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Abstract

Automatic Non-rigid Histological Image Registration (ANHIR) challenge was organized to 

compare the performance of image registration algorithms on several kinds of microscopy 

histology images in a fair and independent manner. We have assembled 8 datasets, containing 355 

images with 18 different stains, resulting in 481 image pairs to be registered. Registration accuracy 

was evaluated using manually placed landmarks. In total, 256 teams registered for the challenge, 

10 submitted the results, and 6 participated in the workshop. Here, we present the results of 7 well-

performing methods from the challenge together with 6 well-known existing methods. The best 

methods used coarse but robust initial alignment, followed by non-rigid registration, used 

multiresolution, and were carefully tuned for the data at hand. They outperformed off-the-shelf 

methods, mostly by being more robust. The best methods could successfully register over 98% of 

all landmarks and their mean landmark registration accuracy (TRE) was 0.44% of the image 

diagonal. The challenge remains open to submissions and all images are available for download.

Keywords

Image registration; Microscopy

I. Introduction

IMAGE registration is one of the key tasks in biomedical image analysis, aiming to find a 

geometrical transformation between two or more images, so that corresponding objects 

appear at the same position in both/all images. This research area has received a lot of 

attention over the last several decades and literally hundreds of different registration 

algorithms exist [1]-[8]. An unbiased comparison of the registration algorithms is essential 

to help users choose the most suitable method for a given task.

A. Goals

The goal of this study is to report the results of the Automatic Non-rigid Histological Image 

Registration challenge (ANHIR)1, at the IEEE International Symposium on Biomedical 

Imaging (ISBI) 2019. To the best of our knowledge, ANHIR was the first open comparison 

of image registration algorithms on microscopy images. Moreover, we describe the 

associated annotated dataset of histology images, which is freely available from the 

challenge website, and is one of very few microscopy image datasets suitable for testing 

registration algorithms.

B. Previous work on image registration evaluation

One of the earliest image registration comparisons was the Retrospective Image Registration 

Evaluation (RIRE) project [9], comparing rigid registration algorithms on computed 

1https://anhir.grand-challenge.org
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tomography (CT), magnetic resonance (MRI), and positron emission tomography (PET) 

human brain data using fiducial landmarks. Later studies added more methods [10], non-

linear transformations [11]-[13], and other organs, such as lung [14], or liver and prostate 

[15], as well as comparison on microscopy data [16]. Registration performance is usually 

measured using landmark distances [9], [13], [15]-[17] or segmentation overlap [11], [12], 

[18].

In some of the above mentioned studies, the comparison was done by the authors themselves 

by means of publicly available implementations [13], which is a good strategy to find the 

best out-of-the-box performing approach. In other cases [17], authors (re)implemented the 

methods themselves, eliminating the differences in the quality of the implementation.

C. Challenges

It can be argued that the authors of a method are the best equipped and motivated to 

implement, tune, and run their own methods. In a challenge, the organizers prepare the data 

and invite participants to apply their methods to provided data and submit the results, which 

are then evaluated by given criteria. It is widely believed that challenges have a very 

beneficial effect on the progress in a particular field by: (i) lowering the entry barrier by 

providing (usually large) annotated datasets, (ii) motivating participants to improve the 

performance of their methods, (iii) identifying the state-of-the-art approaches, and (iv) 

tracking the overall progress of the field.

In some of the previous image registration comparisons, only known authors of image 

registration methods were invited to participate. Other challenges were opened to all 

participants, including the following:

• The RIRE project [9] used masked fiducial points on MRI, CT and PET images. 

It is now fully open.

• The EMPIRE10 challenge [18] on pulmonary images.

• The recent CurlOUS challenge2 on the registration between presurgical MRI and 

intra-operative ultrasound.

• The MOCO challenge asking for motion correction of myocardial perfusion MRI 

[19].

• The Continous Registration Challenge3, which uses eight different datasets 

including lung 4D CT and MRI brain images differs in requiring participants to 

integrate their code to a common platform.

As far as we know, ANHIR, described here, is the only registration challenge using 

microscopy images.

2https://curious2019.grand-challenge.org
3https://continuousregistration.grand-challenge.org/
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D. Histology image registration

Microscopy images in histology need to be registered for a number of reasons [20], most 

frequently to create a 3D reconstruction from scanned 2D thin slices [21]-[29]. Other 

applications include distortion compensation [30], creating a high resolution mosaic from 

small 2D tiles [31], fusing information from differently stained slices [32]-[35] or even from 

different modalities, such as histology and MRI [36]. Registration can assist in segmenting 

unknown stains using known stains [37], or to combine gene expression maps from multiple 

specimens [38].

Histology image registration is challenging because of the following aspects: (i) large sizes 

of some images, e.g. 80k × 60k pixels for the whole slide images (WSI), (ii) repetitive 

texture, making it hard to find globally unique landmarks, (iii) sometimes large non-linear 

elastic deformation, occlusions and missing sections due to sample preparation, (iv) 

differences in appearance due to different staining or acquisition methods, and (v) 

differences in local structure between slices. Registration methods developed for other 

modalities might therefore not work optimally and need to be modified for microscopy 

images. Changes in appearance can be handled by color normalization [39] or deconvolution 

[40], focusing on the parts or stains common to both images [33], segmentation [41], [42] or 

probabilistic segmentation [43], or using multimodal similarity features such as structural 

probability maps [29]. While most algorithms are intensity-based, some use keypoint 

features [44] or edge features [45], and some combine the two approaches [22]. The very 

large image size is often handled simply by working on downscaled images but better 

precision can be obtained by dividing the images into smaller parts (tiles), registering them 

separately, and combining the results [31], [46]. The availability of a large number of 

consecutive slices can be used to improve robustness by enforcing consistency between 

different pairs of slices [22].

There is a relative paucity of microscopy image datasets suitable for image registration 

evaluation. The exception are datasets for testing cell tracking and cell nuclei registration in 

fluorescence microscopy [47], [48], which differs significantly from histological images 

considered here. Evaluation has been performed on other datasets, which are however not 

publicly available, such as a comparison of histology and block-face optical images [49], 

and a 3D alignment of ssTEM slices [50].

