared within CC and MLO branches of the model.

ImageNet [21].5 Hereafter, we refer to the model using only
mammogram images as the image-only model, and the model
using mammogram images and the heatmaps as the image-
and-heatmaps model.

C. Pretraining on BI-RADS Classification

Because of the relatively small number of biopsied examples
with benign or malignant labels we have available, we apply
transfer learning to improve the robustness and performance of
our models. Transfer learning involves reusing parts of a model
pretrained on another task as a starting point for training the
target model, taking advantage of the learned representations
from the pretraining task.

For our model, we apply transfer learning from a network
pretrained on a BI-RADS classification task, as in [14],
which corresponds to predicting a radiologist’s assessment
of a patient’s risk of having breast cancer based only on
screening mammography. The three BI-RADS classes we
consider are: BI-RADS Category 0 (“incomplete”), BI-RADS
Category 1 (“normal”) and BI-RADS Category 2 (“benign”).
The algorithm used to extract these labels is explained in
[13]. Although these labels are more noisy than biopsy out-
comes (being assessments of clinicians based on screening
mammograms and not informed by a biopsy), compared to
the 4,844 exams with biopsy-proven cancer labels in the
training set, we have over 99,528 training examples with BI-
RADS 0 and BI-RADS 2 labels. Neural networks have been
shown to reach reasonable levels of performance even when
trained with noisy labels [22], [23]. We use this property to
transfer the information learned with BI-RADS labels to the
cancer classification model. In fact, our experiments show that
pretraining on BI-RADS classification contributes significantly
to the performance of our model (see Section V-E).

The model we use for BI-RADS classification is shown in
Fig. 7. It is similar to the ‘view-wise’ model architecture for
cancer classification described in the Model variants section

5To finetune a network pretrained on RGB images with grayscale images,
we duplicate the grayscale images across the RGB channels.
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TABLE III
AUCS OF OUR MODELS ON SCREENING AND BIOPSIED POPULATIONS. ALL MODELS, EXCEPT THE ONES

INDICATED WITH * WERE PRETRAINED ON BI-RADS CLASSIFICATION

above, except that the output layer outputs probability esti-
mates over three classes for a single label. We measured the
performance of this model by averaging AUCs of 0-vs-other,
1-vs-other and 2-vs-other predictions on the validation set.

The rest of the training details (e.g. ResNet-22 architecture,
optimizer hyperparameters) are identical to those of the can-
cer classification model, except that the model was trained
with a minibatch size of 24 instead of 4. We early-stopped
training based on validation AUCs after no improvement for
20 epochs, and initialized the ResNet-22 weights for the cancer
classification model using the learned weights in the BI-RADS
model. Where we used heatmaps as additional input channels,
we duplicated the weights on the bottommost convolutional
kernel such that the model can operate on inputs with three
channels–the rest of the model is left unchanged. In our
experimental results, we used a BI-RADS model trained for
111 epochs (326 hours on four Nvidia V100 GPUs), which
obtained an averaged validation AUC of 0.748.

We emphasize here that we used the same train-validation-
test splits for pretraining our BI-RADS classification model as
in training our cancer classification model, so no data leakage
across splits was possible.

V. EXPERIMENTS

In all experiments, we used the training set for optimizing
parameters of our model and the validation set for tuning
hyperparameters of the model and the training procedure.
Unless otherwise specified, results were computed across the
screening population. To obtain predictions for each test exam-
ple, we apply random transformations to the input 10 times,
apply the model to each of the 10 samples separately and
then average the 10 predictions (details in Section III in the
Supplementary Material).

To further improve our results, we employed the technique
of model ensembling [24], wherein the predictions of several
different models are averaged to produce the overall prediction
of the ensemble. In our case, we trained five copies of each
model with different random initializations of the weights
in the fully connected layers, while the remaining weights
are initialized with the weights of the model pretrained on
BI-RADS classification. For each model, we report the results

from a single network (mean and standard deviation across
five random initializations) and from an ensemble.

