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Model Comparison Metrics Require Adaptive
Correction If Parameters Are Discretized:

Proof-of-Concept Applied to Transient
Signals in Dynamic PET

Heather Liu and Evan D. Morris

Abstract— Linear parametric neurotransmitter PET
(lp-ntPET) is a novel kinetic model that estimates the
temporal characteristics of a transient neurotransmitter
component in PET data. To preserve computational
simplicity in estimation, the parameters of the nonlinear
term that describe this transient signal are discretized,
and only a limited set of values for each parameter
are allowed. Thus, linear estimation can be performed.
Linear estimation is implemented using predefined basis
functions that incorporate the discretized parameters.
The implementation of the model using discretized
parameters poses unique challenges for significance
testing. Significance testing employs model comparison
metrics to determine the significance of the improvement
of the fit accomplished by including a basis function,
i.e. it determines the presence of a transient signal in
the PET data. A false positive occurs when the bases
overfit data that do not contain a transient component.
The number of parameters in a model, p, is necessary to
determine the degrees of freedom in the model. In turn,
p is crucial for the calculation of model selection metrics
and controlling the false positive rate (FPR). In this work,
we first explore the effect of parameter discretization on
FPR by fitting simulated null data with varying numbers of
bases. We demonstrate the dependence of FPR on number
of bases. Then, we propose a correction to the number of
parameters in the model, peff, which adapts to the number
of bases used. Implementing model selection with peff

maintains a stable FPR independent of number of bases.
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I. INTRODUCTION

POSITRON emission tomography (PET) makes it possible
to image molecular targets with high specificity. Kinetic

models are necessary to quantify physiological properties of
the target and to describe tracer-target dynamics. The linear-
parametric neurotransmitter model (lp-ntPET) estimates the
timing of transient neurotransmitter (NT) release occurring
within a single scan [1]–[7]. The model has been applied
successfully to characterize the dynamics of smoking-induced
dopamine (DA) release [8], [9] as well as mu-opioid recep-
tor occupancy after naloxone administration [10]. Various
efforts have been made to refine the model’s utility, such
as development of nonparametric algebraic methods [11] and
incorporation into direct reconstruction of PET data [12].

lp-ntPET is formulated as the sum of two components:
1) the tracer component, which quantifies the steady-state
properties of the system, and 2) the NT component, which
characterizes a transient NT signal that competes with the
tracer. lp-ntPET is the linearized version of the ntPET
model [5]. Because of its linear form, lp-ntPET can be used
to estimate parameters that describe the tracer and NT compo-
nents on the voxel level with high computational efficiency—
thousands of voxels can be fitted, in just minutes. To imple-
ment linear estimation, parameters in the NT component that
describe the timing of the transient signal are discretized.
A limited set of plausible timing parameter values for these
discretized timing parameters are defined before estimation.
Each discrete combination of possible timing parameters forms
one basis function. All combinations together form a library
of ‘bases’ that represents all candidate timing profiles of the
transient signal. Linear fitting for the rest of the parameters in
the model is performed for each of the bases. The combination
of linear parameters and basis function that produces the best
fit is retained as the set of optimal parameters.

lp-ntPET (the “full model”) is susceptible to overfit-
ting and false positive detection of a transient NT signal.
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Thus, significance testing is essential to control the false
positive rate (FPR). Without the NT component, lp-ntPET
is identical to the MRTM model (hence, the “restricted
model”) [13]. Model comparison metrics can be used to
evaluate the significance of improvement in the fit by the
full model over the restricted model. In essence, these metrics
adjudicate the need for including the basis functions during
fitting, which in turn indicates the presence of a true positive
transient in the PET signal.

Previous work by our group has characterized the perfor-
mance of different model comparison metrics for comparing
the full model to the restricted model [4], [14]. However,
the effect of parameter discretization on model comparison
and FPR has not yet been explored. Model comparison metrics
(and statistical tests of models, in general) expect precise
knowledge of the number of parameters in the full model,
pfull. However, a limited (discretized) range of values for the
timing parameters cannot fully span their respective parameter
spaces. Consequently, those parameters contribute only frac-
tional degrees of freedom to the model. In order to properly
implement model selection, we propose that it is necessary to
determine the “effective” number of parameters in a model.
We expect that the effective number of parameters in the
full model, peff

full, reflects the fractional degrees of freedom
contributed by the timing parameters such that peff

full < pfull.
We hypothesize that peff

full depends on the number of bases
provided for fitting; the greater the number of distinct bases,
the more of parameter space is covered, and the greater the
apparent degrees of freedom in the full model. Implementing
model comparison with peff

full should alleviate the dependence
of FPR on the size of the basis library.