This work can be regarded as a continuation of an earlier image registration evaluation [16], 

[51], which is significantly expanded here in terms of the number of methods, number of 

images and image types, image size and resolution, and the quality of annotations.

II. ANHIR Challenge

The ANHIR challenge focused on comparing the accuracy, robustness, and speed of fully 

automatic non-linear registration methods on microscopy histology images. The images to 

be registered are large and differ in appearance due to different staining.
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A. Data

In total, we have assembled 8 datasets, please see Table I for an overview and Fig. 1 for 

examples. More details are available in Sections4 S.I and S.IV. The appearance differences 

due to staining are sometimes important (see Fig. S2). In each case, high-resolution (up to 

40× magnification) whole slide images were acquired. The images are organized in sets such 

that any two images within a set could be meaningfully registered, as they come from 

spatially close slices. Different stains are used for each image in a set and the local structure 

often differs, see Fig. S3. In total, we obtained 49 sets with 3 to 9 images per set, the average 

size was 5 slides per set. There are 355 images in total with 18 different stains5. We 

generated 481 image pairs for registration (each pair within each set but dropping symmetric 

pairs) and split them into 230 training and 251 testing pairs. Note that the lung lesions and 

lung lobes datasets were used in [16] and were therefore already completely public. We have 

therefore decided to treat these datasets as training only and not use them for the evaluation, 

except when explicitly mentioned.

Since the original images are very large, participants were suggested to register provided 

medium size images, chosen from a fixed set of scales so that their size is approximately 10k 

× 10k pixels. Most participants have themselves reduced the image size even further as part 

of the preprocessing. For convenience, we also provided small size images at 5% of the 

original size, around 2k × 2k pixels.

B. Landmarks

We have annotated significant structures in the images with landmarks spread over the tissue 

(see Figure 2 for an example). Each landmark position is known in all images from the same 

set. We have placed on the average 86 landmarks per image. There were 9 annotators. 

Annotating a set of images took around 2 hours on average, with 20 ~ 30% additional time 

for proofreading. In total, annotation and validation of the 355 images took about 250 hours. 

All images were annotated by at least two different people. The average distance between 

landmarks of the two annotators was 0.05% of the image diagonal (to be compared with the 

relative Target Registration Error, Section II-C). This corresponds to several pixels at the 

original resolution. Landmarks for some of the images were withheld by the organizers. 

Image pairs with landmarks for both images available to participants were used for training, 

while image pairs with landmarks for exactly one image known to the participants formed 

the set of testing pairs T. See Section S.II in the Supplementary material for details.

C. Evaluation measures

For each pair of images (i, j), we have determined the coordinates of corresponding 

landmarks xl
i, xl

j, where l ∈ Li, and Li is a set of landmarks, guaranteed to occur in both i and 

j. The participants were asked to submit the coordinates xl
j of landmark points in the 

coordinate system of image j corresponding to provided coordinates xl
i in the image i. We 

then define the relative Target Registration Error (rTRE) as the Euclidean distance between 

4All references beginning with ‘S’ refer to the Supplementary material.
5CD1a, CD31, CD4, CD68, CD8, Cc10, EBV, ER, HE, HER2, Ki67, MAS, PAS, PASM, PR, Pro-SPC, aSMA
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the submitted coordinates xl
j and the manually determined (ground truth) coordinates xl

j

(withheld from participants)

rTREl
ij =

xl
j − xl

j
2

dj
(1)

normalized by the length of the image diagonal dj. Figure 3 shows an example of successful 

and unsuccessful registrations.

Our main criterion to evaluate the registration algorithms is the average rank of median 
rTRE (ARMrTRE)

ARMrTRE(m) = mean
(i, j) ∈ T

rank
m ∈ ℳ

μi, j(m) (2)

where μi, j(m) = median
l ∈ Li

rTREl
i, j(m), (3)

T is the set of all test image pairs and ℳ is the set of all methods (a method corresponds to a 

single submission). In other words, we evaluate the rTRE (1) for all landmarks in an image 

and calculate the median of all rTRE values in an image. Aggregation by a median was 

chosen to eliminate outliers. We rank all methods m ∈ ℳ according to this median. Ranking 

was chosen to compensate for differences in difficulty between datasets and images, which 

may influence the scale of the rTRE. Finally, we average the ranks over all test image pairs 

T.

We also calculate other criteria aggregating the rTRE, namely average median rTRE 
(AMrTRE) and median of median rTRE (MMrTRE)

AMrTRE(m) = mean
(i, j) ∈ T

μi, j(m) (4)

MMrTRE(m) = median
(i, j) ∈ T

μi, j(m) (5)

and similarly the average maximum rTRE (AMxrTRE)

AMxrTRE(m) = mean
(i, j) ∈ T

max
l ∈ Li

rTREl
i, j(m) (6)

and average rank maximum rTRE (ARMxrTRE)

ARMxrTRE(m) = mean
(i, j) ∈ T

rank
m ∈ ℳ

max
l ∈ Li

rTREl
i, j(m) (7)
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To evaluate robustness, we compare individual rTREs for each landmark with the relative 

Initial Registration Error (rIRE) before registration

rIREl
ij =

xl
i − xl

j
2

dj
(8)

This is meaningful for our images, since the images i and j share the same or similar system 

of coordinates, i.e. xl
i is a reasonable initial approximation for xl

j. Let us call Ki,j ⊆ Li the set 

of successfully registered landmarks, i.e. those for which the registration error decreases, 

rTREl < rIREl. We define the robustness as the relative number of successfully registered 

landmarks,

Ri, j(m) = ∣ Ki, j ∣
∣ Li ∣

(9)

and then, the average robustness over all test image pairs is

R̄(m) = mean
(i, j) ∈ T

Ri, j(m) (10)

Finally, we asked the participants to report the registration times tij in minutes for each 

registration, including loading input images and writing the output files. We report the 

average registration time

t̄ (m) = mean
(i, j) ∈ T

tij(m) (11)

The average registration time should only be considered as indicative, because it has not 

been independently validated. The times are approximately normalized with respect to 

participant computer performance by running an identical calibration program provided by 

the organizers.