A. Test Populations

In the experiments below, we evaluate our model on sev-
eral populations to test different hypotheses: (i) screening
population, including all exams from the test set without
subsampling; (ii) biopsied subpopulation, which is subset
of the screening population, only including exams from
the screening population containing breasts which underwent
a biopsy; (iii) reader study subpopulation, which consists
of the biopsied subpopulation and a subset of randomly
sampled exams from the screening population without any
findings.

B. Evaluation Metrics

We evaluated our models primarily in terms of AUC
(area under the ROC curve) for malignant/not malignant and
benign/not benign classification tasks on the breast level. The
model and readers’ responses on the subset for the reader
study are evaluated in terms of AUC as well as precision-
recall AUC (PRAUC), which are commonly used metrics in
the evaluation of radiologists’ performance. ROC and PRAUC
capture different aspects of performance of a predictive model.
The ROC curve summarizes the trade-off between the true
positive rate and false positive rate for a model using different
probability thresholds. The precision-recall curve summarizes
the trade-off between the true positive rate (recall) and the
positive predictive value (precision) for a model using different
probability thresholds.

C. Screening Population

In this section we present the results on the screening
population, which approximates the distribution of patients
who undergo routine screening. Results across different model
variants are shown in Table III. Overall, all four model variants
achieve high and relatively similar AUCs. The ‘view-wise’
image-and-heatmaps ensemble, which is also architecturally
most similar to the BI-RADS model used in the pretraining
stage, performs the best in predicting malignant/not malignant,
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attaining an AUC of 0.895 on the screening population and
0.850 on the biopsied population. However, some of the
other model variants do outperform the ‘view-wise’ ensem-
ble for benign/not-benign prediction. Among the image-only
models, the four model variants perform roughly compara-
bly, though still consistently underperforming the image-and-
heatmaps models. The image-and-heatmaps models improve
more strongly in malignant/not malignant classification than
benign/not benign classification. We also find that ensembling
is beneficial across all models, leading to a small but consistent
increase in AUC.

Constructing an ensemble of the four model variants for
the image-and-heatmaps model, with five randomly initial-
ized models per variant, results in an AUC of 0.778 on
benign/not benign prediction, and 0.899 on malignant/not
malignant prediction on the screening population. Although
this performance is superior to any individual model variant,
running such a large ensemble of 20 separate models would
be prohibitively expensive in practice.

The discrepancy in performance of our models between the
malignant/not malignant the benign/not benign tasks can be
largely explained by the fact that a larger fraction of benign
findings than malignant findings are mammographically-occult
(Table I). Additionally, there can be noise in the benign/not
benign labels associated with radiologists’ confidence in their
diagnoses. For the same exam, one radiologist might discard
a finding as obviously not malignant without requesting a
biopsy, while another radiologist might be more conservative
and ask for a biopsy.

Using the validation set, we found that the ‘view-wise’
image-and-heatmaps model outperforms all other variants in
terms of the average of AUCs for malignant/not malignant and
benign/not benign prediction tasks. Unless otherwise specified,
for both image-only and image-and-heatmaps model, we are
referring to results based on the ‘view-wise’ model in the
following sections.

D. Biopsied Subpopulation

We show the results of our models evaluated only on the
biopsied subpopulation, in the right half of Table III. Within
our test set, this corresponds to 401 breasts: 339 with benign
findings, 45 with malignant findings, and 17 with both. This
subpopulation that underwent biopsy with at least one imaging
finding differs markedly from the overall screening population,
which consists of largely healthy individuals undergoing rou-
tine annual screening without recall for additional imaging or
biopsy. Compared to the results on the screening population,
AUCs on the biopsied population are markedly lower across
all the model variants.