To address our hypothesis, we use simulations of null PET
data to demonstrate the dependence of FPR on the number
of bases. We then use the demonstrated relationship between
number of bases and FPR to determine pef f

f ull , the correction
to the number of parameters in the full model for a partic-
ular number of bases. This correction adapts the number of
parameters in the full model to achieve a uniform FPR during
model selection independent of number of bases. We evaluate
the ability of pe f f

f ull to remove the dependence of FPR on
number of bases in dynamic 3D and 4D phantom data. Finally,
we assess the performance of pef f

f ull in human data from null
[11C]Raclopride scans, and demonstrate the maintenance of a
stable FPR in real data.

II. THEORY

A. The lp-ntPET Model

lp-ntPET (1a), the “full model”, is a multilinear compart-
mental model containing a time-varying term that describes a
transient NT signal (1b). The model is composed of a tracer
component and a NT component. The NT component charac-
terizes the effect of a transient time-varying NT signal with γ ,
the peak amplitude, and timing parameters: tD , the signal start
time relative to injection, tP , the peak time relative to injection,
and α, the decay rate. These timing parameters are discretized

in our linear implementation. u(t) is the unit step function.

CT (t) = R1CR (t) + k2

t∫
0

CR (u) du

−k2a

t∫
0

CT (u) du − γ

t∫
0

CT (u) hi (u)du (1a)

where,

hi (t)=
(

t−tD

tP −tD

)α

ex p

(
α

(
1 − t−tD

tP − tD

))
u (t − tD) (1b)

The tracer component is composed of the three time-
invariant parameters representing kinetic constants describing
the tracer. This component is identical to the MRTM [13] (2),
the “restricted model”.

CT (t) = R1CR (t) + k2

t∫
0

CR (u) du − k2a

t∫
0

CT (u) du (2)

CT and CR are the concentrations of tracer in the target and
reference compartments, respectively. The target compartment
contains the NT signal. The reference compartment is used as
a proxy for the input function of tracer introduced into the
system. R1 is the ratio of tracer delivery to the target and
reference compartments; k2 is the efflux rate related to the
free diffusion of tracer ; k2a is the efflux rate that incorporates
the effects of specific binding of the tracer to the target.

In the basis function implementation of the full model,
the NT timing parameters are restricted to a predetermined set
of discrete values. All possible combinations of predetermined
tD, tP , and α values form a unique library of bases that may
vary in both number and timing characteristics. Each basis
function is generated by (1b) and then incorporated into (1a)
to produce a fit and resultant sum of squared errors (SSE).
The combination of the basis function and linear parameters
that produces the lowest SSE is retained as the final set of
estimated parameters.

B. Controlling False Positives With Model
Comparison Metrics

Model selection metrics evaluate the significance of the
improvement in fit that is achieved by including additional
parameters in a model. In this case, the metrics evaluate
the advantage given by including the NT component in (1a).
When used to fit data without an NT signal (null data), basis
functions are, by definition, extraneous and any improvement
in fit given by the NT component is therefore overfitting.
A false positive is defined in this context as a fit to null
data for which the full model is erroneously selected over the
restricted model. We examined the behavior of three common
model selection metrics in determining false positives: the
F-statistic (3), the corrected Akaike Information Criterion
(AICc) (4) [15], and the Bayesian Information Criterion (BIC)
(5) [16].

F = (SSEres − SSE f ull)/
(

p f ull − pres
)

(
SSE f ull

)
/
(
n − p f ull

) (3)
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AICc = 2 p + n ∗ ln

(
SSE

n

)
+ 2 p2 + 2 p

n − p − 1
(4a)

We define:

�AICc = AICc f ull − AICcres (4b)

B IC = p ∗ ln (n) + n ∗ ln

(
SSE

n

)
(5a)

We define:

�B IC = B IC f ull − B ICres (5b)

Subscripts “full” and “res” indicate the full and restricted
models, respectively. SSE is the sum of squared errors from
the fit; p is the number of parameters in the model; n is the
number of data points being fitted, i.e. the number of frames
per scan.

The criteria for selecting the full model over the restricted
model are as follows: 1) the F-statistic must surpass the
Fcrit ical threshold at the 5% significance level (for the typical
threshold of p = 0.05). The Fcrit ical threshold is determined by
p f ull − pres degrees of freedom in the numerator and n− p f ull

degrees of freedom in the denominator. 2) �AICc must be
less than zero. 3) �B IC must be less than zero.