D. Pairwise method comparison

For each pair of methods m and m′ from ℳ, we determine if a method m is significantly 

better than method m′. More specifically, we compare the median rTRE μ (3) on all test 

image pairs (i, j) ∈ T. Our null hypothesis is that μi,j (m) ≥ μi,j(m′). Clearly, the two μ values 

are dependent and not necessarily normally distributed, while the test image pairs are 

considered i.i.d. Hence, we employ the one-sided Wilcoxon signed-rank test and evaluate the 

p-value under the normal assumptions, since the number of samples ∣ T ∣ = 251 is 

sufficiently large. For p < 0.01, we reject the null hypothesis and conclude that the method m 
indeed performs significantly better than method m′. The alternative would be permutation 

testing, as in [52], which is however much more computationally demanding.
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E. Organization

The challenge was accepted to ISBI 2019 in October 2018 and officially announced in 

December 2018, after a website was set up and an evaluation system prepared. The lung 

lesions, lung lobes, and mammary glands data [16] with 9 training sets (108 image pairs 

with all landmark coordinates available) was immediately made accessible to enable the 

participants to start developing. In February 2019, we released the remaining images, 

training landmarks (122 image pairs) and a subset of the test landmarks (251 image pairs), 

and opened the web-based submission and evaluation system. The remaining test landmarks 

were released in the middle of March. The submission system was closed on March 31, 

2019. Participants performed the registration on their own computers.

The challenge was widely advertised and totally open, anybody was free to participate. In 

total, 256 teams registered for the challenge and 10 submitted the results. For comparison, 

we also used two “internal submissions” corresponding to the bUnwarpJ and NiftyReg 

methods, see Section III. The teams were also asked to submit a description of their method. 

Seven teams complied and were invited to the workshop on April 11, during the ISBI 2019 

conference, and to participate in writing this article. Winners were announced at this 

workshop. One of the teams (TUB) was unable to travel to the workshop, so only 6 teams 

presented there. The results announced at the workshop are given in Table III (column 

‘rank’); the results shown here may be based on submissions updated later. Note also that the 

teams ranked 7, 9 and 11 chose not to provide a description of their methods.

The challenge remains open to submissions and all images, as well as landmarks for the 

training image pairs, are available for download. The testing landmarks are kept confidential.

III. Registration methods

Let us briefly describe the evaluated registration methods. See also Table II for an overview. 

The participants were instructed to use the same settings for all test image pairs. Note, that 

the method names used here may differ from the team names found on the ANHIR webpage.

UA: (U. Alberta)6 The images are rescaled to 1/40 of their size and converted to grayscale. 

A translation and rotation is estimated first, followed by a non-rigid registration using a 

moving mesh framework [54], which alternates gradient descent on densely represented 

deformation and correction steps imposing incompressibility. Both steps use a mutual-

information similarity criterion.

TUNI: (U. Tampere)7 The images are converted to grayscale and histogram equalized by 

Contrast Limited Adaptive Histogram Equalization (CLAHE) [55]. The registration is done 

by Elastic Stack Alignment (ESA) [56], which first finds a rigid transformation using 

Random Sample Consensus (RANSAC) from Scale-Invariant Feature Transform (SIFT) 

features. A non-linear registration follows using normalized correlation and virtual springs 

6N. Tahmasebi, M. Noga, K. Punithakumar
7M. Valkonen. K. Kartasalo, L. Latonen, P. Ruusuvuori
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to keep the transformation close to a rigid one. Good parameters for the ESA algorithm were 

found by a parallel grid search on a computational cluster based on [57].

CKVST: (Chengdu)8 The images are decomposed into channels by a stain deconvolution 

procedure [40] and only the hematoxylin channel is used. A rigid transformation (including 

scaling) is estimated first on downsampled images. The transformation is further refined by 

evaluating the similarity on a set of selected high resolution patches. Finally, a non-rigid 

registration represented by B-splines is found locally. The normalized cross correlation is 

used for both rigid and non-rigid registration, with gradient descent and limited-memory 

Broyden-Fletcher-Goldfard-Shanno (L-BFGS) optimizers, respectively.

MEVIS: (Fraunhofer)9 Normalized gradient field (NGF) similarity [58]-[60] of grayscale 

versions of the images is used in a three-step approach. First, centers of mass are aligned and 

a number of different rotations are tried. Second, an affine transformation is found by a 

Gauss-Newton method. Third, a dense, non-rigid transformation is found using curvature 

regularization and L-BFGS optimization. The method is accelerated by optimizing memory 

access and by precalculation of reduced-size images.

AGH: (AGH UST)10 The images are converted to grayscale, downsampled and histogram 

equalized (for some of the procedures). The key feature of the AGH method is to apply 

several different approaches and then automatically select the best result based on a 

similarity criterion. An initial similarity or rigid transformation was determined by 

RANSAC from feature points detected by SIFT, ORB, or SURF. If it failed, the initial 

transformation was found by aligning binary tissue masks calculated from the images. 

Second, a non-rigid transformation was found using local affine registration, various 

versions of the demons algorithms, or a feature-point-based thinplate spline interpolation. 

For most of the cases, the most effective procedure was the MIND-based Demons algorithm.

UPENN: (U. Pennsylvania) [61]11 A stain deconvolution [40] is used to remove the DAB 

(diaminobenzidine) stain and make the appearance more uniform. The images are rescaled 

to 4% of the original size, converted to grayscale, and padded with a random noise. For 

robustness, 5000 random initial rigid transformations are evaluated. The registration itself is 

performed starting with an initial affine step using L-BFGS optimization, followed by the 

estimation of a detailed deformation field, using a fast multi-resolution version of the dense 

non-linear diffeomorphic registration with the Greedy tool [62] and a local NCC criterion.