On the biopsied subpopulation, we observed a consistent
difference between the performance of image-only and image-
and-heatmaps models. The ensemble of image-and-heatmaps
models performs best on both malignant/not malignant classi-
fication, attaining an AUC of 0.850, and on benign/not benign
classification, attaining an AUC of 0.696. The markedly lower
AUCs attained for the biopsied subpopulation, in comparison
to the screening population, can be explained by the fact that

exams that require a recall for diagnostic imaging and that
subsequently need a biopsy are more challenging for both
radiologists and our model.6

E. Importance of Pretraining on BI-RADS Classification

In this section, we evaluate the benefit of the BI-RADS
pretraining by comparing the performance of our models to
cancer classification models trained without using weights
from a pretrained BI-RADS model. Specifically, we train a
set of cancer classification models by starting from entirely
randomly initialized model weights.

The results are shown in Table III (marked with *). In every
case, we see an improvement in performance from using
weights of a model pretrained on BI-RAD classification, com-
pared to randomly initializing the model weights and training
from scratch. The improvement in performance from using
pretrained weights tends to be larger for the image-only model
compared to image-and-heatmaps models. We hypothesize
that this is because the heatmaps already contain significant
information pertaining to cancer classification, and hence the
model can likely more quickly learn to make use of the
heatmaps for cancer classification. In contrast, the image-only
models rely entirely on the ResNets to effectively encode
visual information for cancer classification, and therefore using
the weights of a model pretrained for BI-RADS classification
contributes significantly to the model performance.

VI. READER STUDY

To compare the performance of our image-and-heatmaps
ensemble (hereafter referred to as the model) to human
radiologists, we performed a reader study with 14 readers—
12 attending radiologists at various levels of experience
(between 2 and 25 years), a resident and a medical student—
each reading 740 exams from the test set (1,480 breasts):
368 exams randomly selected from the biopsied subpopulation
and 372 exams randomly selected from exams not matched
with any biopsy. Exams were shuffled before being given
to the readers. Readers were asked to provide a probability
estimate of malignancy on a 0%-100% scale for each breast.
As some breasts contain multiple suspicious findings, readers
were asked to give their assessment of the most suspicious
finding.

We used the first 20 exams as a practice set to familiar-
ize readers with the format of the reader study–these were
excluded from the analysis.7 On the remaining 720 exams,
we evaluated the model’s and readers’ performance on malig-
nancy classification. Among the 1,440 breasts, there are

6More precisely, this difference in AUC can be explained by the fact that
while adding or subtracting negative examples to the test population does not
change the true positive rate, it alters the false positive rate. False positive
rate is computed as a ratio of false positive and negative. Therefore, when
adding easy negative examples to the test set, the number of false positives
will be growing slower than the number of all negatives, which will lead to
an increase in AUC. On the other hand, removing easy negative examples
will have a reverse effect and the AUC will be lower.

7The readers were shown the images and asked to give their assessment.
We confirmed the correctness of the format in which they returned their
answers but we did not provide them with feedback on the accuracy of their
predictions.
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Fig. 8. ROC curves [(a), (b), and (e)] and Precision-Recall curves
[(c), (d), and (f)] on the subset of the test set used for the reader
study. (a) and (c) curves for all 14 readers. Their average performance
are highlighted in blue. (b) and (d) curves for hybrid of the image-and-
heatmaps ensemble with each single reader. Curve highlighted in blue
indicates the average performance of all hybrids. (e) and (f) comparison
among the image-and-heatmaps ensemble, average reader and average
hybrid.

62 breasts labeled as malignant and 356 breasts labeled
as benign. In the breasts labeled as malignant, there are
21 masses, 26 calcifications, 12 asymmetries and 4 archi-
tectural distortions.89 In the breasts labeled as benign, the
corresponding numbers of imaging findings are: 87, 102,
36 and 6.