C. False Positive Rate and “Effective” Number
of Parameters

The false positive rate (FPR) is the fraction of the total
number of null data sets, k, for which the full model is
determined to be superior by a given metric. FPR is defined
for each model comparison metric, respectively, as:

F P RF =
∑k

i=1

[
Fi > Fcrit,0.95

]
k

(6)

F P RAI Cc =
∑k

i=1 [�AICci < 0]

k
(7)

F P RB I C =
∑k

i=1 [�B ICi < 0]

k
(8)

Traditionally, all parameters implied within the right-hand-
sides of (6)-(8) are assumed to be known. According to
our hypothesis however, p f ull should actually be a variable
that increases with greater coverage of parameter space, i.e.,
inclusion of more distinct bases. If we stipulate a constant FPR
on the left-hand-sides of (6)-(8) and explicitly solve for p f ull

in each case, we obtain the “effective” number of parameters
for a specific implementation of the full model. We will
denote this unknown variable as pef f

f ull . Put simply, the known
and unknown variables are switched between the calculations
of FPR and pef f

f ull . pef f
f ull can then be determined numeri-

cally or analytically. pef f
f ull is essentially a modified p f ull that

recalibrates the distribution of each model comparison metric
such that a desired FPR of null instances surpasses the critical
threshold (Fcrit, for the F-statistic; 0, for �AICc, and �B IC).
We will refer to F,�AICc, and �B IC calculated with pef f

f ull
in (3)-(5), as Fef f ,�AICcef f , and �B ICef f , respectively.
These adapted model selection metrics account for the number
of bases used during implementation of the full model.

We expect pef f
f ull to lie between 4 and 7 because, of the 7

parameters in the full model, {R1, k2, k2a,γ } are continuous
and {td , tp,α} are discretized. The 4 continuous parame-
ters span their parameter spaces because they are explicitly
calculated. Thus, notwithstanding correlation, they contribute
4 full degrees of freedom to the model. The 3 discretized
parameters, contained within the basis functions, cannot span
their parameter spaces and therefore contribute only fractional
degrees of freedom. Taken together, the 3 discretized parame-
ters contribute up to, but less than, 3 additional degrees of
freedom to the model.

III. METHODS

A. Simulations of Ideal Null Data

Noiseless striatal time-activity curves (TACs) were sim-
ulated using the simplified reference tissue model (SRTM)
[17] to represent [11C]Raclopride uptake in the striatum and
cerebellum. For the striatum, SRTM parameters were set to:
R1 = 1, k2 = 0.42 min−1, BPND = 3. A noiseless cerebellum
curve was simulated using the 1-tissue compartment model
(K1 = 0.0918 mL/(min g), k2 = 0.4484 min−1). The arterial
input function was taken from a human scan (from Siemens
HRRT) following bolus injection of 20 mCi into a male subject
(85.45 kg). The noiseless cerebellum curve was taken as the
reference region input, CR(t). Simulated data were binned
into 1-minute frames for the first 10 minutes and 3-minute
frames for the remainder of the 90-minute scan. The noiseless
data simulated from SRTM were then fitted with MRTM (2).
This fitted MRTM curve was taken as the ground truth. Noisy
data were then generated by adding homoscedastic Gaussian
noise to the noiseless MRTM curve. Ten-thousand TACs were
generated at each of 11 noise levels, ranging from region-level
to voxel-level noise. These data were considered ideal because
the fit by the restricted model to the noiseless data contained
zero error. All simulations were implemented in MATLAB
software (R2017a, The MathWorks, Inc., Natick, MA) using
COMKAT modeling routines [18].

B. Simulations of Realistic Null Data in
3D and 4D Phantom

Realistic data were simulated using the ntPET model [5]
to resemble [11C]Raclopride uptake by both the striatum
and cerebellum. Kinetic parameters were adapted from
Pappata et al. [19], Morris et al. [20], and Fisher et al. [21].
Striatal parameters were set to: K1 = 0.07344 mL/(min g),
k2 = 0.35872 min−1, kon = 0.0173 mL/(pmol min), koff =
0.1363 min−1, Bmax = 100 pmol/mL, Fv = 0.04 mL/mL,
kDA

on = 0.25 mL/(pmol min) and kDA
off = 25 min−1(kD =

100 nM). Basal DA concentration was set to 100 nM, so that
50% of receptors would be occupied at baseline. Cerebel-
lum parameters were set to: K1 = 0.0918 mL/(min g),
k2 = 0.4484 min−1, and kDA

on = kDA
off = 0. The same arterial

input function described for the ideal data was used to simulate
realistic data. Ten-thousand striatal TACs with voxel-level
noise and a noiseless reference region curve were simulated.
Time bins were identical to those of the ideal simulations.
Noise was added to the striatal TACs. Noise adhered to a
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Fig. 1. 2D parametric images of 3D phantom. A) simulated gamma (DA release) values; γ ∼ N(200nM, 50 nM). B) simulated alpha values;
α ∼ U(0.05, 1). C) simulated tD values; tD ∼ U(35 min, 50 min). D) simulated tP values; tP ∼ U(3 min, 30 min).