TUB: (Tsinghua U.)12 A combined standard deviation of all color channels in a Gaussian 

neighborhood with σ = 1 pixel is used as a scalar feature for subsequent registration. Image 

size is reduced to about 512 × 512 pixels and padded to keep the aspect ratio. The 

registration is performed by a convolutional neural network similar to the Volume Tweening 

Network [63]. First a rigid and then a dense non-linear transformation is estimated. The 

8Y. Xiang, Y. Yan, Y. Wang
9J. Lotz, N. Weiss, S. Heldmann
10M. Wodzinski, A. Skalski, https://github.com/lNefarin/ANHIR\_MW
11L. Venet, S. Pati, P. Yushkevich, S. Bakas, https://github.com/CBICA/HistoReg
12S. Zhao, Y. Xu, E. I-Chao Chang
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network is first trained in an unsupervised manner, maximizing an image correlation 

coefficient, then finetuned using provided landmark positions on the training data.

The seven methods described come from the ANHIR challenge as described in Section II-E. 

For completeness, we have also included several well known, freely available and often used 

registration methods, which we already tested in [16], to enable a better comparison with the 

state of the art. These methods (marked by * in Tables II and III) were not part of the 

ANHIR competitions but were run by the organizers on the same data and evaluation 

protocols.

bUnwarpJ: The images are registered using the bUnwarpJ ImageJ plugin [22] which 

calculates a non-linear B-spline-based deformation in a multiresolution way, minimizing a 

sum of squares difference (SSD) criterion, generalizing earlier B-spline registration methods 

[64], [65]. The key feature of bUnwarpJ is to simultaneously calculate the deformation in 

both directions, enforcing invertibility by a consistency constraint and providing strong 

regularization. Additional regularization is possible by penalizing the deformation field 

divergence and curl.

RVSS: Register virtual stack slices is another ImageJ registration plugin which extends the 

bUnwarpJ method [22] by incorporating also SIFT [66] feature points in both images to add 

robustness. We start by estimating a rigid transformation, which we then refine using a B-

spline transformation.

NiftyReg: The NiftyReg software is used to first perform an affine registration based on 

block matching [67], [68] and then a B-spline non-linear registration [69].

Elastix: Elastix [70] is a registration software providing a simple to use command-line 

interface to the Insight Segmentation and Registration Toolkit (ITK). We use a B-spline 

deformation and MI similarity criteria with the adaptive stochastic gradient descent 

optimizer.

ANTs: Advanced Normalization Tools [71] is another registration toolkit using ITK as a 

backend. We first perform an affine registration by MI maximization, followed by a dense 

symmetric diffeomorphic registration (SyN) using cross-correlation.

DROP: Similarly to many previously mentioned approaches, DROP [72], [73] represents 

the deformation using B-splines, minimizing a sum of absolute differences (SAD) (ℓ1) 

criterion. It differs by treating registration as a discrete optimization problem, solved 

efficiently in a multiresolution fashion using linear programming.

IV. Results

A. Relative target error comparison

Our main evaluation criterion is ARMrTRE, average rank of median relative target 

registration error (see Section II-C, eq. 2). We show the values of ARMrTRE for all methods 

in Fig. 6, together with AMrTRE (4), and MMrTRE (5). We see that MEVIS is most often 

the best method, with AGH and UPENN within the top four, and TUB, TUNI, and CKVST 
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more variable but close behind. On the other hand, the general methods (NiftyReg, 

bUnwarpJ, Elastix, DROP and ANTs), not optimized for microscopy images, are always in 

the second half of the ranking. It turns out that the results are almost the same when the 

other criteria from Section II-C are employed. A graphical comparison of those as well as 

other criteria based on of aggregating the relative landmark error rTRE can be found in Fig. 

S1 in the Supplementary material.

For quantitative values on test data, see Table III. Since some datasets contain only training 

and no testing data, for completeness we also provide quantitative results on all data 

combined in Supplementary material Table SIII.

B. Pairwise method comparison

Fig. 7 shows the color coded p-values for pairwise comparison of the methods, as described 

in Section II-D. It turns out that we could (topologically) sort the methods by performance 

from the best methods at the top to the worst performers at the bottom. All differences 

between methods are significant with the following exceptions: There are no significant 

differences between the first three methods (MEVIS, CKVST, AGH), between CKVST, 

AGH, and UPENN, between ANTs and RVSS, and between UA, ANTs and Elastix 

methods.

C. Differences between datasets

We may ask whether some datasets are more difficult than others and whether some methods 

are particularly suited for specific datasets. It seems that the answer is yes to both questions. 

For example, according to Fig. 4, the (CNN based) TUB method outperforms all other 

methods by an order of magnitude in terms of AMrTRE on some datasets (lung lesions, lung 

lobes). However, this could be also due to overfitting, since for these datasets all landmark 

positions were available for training since the beginning and none of them are part of the 

testing set. Note that evaluation was done on the testing pairs for all datasets except lung 

lesions and lobes, and mammary glands, which contain only training pairs.

Fig. 5 compares the robustness (8) by datasets. We see that the best six methods have a very 

high robustness (> 98%), while others completely fail on some of the datasets (e.g. Elastix or 

TUNI). Fig. S4 in the Supplementary material compares the methods’ performance as a 

function of the combination of stains being registered.

D. Training/testing

In Fig. S5, we compare the performance in terms of the distribution of the median rTRE and 

rank median rTRE between the training and testing data. For most methods, the distributions 

on training and testing data are rather similar. However, we note that TUB performs much 

better on training than on testing data, hinting again on possible overfitting. Interestingly, 

some methods, like MEVIS or CKVST, actually perform slightly better on the testing data.
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V. Discussion and conclusions

Our experience with organizing the ANHIR challenge and a very positive reaction of the 

community, including a good attendance of the ANHIR workshop at ISBI 2019, confirmed 

that there is indeed a wide interest in such challenges.