Our model achieved an AUC of 0.876 and PRAUC of 0.318.
AUCs achieved by individual readers varied from 0.705 to
0.860 (mean: 0.778, std: 0.0435). PRAUCs for readers varied

8Masses are defined as 3-dimensional space occupying lesion with com-
pletely or partially convex-outward borders. Calcifications are tiny specks
of calcific deposits. An asymmetry is defined as a unilateral deposit of
fibroglandular tissue that does not meet the definition of mass, i.e., it is an area
of the fibroglandular tissue that is not seen on the other breast. Architectural
distortion refers to a disruption of the normal random pattern of fibroglandular
tissue with no definite mass visible.

9As one breast had two types of findings, the numbers add up to 63, not 62.

Fig. 9. AUC (left) and PRAUC (right) as a function of λ ∈ [0, 1) for
hybrids between each reader and our image-and-heatmaps ensemble.
Each hybrid achieves the highest AUC/PRAUC for a different λ (marked
with ♦).

from 0.244 to 0.453 (mean: 0.364, std: 0.0496). Individual
ROCs and precision-recall curves, along with their averages
are shown in Fig. 8(a) and Fig. 8(c).

We also evaluated the accuracy of a human-machine hybrid,
whose predictions are a linear combination of predictions of
a radiologist and of the model–that is,

ŷhybrid = λŷradiologist + (1 − λ)ŷmodel.

For λ = 0.510 (see Fig. 9 for the results for λ ∈ [0, 1)),
hybrids between each reader and the model achieved an
average AUC of 0.891 (std: 0.0109) and an average PRAUC
of 0.431 (std: 0.0332) (cf. Fig. 8(b), Fig. 8(d)). These results
suggest our model can be used as a tool to assist radiologists
in reading breast cancer screening exams and that it captured
different aspects of the task compared to experienced breast
radiologists. A qualitative analysis comparing predictions
made by our network and by the radiologists for specific exams
can be found in Section I-G-1 in the Supplementary Material.

A. Visualization of the Representation Learned by the
Classifier

Additionally, we examined how the network represents the
exams internally by visualizing the hidden representations
learned by the best single image-and-heatmaps model, for
exams in reader study subpopulation. We visualize two sets of
activations: concatenated activations from the last layer of each
of the four image-specific columns, and concatenated activa-
tions from the first fully connected layer in both CC and MLO
model branches. Both sets of activations have 1,024 dimen-
sions in total. We embed them into a two-dimensional space
using UMAP [25] with the Euclidean distance.

Fig. 10 shows the embedded points. Color and size of
each point reflect the same information: the warmer and
larger the point is, the higher the readers’ mean prediction
of malignancy is. A score for each exam is computed as an
average over predictions for the two breasts. We observe that

10We do not have a way to tune λ to individual readers, hence we chose
λ = 0.5 as the most natural way of aggregating two sets of predictions when
not having prior knowledge of their quality. As Fig. 9 shows, an optimal λ
varies a lot depending on the reader. The stronger the reader’s performance
the smaller the optimal weight on the model. Notably though all readers can
be improved by averaging their predictions with the model for both metrics.
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Fig. 10. Two-dimensional UMAP projection of the activations computed
by the network for the exams in the reader study. We visualize two sets
of activations: (left) concatenated activations from the last layer of each
of the four image-specific columns, and (right) concatenated activations
from the first fully connected layer in both CC and MLO model branches.
Each point represents one exam. Color and size of each point reflect
the same information: probability of malignancy predicted by the readers
(averaged over the two breasts and the 14 readers).

exams classified as more likely to be malignant according to
the readers are close to each other for both sets of activations.
The fact that previously unseen exams with malignancies were
found by the network to be similar further corroborates that
our model exhibits strong generalization capabilities.