Gaussian distribution with a zero mean and standard deviation
modeled according to:

εi = noise scale ∗
√

P ETi × e−λti

�ti
× eλti (9)

where PETi is the signal at a single time point, i , without
decay correction; λ is the decay constant for 11C; �ti is the
duration of the time frame; εi is the standard deviation of the
additive error in the TAC, which was scaled to voxel level
noise [22].

Of the 10,000 simulated striatal TACs, 9900 were created to
be null and 100 were created to be positive. The positive TACs
contained randomly generated time-varying components that
adhered to (1b). The timing parameters for the positive simula-
tions were chosen from the following probability density func-
tions: γ ∼ N(200 nM, 50 nM),tD ∼ U (35min, 50 min) ,tP ∼
U (3 min, 30 min) , α ∼ U(0.05, 1); U(min, max) specifies a
uniform distribution and N(mean, standard deviation) speci-
fies a normal distribution. Distributions for tD and tP were
discretized in 3 min intervals. The possible α values were 0.05,
0.1, 0.5, or 1. There were 240 total possible combinations of
the timing parameters.

For the 3D phantom (Fig. 1), 10,000 TACs were arranged
in a 100 pixel × 100 pixel square; the 100 TACs
containing a time-varying component were arranged in

a 10 pixel × 10 pixel positive region in the center. Null TACs
were assigned to the rest of the phantom.

For the 4D phantom (Fig. 2), 10,000 TACs were arranged
in a 50 voxel x 50 voxel × 4 voxel cuboid; the 100 TACs
containing a time-varying component were arranged in a
5 voxel × 5 voxel × 4 voxel positive region placed in
the center. Null TACs were assigned to the rest of the
phantom. This arrangement of voxels was chosen to evoke
the 4-slice precommissural striatum mask used in previous
studies [9], [23].

C. Fitting of Ideal Data

Each TAC was fitted with both the full and restricted
models. The full model was implemented with libraries of
varying numbers of bases, such that there were 10,000 unique
sets of fits for each unique combination of noise level and
number of bases. For illustration, Fig. 3 shows the libraries
with the fewest and most bases. Fitting was implemented using
a noiseless CT in the integral terms in order to eliminate
correlated noise between CT on the left-hand-side and

∫
CT on

the right-hand-side of (1a) and (2). Although this modification
cannot be applied to real data (CT will never be noiseless),
we sought to adhere to the assumptions of linearity as closely
as possible in this idealized scenario.
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Fig. 2. 3D parametric images of 4D phantom (shown in 4 slices). A) simulated gamma values; γ ∼ N (200 nM,50 nM). B) simulated alpha values;
α ∼ U(0.05, 1). C) simulated tD values; tD ∼ U(35 min,50 min). D) simulated tP values; tP ∼ U(3 min,30 min).

Fig. 3. Response function libraries for fitting with the full model.
Fitting libraries varied between A) 6 and B) 1470 bases. Libraries were
expanded at ∼3 minute resolution, i.e. new tD and tP values were
appended in 3 minute increments.

D. Determining FPR and peff,5% From Ideal Data

F,�AICc, and �B IC were calculated using p f ull = 7 for
all fits to the ideal data. First, (6)-(8) were applied to determine
FPR as a function of noise and number of bases. Then, FPR
was set to 0.05 and (6)-(8) were used to solve for pe f f,5%

f ull
1 as a

variable for every combination of noise and number of bases.
pef f,5%

f ull was determined numerically with the Quasi-Newton
algorithm built into MATLAB.

The standard deviations for all FPRs are expected to be
small because each FPR is calculated from a large number of
data sets (10,000). To confirm, 10 replicates of 10,000 data sets
stimulated at voxel noise were fitted with a library of 288 bases

1For clarity, we have augmented the superscript of pe f f
f ull and �AICce f f

with, ‘5%’ when referring to values specifically calculated for FPR = 5%

(a typical implementation of the model). The standard devia-
tion of the FPR is calculated from the 10 replicates.