However, organizing such a challenge requires a significant effort. The most time-

consuming part was annotating the images with landmarks. Although the landmarks were 

sufficient to our purpose, there are sometimes large areas without salient corresponding 

structures, where very few landmarks can be identified. In the future, we would recommend 

that manually obtained landmarks are combined with other complementary means of 

evaluating the registration quality, such as measuring overlap using reference segmentations 

(as in NIREP [11]), or using synthetically generated (and therefore known) deformations 

[64]. We became aware that for the results to be meaningful, we must discourage the 

participants to overtrain on the provided datasets. Future challenges should also measure the 

speed of the algorithms more reliably, ideally by using a common hardware for all methods. 

Besides pairwise registration, we might consider other more advanced tasks such as 3D 

reconstruction by registering the histology slices, creating a large 2D mosaic from a set of 

smaller tile images, aligning 2D microscopy images with volumetric medical invivo images 

(e.g. MRI or ultrasound), or aligning standard histopathology with high-dimensional 

microscopy modalities such as MALDI [74]. For these applications, completely new 

evaluation approaches might be needed.

Perhaps surprisingly, most of the submitted methods (see Section III) used very similar and 

rather classical techniques. The best performing algorithms were originally developed for 

other modalities but were tuned for the data at hand. They consist of a carefully designed 

multi-step pipeline, which typically started with a coarse but robust prealignment, followed 

by a non-rigid registration step for fine tuning the results. Only one method (TUB) used the 

now ubiquitous CNNs; it was very fast and performed well, although not as well as the best 

performing methods and its generalization ability was limited. Interestingly, directly 

applying well-known off-the-shelf methods gave significantly worse results, although these 

methods contained very similar algorithmic ingredients as some of the best performing 

methods (e.g., MEVIS, CKVST, AGH). One explanation is that those general purpose 

methods were developed for other types of images, mostly 3D brain data, and possibly 

required more parameter tuning. Our observation is that the better performing methods often 

won not by being more accurate but by being more robust (see Table III), converging to the 

solution even from a far away initialization. The participants were clearly aware of this, 

since most submitted methods spend a significant effort to find a good initialization, for 

example by incorporating automatically detected landmarks (TUNI, AGH), trying many 

different starting points (MEVIS, UPENN), or even applying different methods in parallel 

(AGH). Another reason for the performance gap might be that the participants spent more 

time finding the optimal parameters for their own methods (even using a computing cluster 

in TUNI).
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To summarize the evaluation, there was very little difference in terms of both robustness and 

accuracy between the first six methods (MEVIS, AGH, UPENN, CKVST, TUB, TUNI). 

Those six methods outperformed all others in all evaluation measures that we have tested.

On the other hand, there were large differences in the reported execution speed (Table III). 

With the exception of the extremely fast CNN method (TUB), the differences seem to be 

more due to the quality of engineering (implementation) and the choice of parameters, and 

not the choice of the key algorithms. While MEVIS and NiftyReg take on average a few 

seconds per registration, the majority of the methods need a few minutes, with the slowest 

method (ANTs) taking almost an hour. Note however that MEVIS uses precalculation 

extensively and NiftyReg might have taken advantage of the GPU.

No methods were developed explicitly for the ANHIR challenge or for this type of images. 

No evaluated method takes advantage of the full resolution or full color information. With a 

median landmark localization error measured in tens of pixels at the original resolution even 

for the best methods, none of the methods would be probably robust and accurate enough for 

routine, fully automatic use. However, these methods could certainly be used in a semi-

supervised setting to substantially reduce the need for manual interaction in many tasks, 

such as fusing information from several differently stained images.

The above mentioned weaknesses will likely be addressed in future research, e.g. by creating 

algorithms capable of working on full resolution images or avoiding the overfitting in CNNs. 

We therefore believe that the need for objective performance evaluation will remain and that 

challenges such as ANHIR should be continued to stimulate and evaluate research in image 

registration.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors are grateful to Ben Glocker for his help with tuning the DROP parameters.

J. Kybic acknowledges the support of the OP VVV funded project CZ.02.1.01/0.0/0.0/16_019/0000765 Research 
Center for Informatics and the Czech Science Foundation project 17-15361S.

They acknowledge the support of the Russian Science Foundation grant 17-11-01279.

Their work was partly supported by the National Institutes of Health under grant award numbers NIH/NCI/
ITCR:U24-CA189523, NIH/NIBIB:R01EB017255, NIH/NIA:R01AG056014, and NIH/NIA:P30AG010124.

His work is supported by Academy of Finland projects 313921 and 314558.

They acknowledge the support provided by WestGrid and Compute Canada.

Marek Wodzinski acknowledges the support of the Preludium project no. UMO-2018/29/N/ST6/00143 funded by 
the National Science Centre in Poland.

She acknowledges the support of the Spanish Ministry of Economy and Competitiveness (TEC2015-73064-EXP, 
TEC2016-78052-R and RTC-2017-6600-1) and a 2017 Leonardo Grant for Researchers and Cultural Creators, 
BBVA Foundation.

Borovec et al. Page 14

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

[1]. Zitová B and Flusser J, “Image registration methods: a survey,” Image and Vision Computing, no. 
21, pp. 977–1000, 2003.

[2]. Brown L, “A survey of image registration techniques,” ACM Computing Surveys, vol. 24, no. 4, 
pp. 326–376, 12 1992.

[3]. Maintz J and Viergever MA, “A survey of medical image registration,” Medical Image Analysis, 
vol. 2, no. 1, pp. 1–36, 1998. [PubMed: 10638851] 

[4]. Lester H and Arridge SR, “A survey of hierarchical non-linear medical image registration,” Pattern 
Recognit, vol. 32, no. 1, pp. 129–149, 1999.

[5]. Pluim J, Maintz JBA, and Viergever MA, “Mutual-information-based registration of medical 
images: A survey,” IEEE Trans. Med. Imag, vol. 22, no. 8, pp. 986–1004, 8 2003.

[6]. Oliveira FPM and Tavares JMRS, “Medical image registration: a review,” Computer Methods in 
Biomechanics and Biomedical Engineering, vol. 17, no. 2, pp. 1–21, 2012.

[7]. Sotiras A, Davatzikos C, and Paragios N, “Deformable Medical Image Registration: A Survey,” 
IEEE Trans. Med. Imag, vol. 32, no. 7, pp. 1153–1190, 7 2013.