VII. RELATED WORK

Prior works approach the task of breast cancer screening
exam classification in two paradigms. In one paradigm, only
exam-level, breast-level or image-level labels are available.
A CNN is first applied to each of the four standard views and
the resulting feature vectors are combined to produce a final
prediction [14]. This workflow can be further integrated with
multi-task learning where radiological assessments, such as
breast density, can be incorporated to model the confidence of
the classification [26]. Other works formulate the breast cancer
exam classification task as weakly supervised localization and
produce a class activation map that highlights the locations
of suspicious lesions [27]. Such formulations can be paired
with multiple-instance learning where each spatial location is
treated as a single instance and associated with a score that is
correlated with the existence of a malignant finding [28].

In the second paradigm, pixel-level labels that indicate the
location of benign or malignant findings are also provided
to the classifier during training. The pixel-level labels enable
training models derived from the R-CNN architecture [20] or
models that divide the mammograms into smaller patches and
train patch-level classifiers using the location of malignant
findings [19], [29]–[32]. Some of these works directly aggre-
gate outputs from the patch-level classifier to form an image-
level prediction. A major limitation of such architectures is
that information outside the annotated regions of interest will
be neglected. Other works apply the patch-level classifier as
a first level of feature extraction on top of which more layers
are stacked and the entire model is then optimized jointly.
A downside of this kind of architecture is the requirement for
the whole model to fit in GPU memory for training, which
limits the size of the minibatch used (usually to one), depth of
the patch-level model and how densely the patch-level model
is applied. Our work is most similar to the latter type of

models utilizing pixel-level labels, however, our strategy uses
a patch-level classifier for producing heatmaps as additional
input channels to the breast-level classifier. While we forgo
the ability to train the whole model end-to-end, the patch-
level classifier can be significantly more powerful and can be
densely applied across the original image. As a result, our
model has the ability to learn both local features across the
entire image as well as macroscopic features such as symmetry
between breasts. For a more comprehensive review of prior
work, refer to one of the recent reviews [33], [34].

A variety of results in terms of AUC for prediction of
malignancy have been reported. The most comparable to our
work are: [28] (0.86), [20] (0.95), [35] (0.81), [27] (0.91), [36]
(0.84) and [37] (0.89). Unfortunately, although these results
can serve as a rough estimate of model quality, comparing
different methods based on these numbers would be mislead-
ing. Some authors do not discuss the design of their models
[35]–[37], some evaluate their models on very small public
datasets, InBreast [38] or DDSM [39], which are insufficient
for a meaningful evaluation, while others used private datasets
with populations of different distributions (on a spectrum
between screening population and biopsied subpopulation),
different quality of imaging equipment and even differently
defined labels. By making the code and the weights of our
model public, we seek to enable more direct comparisons to
our work.

VIII. DISCUSSION AND CONCLUSIONS

By leveraging a large training set with breast-level and
pixel-level labels, we built a neural network which can accu-
rately classify breast cancer screening exams. We attribute
this success to the significant amount of computation encap-
sulated in the patch-level model, which was densely applied
to the input images to form heatmaps as additional input
channels to a breast-level model. It would be impossible to
train this model in a completely end-to-end fashion with cur-
rently available hardware. Although our results are promising,
we acknowledge that the test set used in our experiments
is relatively small and our results require further clinical
validation. We also acknowledge that although our network’s
performance is stronger than that of the radiologists’ on the
specific task in our reader study, this is not exactly the task that
radiologists perform. Typically, screening mammography is
only the first step in a diagnostic pipeline, with the radiologist
making a final determination and decision to biopsy only
after recall for additional diagnostic mammogram images and
possible ultrasound. However, in our study, a hybrid model
including both a neural network and expert radiologists out-
performed either individually, suggesting that the use of such
a model could improve radiologist sensitivity for breast cancer
detection.

On the other hand, the design of our model is relatively
simple. More sophisticated and accurate models are possible.
Furthermore, the task we considered in this work, predicting
whether the patient had a visible cancer at the time of the
screening mammography exam, is the simplest possible among
many tasks of interest. In addition to testing the utility of
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this model in real-time reading of screening mammograms,
a clear next step would be predicting the development of
breast cancer in the future–before it is even visible to a trained
human eye.
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