E. Fitting of Realistic Phantom Data

All phantom TACs were fitted with both the full and
restricted models. The full model was implemented with
libraries of varying sizes between 9 bases and 240 bases.
Libraries varied in resolution of bases, but preserved the range
of α, tD, and tP (as shown in Fig. 4) Due to the random
nature of the simulated timing parameters, it was necessary to
preserve the minimum and maximum limits of each parameter
in all fitting libraries. This prevented the estimated value
of each timing parameter from being restricted to a range
that did not include the parameter’s true simulated value.
Fitting was implemented with a noisy CT in the integral terms
in (1a) and (2).

Fef f,5%,�AICcef f,5%, and �B ICef f,5% were calculated
for each pair of fits by the full and restricted models, using
pef f

f ull (instead of p f ull ), as determined for each library size

at voxel-level noise. These values for pef f,5%
f ull are indicated in

the blue contour of Fig. 6. Binary “significance masks” were
produced to indicate F > Fcrit ,�AICc < 0, or �B IC < 0
at each pixel or voxel.

pef f
f ull controls for false positives at the voxel level. Due to

the violations of linearity and imperfect adherence to model
assumptions in real data, FPR tends to be higher by as
much as an order of magnitude in real data compared with
ideal data. Thus, it is necessary to apply a second level of
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Fig. 4. Response function libraries used for fitting phantom data. As library size increases, the resolution of bases increases but their span is
preserved.

Fig. 5. False positive rate as a function of noise and number of bases for A) F-statistic, B) ΔAICc and C) ΔBIC. FPR is determined from 10,000 pairs
of fits with the full and restricted models, for each unique combination of noise and number of bases. FPR increases with number of bases and
appears to saturate. There is no overall trend with noise. All model comparison metrics demonstrate similar overall behavior, but BIC is considerably
more conservative.

control to FPR at the image level. Cluster-size thresholding is
conventionally used to eliminate false positives at the image
level [14]. Various cluster-size thresholds were applied to the
significance masks. Cluster-size thresholding is commonly-
used as a method to correct for multiple-comparisons in voxel-
wise analysis. A single cluster was defined using a blob
coloring algorithm based on six-neighborhood connectedness.
The FPR was assessed after applying different cluster-size
thresholds varying between 1 and 30 pixels/voxels.

F. Implementation in Human Baseline [11C]Raclopride
Data

To assess the utility of Fef f ,�AICcef f , and �B ICef f in
real PET data, all methods described above were applied to
dynamic voxel-wise data from two null [11C]Raclopride scans.
Both subjects were healthy adult male humans. Data from
subject 1 (82.1 kg) were acquired following a bolus injection
of 13.94 mCi. Data from subject 2 (85.5 kg) were acquired
following a bolus injection of 19.73 mCi. No pharmacological
or behavioral stimuli occurred before or during either scan.
The reference region curve was derived from the cerebellum
and was smoothed before fitting. A mask was used to identify
1004 voxels (voxel size: 2 mm × 2 mm × 2 mm, in MNI
space) located in the precomissural striatum [23].

IV. RESULTS

A. False Positive Rate and “Effective” Number of
Parameters in Ideal Simulations

FPR increased at a saturable rate with number of bases for
each model comparison metric (Fig. 5). There was no overall
dependence of FPR on noise, although some variation of FPR
between noise levels can be observed. The standard deviation
of the FPR determined for the combination of voxel noise and
288 bases was 1.48 ± 0.12%. All three model comparison met-
rics demonstrated similar overall behavior. However, �B IC
yielded consistently lower FPR than �AICc or F . FPR was
uniformly below 5% for all model comparison metrics when
calculated with p f ull = 7. For space considerations, only
results from �AICc will be shown for the remainder of
the Results section. The “effective” number of parameters,
pef f,5%

f ull , necessary to achieve a FPR of 5% is plotted versus
noise level and number of bases in Fig. 6, for �AICc. Results
for �B IC and F can be found in the Supplemental2. pef f,5%

f ull
increased at a saturable rate with number of bases for all
metrics. pef f,5%

f ull varied between 5-6.3, with no dependence
on noise.

2Supplementary materials are available in the supporting documents /mul-
timedia tab
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Fig. 6. Surface plot of “effective” number of parameters, peff,5%
full ,

as determined from ΔAICc. Each combination of number of bases and
noise contains the result from analysis of 10,000 pairs of fits. Approximate
voxel- and region-level noise are indicated with bolded contours.