[8]. Zitova B, “Mathematical Approaches for Medical Image Registration,” in Reference Module in 
Biomedical Sciences, 2018.

[9]. West J, Fitzpatrick J, and Wang M, “Comparison and evaluation of retrospective intermodality 
brain image registration techniques,” Journal of Computer Assisted Tomography, vol. 21, no. 4, 
pp. 554–568, 1997. [PubMed: 9216759] 

[10]. Hellier P et al., “Retrospective evaluation of intersubject brain registration,” IEEE Trans. Med. 
Imag, vol. 22, no. 9, pp. 1120–1130, 2003.

[11]. Christensen G et al., “Introduction to the non-rigid image registration evaluation project 
(NIREP),” in Biomedical Image Registration. Springer, 2006, vol. 4057, pp. 128–135.

[12]. Klein A, Andersson J, Ardekani B et al., “Evaluation of 14 nonlin-ear deformation algorithms 
applied to human brain MRI registration,” Neuroimage, vol. 46, no. 3, pp. 786–802, 2009. 
[PubMed: 19195496] 

[13]. Ou Y, Akbari H, Bilello M, Da X, and Davatzikos C, “Comparative evaluation of registration 
algorithms in different brain databases with varying difficulty: Results and insights,” IEEE Trans. 
Med. Imag, vol. 33, no. 10, pp. 2039–2065, 2014.

[14]. Sarrut D, Delhay B, Villard P-F, Boldea V, Beuve M, and Clarysse P, “A Comparison Framework 
for Breathing Motion Estimation Methods From 4-D Imaging,” IEEE Trans. Med. Imag, vol. 26, 
pp. 1636–1648, 2007.

[15]. Brock KK, “Results of a multi-institution deformable registration accuracy study (MIDRAS),” 
International Journal of Radiation Oncology • Biology • Physics, vol. 76, no. 2, pp. 583–596, 
2010.

[16]. Borovec J, Munoz-Barrutia A, and Kybic J, “Benchmarking of Image Registration Methods for 
Differently Stained Histological Slides,” in Proc. Int. Conf. Image Process, Athens, 2018, pp. 
3368–3372.

[17]. Castillo R, Castillo E, Guerra R et al., “A framework for evaluation of deformable image 
registration spatial accuracy using large landmark point sets.” Phys. Med. Biol, vol. 54, no. 7, pp. 
1849–1870, 2009. [PubMed: 19265208] 

[18]. Murphy K, Van Ginneken B, Reinhardt J et al., “Evaluation of registration methods on thoracic 
CT: The EMPIRE10 challenge,” IEEE Trans. Med. Imag, vol. 30, no. 11, pp. 1901–1920, 2011.

[19]. Pontre B et al., “An open benchmark challenge for motion correction of myocardial perfusion 
MRI.” IEEE J. Biomedical and Health Informatics, vol. 21, no. 5, pp. 1315–1326, 2017.

[20]. McCann MT, Ozolek JA, Castro CA, Parvin B, and Kovacevic J, “Automated histology analysis: 
Opportunities for signal processing,” IEEE Signal Processing Magazine, vol. 32, no. 1, pp. 78–
87, 1 2015.

[21]. Pichat J, Iglesias JE, Yousry T, Ourselin S, and Modat M, “A survey of methods for 3D histology 
reconstruction.” Medical Image Analysis, vol. 46, pp. 73–105, 2018. [PubMed: 29502034] 

Borovec et al. Page 15

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[22]. Arganda-Carreras I et al., “Consistent and elastic registration of histological sections using 
vector-spline regularization,” in Computer Vision Approaches to Medical Image Analysis, vol. 
4241, 2006, pp. 85–95.

[23]. Feuerstein M, Heibel TH, Gardiazabal J, Navab N, and Groher M, “Reconstruction of 3-D 
histology images by simultaneous deformable registration.” in MICCAI, vol. 6892, 2011, pp. 
582–589.

[24]. Yushkevich PA et al., “3D mouse brain reconstruction from histology using a coarse-to-fine 
approach.” in WBIR, vol. 4057, 2006, pp. 230–237.

[25]. Song Y, Treanor D, Bulpitt A et al., “3D reconstruction of multiple stained histology images,” J. 
Path. Inf, vol. 4, no. 2, p. 7, 2013.

[26]. Tang M, “Automatic registration and fast volume reconstruction from serial histology sections.” 
Computer Vision and Image Understanding, vol. 115, no. 8, pp. 1112–1120, 2011.

[27]. Pichat J, Modat M, Yousry T, and Ourselin S, “A multi-path approach to histology volume 
reconstruction,” in Int. Symp. Biomed. Imag, 4 2015, pp. 1280–1283.

[28]. Gibb M et al., “Resolving the three-dimensional histology of the heart” in Comp. Meth. Syst. 
Biol, vol. 7605 Springer, 2012, pp. 2–16.

[29]. Mueller M, Yigitsoy M, Heibel H, and Navab N, “Deformable reconstruction of histology 
sections using structural probability maps,” in MICCAI, 2014.

[30]. du Bois D’Aische A and Craene M, “Efficient multi-modal dense field non-rigid registration: 
alignment of histological and section images,” Medical Image Analysis, vol. 9, no. 6, pp. 538–
546, 2005. [PubMed: 15897000] 

[31]. Saalfeld S, Cardona A, Hartenstein V, and Tomancak P, “As-rigid-as-possible mosaicking and 
serial section registration of large sstem datasets,” Bioinformatics, vol. 26, no. 12, pp. −57, 2010.

[32]. Metzger GJ, Dankbar SC, Henriksen J et al., “Development of multigene expression signature 
maps at the protein level from digitized immunohistochemistry slides.” PloS One, vol. 7, no. 3, p. 
e33520, 2012. [PubMed: 22438942] 

[33]. Obando D, Frafjord A, Oynebraten I et al., “Multi-staining registration of large histology 
images,” in Int. Symp. Biomed. Imag, 2017, pp. 345–348.