Fig. 7. Select 2D parametric binary images for ΔAICceff < 0 in 3D
phantom for various fitting libraries and cluster-size thresholds. White
indicates a pixel for which the full model is determined to be superior to
the restricted model. The 10 pixel x 10 pixel positive region is visible in the
center of the phantom; the rest of the phantom is null. FPR decreases with
increased cluster-size threshold but remains stable across number of
bases. At low-resolution libraries (<100 bases), there is a slight inflation
of FPR.

B. Fitting of 3D and 4D Phantom Using peff
lp−ntPET

Fig. 7 shows a grid of sample significance masks for the 3D
phantom using �AICcef f,5% at different levels of cluster-size
thresholding for voxel-level noise. The background surround-
ing the center of the phantom became decreasingly noisy as
the cluster-size threshold was increased. Fig. 8 shows FPR for
the 3D and 4D phantoms, respectively, as a function of number
of bases and cluster-size threshold. For both the 3D and 4D
phantoms, FPR appears to have been preserved at a constant
level across different numbers of bases. FPR decreased with
increased cluster-size threshold. A slight inflation of false
positives was observed for low-resolution libraries (i.e., fewer
bases), compared to all other libraries. This inflation was
more prominent in the 4D phantom. In the 3D phantom
(Fig. 8A), a cluster-size threshold of 18 pixels eliminated all
false positives noncontiguous with the positive region. In the
4D phantom (Fig. 8B), a cluster-size threshold of 30 voxels
eliminated nearly all false positives noncontiguous with the
positive region.

TABLE I
FPR AS DETERMINED WITH ΔAICceff IN HUMAN DATA

C. Fitting of Human Baseline [11C] Raclopride Data

Application of �AICcef f,5% for significance testing on
human null PET data demonstrated stable FPR across basis
libraries of different sizes. Average FPR values (using both
subjects) are shown in Table I. Supplemental Table I shows
results calculated without the correction (p f ull = 7), for
comparison. In this analysis, we defined any voxel for which
�AICcef f,5% < 0 as a false positive. Without any cluster-
size thresholding, FPR was ∼15%. Fig. 9 visualizes the
binary significance images for �AICcef f,5% < 0 fitted with
30 bases and thresholded at a cluster-size of 9 voxels, in both
subjects. A 9-voxel cluster-size threshold gave an average
FPR of ∼5% for all fitting libraries. The spatial locations
of significant voxels differed between the subjects, suggesting
that the significant clusters are, indeed, false positives. All
significant voxels were eliminated at a cluster-size threshold
of 24 for both subjects. A slightly inflated FPR was produced
for libraries <60 bases.

V. DISCUSSION

We have demonstrated a dependence of FPR on the number
of bases used in the implementation of the full lp-ntPET
model. To alleviate this dependence, we developed a correction
to the number of parameters in the full model, p f ull , yielding a
new parameter defining the “effective” number of parameters,
pef f

f ull . pef f
f ull depends solely on the model and the number

of bases. By using pef f
f ull to calculate any standard model

comparison metric, the dependence of FPR on number of
bases can be eliminated. When applying pef f,5%

f ull to ideal data,
the corrected model comparison metrics yield a consistent FPR
of 5%.

A. FPR and peff
full versus Resolution of Basis Library

Intuitively, the greater the number o bases, the more densely
parameter space is covered by the discretized parameters.
Without adapting significance testing to properly reflect the
greater or lesser coverage of parameter space, the chance
of overfitting will be greater or lesser, accordingly. We have
demonstrated that this is true by showing that FPR increased
with number of bases if 7 parameters were stipulated in the
full model. In ideal simulated data, if p f ull = 7, FPR was
consistently found to be lower than the expected 5%. In other
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Fig. 8. False positive rate (determined with ΔAICceff) as a function of number of bases and cluster-size threshold in A) 3D phantom and B) 4D
phantom. FPR decreases with increased cluster-size threshold, but decreases more slowly in the 4D phantom, as indicated by the more gradual color
gradient moving upwards. FPR remains largely stable across number of bases, with a slight inflation in FPR at low-resolution libraries (<100 bases),
apparent in the 4D phantom.

Fig. 9. Binary images for ΔAICceff < 0 with a cluster-size threshold
of 9 voxels in null human PET scans. A) Data for subject 1 fitted with
30 bases. B) Data for subject 2 fitted with 30 bases. White indicates a
significant voxel. All 4 contiguous coronal slices of the precommissural
striatum are shown in AAL space. Voxel size is 2 mm × 2 mm × 2 mm.
FPR is ∼5% for both subjects. The two subjects show different spatial
pattern of significant voxels, indicating that activated clusters are false
positives.

words, the standard model comparison metrics, F , AICc, and
BIC, over-penalized the full model for number of parameters.
This indicates that, in fact, the full model behaved as if it
contained less than 7 parameters.