[34]. Déniz O, Toomey D et al., “Multi-stained whole slide image alignment in digital pathology,” in 
SPIE Med. Imag, vol. 9420, 2015, p. 94200Z.

[35]. Trahearn N, Epstein D, Cree I, Snead D, and Rajpoot N, “Hyperstain inspector: A framework for 
robust registration and localised coexpression analysis of multiple whole-slide images of serial 
histology sections,” Scientific Reports, vol. 7, 2017.

[36]. Ceritoglu C and Wang L, “Large deformation diffeomorphic metric mapping registration of 
reconstructed 3D histological section images and in vivo MR images,” Front. Hum. Neurosci, 
vol. 4, p. 43, 2010. [PubMed: 20577633] 

[37]. Gupta L, Klinkhammer BM, Boor P, Merhof D, and Gadermayr M, “Stain independent 
segmentation of whole slide images: A case study in renal histology,” in Int. Symp. Biomed. 
Imag, 2018, pp. 1360–1364.

[38]. Borovec J and Kybic J, “Binary pattern dictionary learning for gene expression representation in 
drosophila imaginal discs,” in Workshop Math. Comp. Meth. Biomed. Imag. Image Anal, 2017, 
pp. 555–569.

[39]. Wang C, Ka S, and Chen A, “Robust image registration of biological microscopic images,” 
Scientific Reports, vol. 4, no. 1, p. 6050, 2015.

[40]. Ruifrok AC and Johnston DA, “Quantification of histochemical staining by color deconvolution,” 
Anal. Quant. Cytol. Histol, vol. 23, no. 4, pp. 291–299, 2001. [PubMed: 11531144] 

[41]. Kybic J and Borovec J, “Automatic simultaneous segmentation and fast registration of 
histological images,” in Int. Symp. Biomed. Imag, 2014, pp. 774–777.

[42]. Borovec J, Kybic J, Bušta M, Ortiz-de Solorzano C, and Muñoz-Barrutia A, “Registration of 
multiple stained histological sections,” in Int. Symp. Biomed. Imag, San Francisco, 2013, pp. 
1034–1037.

[43]. Song Y et al., “Unsupervised content classification based nonrigid registration of differently 
stained histology images.” IEEE Trans. Biomed. Engineering, vol. 61, no. 1, pp. 96–108, 2014.

Borovec et al. Page 16

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[44]. Lobachev O, Ulrich C, Steiniger B, Wilhelmi V, Stachniss V, and Guthe M, “Feature-based multi-
resolution registration of immunostained serial sections.” Medical Image Analysis, vol. 35, pp. 
288–302, 2017. [PubMed: 27494805] 

[45]. Kybic J, Dolejsi M, and Borovec J, “Fast registration of segmented images by normal sampling,” 
in Bio Image Computing (BIC) workshop at CVPR, 2015, pp. 11–19.

[46]. Solorzano L, Almeida G, Mesquita B, Martins D, Oliveira C, and Wählby C, “Whole slide image 
registration for the study of tumor heterogeneity,” in COMPAY: Comp. Pathol. workshop, 2018, 
pp. 95–102.

[47]. Sorokin DV, Peterlik I, Tektonidis M, Rohr K, and Matula P, “Non-rigid contour-based 
registration of cell nuclei in 2-D live cell microscopy images using a dynamic elasticity model,” 
IEEE Trans. Med. Imag, vol. 37, no. 1, pp. 173–184, 2017.

[48]. Sorokin DV, Suchánková J, Bártová E, and Matula P, “Visualizing stable features in live cell 
nucleus for evaluation of the cell global motion compensation,” Folia biologica, vol. 60, no. 
Suppl. 1, pp. 45–49, 2014. [PubMed: 25369340] 

[49]. Shojaii R, Karavardanyan T, Yaffe MJ, and Martel AL, “Validation of histology image 
registration” in SPIE Med. Imag, vol. 7962 SPIE, 2011, p. 79621E.

[50]. Wang CW, Budiman Gosno E, and Li YS, “Fully automatic and robust 3D registration of serial-
section microscopic images,” Scientific Reports, vol. 5, 2015.

[51]. Borovec J, “BIRL: Benchmark on image registration methods with landmark validation,” Czech 
Tech. Univ. in Prague, Tech. Rep, 2019.

[52]. Bakas S et al., “Identifying the best machine learning algorithms for brain tumor segmentation, 
progression assessment, and overall survival prediction in the BRATS challenge,” 11 2018, 
arXiv:1811.02629.

[53]. Lau TF, Luo J, Zhao S, Chang EI-C, and Xu Y, “Unsupervised 3D end-to-end medical image 
registration with volume tweening network.” CoRR, vol. abs/1902.05020, 2019.

[54]. Punithakumar K, Boulanger P, and Noga M, “A GPU-accelerated deformable image registration 
algorithm with applications to right ventricular segmentation,” IEEE Access, vol. 5, pp. 20374–
20 382, 2017.

[55]. Pizer SM et al., “Adaptive histogram equalization and its variations,” Comput. Vision Graph. 
Image Process, vol. 39, no. 3, pp. 355–368, 1987.

[56]. Saalfeld S, Fetter R, Cardona A, and Tomancak P, “Elastic volume reconstruction from series of 
ultra-thin microscopy sections,” Nat. Meth, vol. 9, no. 7, pp. 717–720, 7 2012.

[57]. Kartasalo K, Latonen L, Vihinen J, Visakorpi T, Nykter M, and Ruusuvuori P, “Comparative 
analysis of tissue reconstruction algorithms for 3D histology.” Bioinformatics, vol. 34, no. 17, pp. 
3013–3021, 2018. [PubMed: 29684099] 

[58]. Lotz J, Weiss N, and Heldmann S, “Robust, fast and accurate: a 3-step method for automatic 
histological image registration,” 2019 [Online]. Available: http://arxiv.org/abs/1903.12063

[59]. Schmitt O, Modersitzki J, Heldmann S, Wirtz S, and Fischer B, “Image registration of sectioned 
brains,” Int. J. Comp. Vis, vol. 73, no. 1, pp. 5–39, 9 2006.