Our results confirm our hypothesis that the 3 discretized
parameters in the basis function implementation of the full lp-
ntPET model assert fractional degrees of freedom, and thus
4< pef f

f ull <7. The discretized parameters should not be treated
as full parameters during statistical testing because they do not
span their full parameter spaces. pef f

f ull adjusts the number of
parameters in the full model to reflect the number of bases.
As more bases are included, the resolution of the library
is increased, and pef f

f ull increases asymptotically towards full
apparent degrees of freedom. In practice, model parameters
are correlated and are not completely identifiable, so pef f

f ull
approaches a value less than 7.

B. Success of peff,5%
full in Phantom and Human Data

Realistic data do not perfectly adhere to all assumptions
of linearized reference tissue models [24]. The assumption of

uncorrelated noise between the dependent variables and the
independent variable, CT , is not strictly true. Thus, an FPR
that exceeds 5% was expected. Cluster-size thresholding is
necessary as a secondary method to control for false positives
at the image level. Previous work showed that a cluster-
size threshold of 15 voxels was necessary to achieve a 1%
cluster-wise FPR (one in 100 activated clusters was a false
positive) [14]. Here, we chose to define false positives on
the voxel level. A cluster-size threshold of ∼9 voxels was
sufficient to achieve a 5% voxel-level FPR in a 4D phantom of
mostly null voxels. A threshold of 15-18 voxels was necessary
to achieve a 1% voxel-level FPR. Comparable cluster-size
thresholds did, in fact, achieve similar FPRs in both the human
data and the 4D phantom data.

The relationship between decreased FPR and increased
cluster-size threshold was nearly identical between the 4D
phantom and human data, as seen in the Table I and Fig. 8B.
Both phantom and human data demonstrated slightly inflated
FPR when the number of bases is <100. This trend is contrary
to what was observed without the correction to p f ull (Fig. 5),
and suggests that pef f,5%

f ull overcompensated for low-resolution
libraries. Without cluster-size thresholding, the human data
had fewer false positives than the 4D phantom (15% vs. 21%).
This can be understood by recognizing that false positives,
calculated on the voxel level, were increased by the presence
of a true positive cluster in the phantom. This positive cluster
acted as a ‘seed’ for nearby false positive voxels, which
allowed them to survive cluster thresholding. In addition,
correlation between voxels was not introduced in the simulated
data. It is possible that the correlation between voxels in the
human data resulted in a lower FPR.

C. Limitations of the Simulations and the Model

1) FPR and Noise: Our initial investigation of bootstrapping
the data (data not shown) suggests the ripples seen in Fig. 5 are
an artifact of the limited number of simulated data sets. Note
that 10,000 simulated curves yields fewer than 500 samples
for which F >Fcrit, �AICc < 0, or �B IC < 0. Thus, these
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critical thresholds are essentially determined by less than 5%
of samples and are therefore not fully stable.

Theoretically, FPR should not depend on noise level. While
it may seem intuitive that increased noise should result in
higher FPR, the strength in using model comparison as a
method of determining false positives is that it is a “ratio
method”. As noise increases, the error in the fit increases
proportionally for both models. Thus, the ratio of the errors
does not change appreciably and the calculated FPR remains
fairly stable across noise levels. Note that at zero noise, all
model comparison metrics are undefined for null data due to
division by zero.

2) 4D Phantom Data vs. Human Data: There are some
notable differences between the simulated phantom data and
human data. In the 4D phantom, the location of the positive
cluster was known, and thus easily distinguished from false
positives. In the human data, all voxels determined to have
a significant time-varying signal were considered to be false
positives. Furthermore, noise and time-varying responses in
the phantom were generated randomly and independently for
each voxel. In real data, some noise correlation is expected as
a result of the reconstruction process. Correlation of the timing
and amplitude of the biological signal is also expected between
neighboring voxels. Both noise and biological correlation
would increase the similarity of the TACs in neighboring
voxels. As a result, the cluster-size distribution of positive
voxels could be skewed.

3) Other Factors That May Affect Selectivity: This study
explores solely the effect of number of bases on the selectivity
of the model. However, other factors, such as time-frame
binning, tracer kinetic characteristics, and the selection of the
bases themselves, may also affect FPR.