[60]. Modersitzki J, FAIR: Flexible Algorithms for Image Registration. SIAM, 2009.

[61]. Venet L, Pati S, Yushkevich P, and Bakas S, “Accurate and robust alignment of variable-stained 
histologic images using a general-purpose greedy diffeomorphic registration tool,” 2019, 
arXiv:1904.11929.

[62]. Yushkevich PA, Pluta J, Wang H, Wisse LE, Das S, and Wolk D, “Fast automatic segmentation of 
hippocampal subfields and medial temporal lobe subregions in 3 Tesla and 7 Tesla T2-weighted 
MRI,” Alzheimer’s & Dementia, vol. 12, no. 7, Supp., pp. P126–P127, 2016.

[63]. Zhao S, Lau T, Luo J, Chang EI, and Xu Y, “Unsupervised 3D end-to-end medical image 
registration with volume tweening network,” IEEE J. Biomed. Health Informa, 2019.

[64]. Kybic J and Unser M, “Fast parametric elastic image registration,” IEEE Trans. Imag. Proc, vol. 
12, no. 11, pp. 1427–1442, 2003.

[65]. Sánchez Sorzano C, Thévenaz P, and Unser M, “Elastic registration of biological images using 
vector-spline regularization,” IEEE Trans. Biomed. Eng, vol. 52, no. 4, pp. 652–663, 4 2005. 
[PubMed: 15825867] 

Borovec et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arxiv.org/abs/1903.12063


[66]. Lowe D, “Distinctive image features from scale-invariant keypoints,” Int. J. Comp. Vis, vol. 60, 
no. 2, pp. 91–110, 2004.

[67]. Ourselin S, Roche A, Subsol G, Pennec X, and Ayache N, “Reconstructing a 3D structure from 
serial histological sections,” Image Vision Comput., vol. 19, no. 1-2, pp. 25–31, 2001.

[68]. Modat M, Cash D, Daga P, Winston G, Duncan JS, and Ourselin S, “A symmetric block-
matching framework for global registration,” in SPIE Med. Imag, vol. 9034, 03 2014, p. 90341D.

[69]. Rueckert D, Sonoda LI, Hayes C, Hill DLG, Leach MO, and Hawkes DJ, “Nonrigid registration 
using free-form deformations: application to breast MR images,” IEEE Trans. Med. Imag, vol. 
18, no. 8, pp. 712–721, 8 1999.

[70]. Klein S, Staring M, and Murphy K, “Elastix: a toolbox for intensity-based medical image 
registration,” IEEE Trans. Med. Imag, vol. 29, no. 1, 2010.

[71]. Avants B, Epstein C, Grossman M, and Gee JC, “Symmetric diffeomorphic image registration 
with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain,” 
Medical Image Analysis, vol. 12, no. 1, pp. 26–41, 2008. [PubMed: 17659998] 

[72]. Glocker B, Komodakis N, Tziritas G, Navab N, and Paragios N, “Dense image registration 
through MRFs and efficient linear programming,” Medical Image Analysis, vol. 12, no. 6, pp. 
731–741, 2008. [PubMed: 18482858] 

[73]. Glocker B et al., “Deformable medical image registration: Setting the state of the art with discrete 
methods,” Ann. Rev. Biomed. Eng, vol. 13, no. 1, pp. 219–244, 2011. [PubMed: 21568711] 

[74]. Machálková M et al., “Drug penetration analysis in 3D cell cultures using fiducial-based 
semiautomatic coregistration of MALDI MSI and immunofluorescence images,” Anal. Chem, 
vol. 91, no. 21, pp. 13 475–13 484, 2019.

Borovec et al. Page 18

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Example dataset images: (a) lung lesions, (b) COAD (colon adenocarcinoma), (c) mammary 

glands, (d) lung lobes, (e) mouse kidney, (f) gastric mucosa and adenocarcinoma, (g) human 

breast, (h) human kidney. Some images were cropped for visualization. Multiple stains exist 

for each tissue type.
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Fig. 2. 
An example of a set of lung lesion tissue images using Cc10, CD31, H&E, Ki67 and proSPC 

stains (from left to right) with landmarks shown as green dots.
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Fig. 3. 
Examples of (a) successful and (b) unsuccessful registration. We are showing the warped 

image overlaid over the reference image, with the original positions and true displacements 

in green, estimated positions and estimated displacements in blue, target positions in 

magenta, and registration errors (TRE) in red.
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Fig. 4. 
Relative performance of the methods on the different datasets in terms of AMrTRE.
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Fig. 5. 
Robustness (the relative number of landmarks which moved towards the ground truth 

location) of all methods on different tissues.
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Fig. 6. 
Average rank of median rTRE (a), average median rTRE (b), and median of median rTRE 

(c) per method on the test data.
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Fig. 7. 
Color coded p-values for pairwise comparison of methods over all test image pairs in terms 

of median rTRE, where the median is taken over all landmarks in an image. Red/blue 

indicates, that the method in the row performs statistically better/worse than the column 

method, respectively, according to the one-sided Wilcoxon signed-rank test at significance 

level p = 0.01. Gray and shades of gray indicate no significant differences. Methods are 

topologically sorted by performance from top to bottom.
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TABLE I

Summary of the datasets and their properties. See the supplementary material for a more detailed description. 

(COAD=Colon Adenocarcinoma).

Name Scanner Mag. μm/
pixel

Avg. size
[pixels]

#
sets

#train
pairs

#test
pairs

Lung lesions Zeiss 40× 0.174 18k × 15k 3 30 0

Lung lobes Zeiss 10× 1.274 11k × 6k 4 40 0

Mammary glands Zeiss 10× 2.294 12k × 4k 2 38 0

Mouse kidney Hamam. 20× 0.227 37k × 30k 1 15 18

COAD 3DHistech 10× 0.468 60k × 50k 20 84 153

Gastric Leica 40× 0.2528 60k × 75k 9 13 40

Human breast Leica 40× 0.253 65k × 60k 5 5 20

Human kidney Leica 40× 0.253 18k × 55k 5 5 20
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