4) Varying Sensitivity of Discrete Parameters: The discretized
parameters, tD, tP , and α, have differential effects on the
shape of the basis function. Thus, both the number of bases
and which bases are included in the library will affect the
fit to the data by the full model. Not all bases are equally
able to describe the noise that occurs in PET data. When
varying the size of the libraries, we sought to be as equi-
table as possible, adding and removing the same number of
values for each parameter. However, while tD and tP are
discretized at the frame resolution, α is continuous and does
not affect the timing of the response function in a linear
manner. Thus, the incrementing of α values could not be
carefully controlled. As a result, it is difficult to eliminate
the effect of parameter sensitivity in the incrementing of
bases.

Nonetheless, our primary goal was to explore how the
size of a discretized parameter space affects the apparent
degrees of freedom of the model, i.e. its “effective” number
of parameters. The selection of bases is a topic for a separate
study that explores the sensitivity of the model to different
temporal patterns of true positives.

5) Selectivity vs. Sensitivity: This work does not address the
sensitivity of the full model. FPR relates only to the selectivity
of the model. However, there is an indirect relationship.
By correcting p f ull , we can increase the resolution of the fit-
ting library without inflating FPR. This could offer an indirect

benefit to sensitivity because higher resolution libraries should
have better ability to detect true positive signals of varying and
unknown temporal profiles.

6) Broader Implications: Our observations regarding lp-
ntPET and its basis function libraries could have broad impli-
cations that extend to other models containing parameters that
do not fully span their parameter spaces. SRTM is another
example of a kinetic model that is implemented with basis
functions for computational efficiency [25]. SRTM is often
evaluated against other candidate models for characterization
of novel tracers usingmodel comparison metrics [26-29]. Our
findings suggest that the number of parameters stipulated for
SRTM during model comparison may require a correction
based on the number of basis functions used. Spectral analysis,
as applied to PET data [30], is also implemented using a
limited number of exponential basis functions [31, 32]. While
model comparison may not directly apply to spectral analysis,
we speculate that the number of basis functions used affects
the apparent model degrees of freedom during parameter esti-
mation. Degrees of freedom are not only implicated in model
comparison, but in statistical evaluation of linear models, in
general.

Beyond our application of interest, we conjecture that any
form of constrained optimization may impact a model’s appar-
ent degrees of freedom. Non-negative fitting is commonly
used to estimate parameters that, by their nature, can only
be positive. Other boundaries and constraints placed on an
estimated parameter may also limit the parameter’s effective
degrees of freedom.

7) Practical Application to Other Data Sets: The method for
determining pef f

f ull presented in this work could be applied
to any other tracer and scanner for estimating a transient
signal that affects the tracer uptake, which cannot be modeled
adequately with time-invariant parameters alone:

1) Use the known tracer kinetic constants, typical measure-
ment variance for the scanner, and an arterial input function
for the tracer to generate a large set of “null” data using the
appropriate kinetic model and the noise model defined in (9).
Null data should be simulated without any signal described by
the basis functions.

2) Fit null data with the restricted model and the full
model, using basis libraries of varying sizes. When increas-
ing the size of the library, add values for each parameter
within a given range, such that for each successive library,
the density of sampling increases but the span of the para-
meter space does not. Add the same number of values to
each successive library and space values for each parameter
spaced as evenly as possible. Compute the distribution of
the desired model comparison metric from the fits to both
models.

3) Define the desired FPR on the left-hand-side of (6)-(8).
Incorporate SSE f ull , SSEres , pres , n from each pair of fits
into the right-hand-side of (6)-(8). Ideally, the FPR would
be selected considering prior information about the model’s
receiver operating characteristic. The FPR of 5% for this work
was selected arbitrarily based on the conventional statistical
threshold of p = 0.05.

4) Solve for pef f
f ull numerically, for every basis library.
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VI. CONCLUSION

We have introduced the concept of “effective” number of
parameters for models that estimate variables from a discrete
set of values. We showed that a discretized parameter con-
tributes only a fractional degree of freedom to the model.
The discretized parameter tends towards a full parameter as
it is allowed to take on more values. The model comparison
process is necessary for controlling false positive results
that erroneously indicate the presence of a transient time-
varying signal. However, the dependence of FPR on number
of bases means that the selectivity of lp-ntPET depends on
its implementation; selectivity should depend solely on the
noise in the data and the model used. We have developed
adaptive model comparison metrics that incorporate pe f f to
properly account for the coverage of parameter space by the
discretized parameters. Applying these adaptive metrics allows
for a potential increase in sensitivity without a concomitant
decrease in selectivity, as more bases are used.
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