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Abstract— Deep learning (DL) has proved success-
ful in medical imaging and, in the wake of the recent
COVID-19 pandemic, some works have started to inves-
tigate DL-based solutions for the assisted diagnosis of
lung diseases. While existing works focus on CT scans,
this paper studies the application of DL techniques for the
analysis of lung ultrasonography(LUS) images. Specifically,
we present a novel fully-annotated dataset of LUS images
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collected from several Italian hospitals, with labels indicat-
ing the degree of disease severity at a frame-level, video-
level, and pixel-level (segmentation masks). Leveraging
these data, we introduce several deep models that address
relevant tasks for the automatic analysis of LUS images.
In particular, we present a novel deep network, derived
from Spatial Transformer Networks, which simultaneously
predicts the disease severity score associated to a input
frame and provides localization of pathological artefacts
in a weakly-supervised way. Furthermore, we introduce a
new method based on uninorms for effective frame score
aggregation at a video-level. Finally, we benchmark state of
the art deep models for estimating pixel-levelsegmentations
of COVID-19 imaging biomarkers. Experiments on the pro-
posed dataset demonstrate satisfactory results on all the
considered tasks, paving the way to future research on DL
for the assisted diagnosis of COVID-19 from LUS data.

Index Terms— COVID-19, lung ultrasound, deep learning.

I. INTRODUCTION

THE rapid global SARS-CoV-2 outbreak resulted in a
scarcity of medical equipment. In addition to a worldwide

shortage of mouth masks and mechanical ventilators, testing
capacity has been severely limited. Priority of testing was
therefore given to suspected patients and hospital staff [1].
However, extensive testing and diagnostics are of great impor-
tance in order to effectively contain the pandemic. Indeed,
countries that have been able to achieve large-scale testing
of possibly infected people combined with massive citizen
surveillance, reached significant containment of the SARS-
CoV-2 virus [2]. The insufficient testing capacity in most
countries has therefore spurred the need and search for alterna-
tive methods that enable diagnosis of COVID-19. In addition,
the accuracy of the current lab test, reverse transcription
polymerase chain reaction (RT-PCR) arrays, remains highly
dependent on swab technique and location [3].

COVID-19 pneumonia can rapidly progress into a very
critical condition. Examination of radiological images of over
1,000 COVID-19 patients showed many acute respiratory dis-
tress syndrome (ARDS)-like characteristics, such as bilateral,
and multi-lobar glass ground opacifications (mainly posteri-
orly and/or peripherally distributed) [4], [5]. As such, chest
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Fig. 1. Overview of the different tasks considered in this work. Given a LUS image sequence, we propose approaches for: (orange) prediction of
the disease severity score for each input frame and weakly supervised localization of pathological patterns; (pink) aggregation of frame-level scores
for producing predictions on videos; (green) estimation of segmentation masks indicating pathological artifacts.

computed tomography (CT) has been coined as a poten-
tial alternative for diagnosing COVID-19 patients [4]. While
RT-PCR may take up to 24 hours and requires multiple
tests for definitive results, diagnosis using CT can be much
quicker. However, use of chest CT comes with significant
drawbacks: it is costly, exposes patients to radiation, requires
extensive cleaning after scans, and relies on radiologist
interpretability.

Lately, ultrasound imaging, a more widely available, cost-
effective, safe and real-time imaging technique, is gaining
attention. In particular, lung ultrasound (LUS) is increasingly
used in point-of-care settings for detection and management of
acute respiratory disorders [6], [7]. In some cases, it demon-
strated better sensitivity than chest X-ray in detecting pneumo-
nia [8]. Clinicians have recently described use of LUS imaging
in the emergency room for diagnosis of COVID-19 [9].
Findings suggest specific LUS characteristics and imaging
biomarkers for COVID-19 patients [10]–[12], which may be
used to both detect these patients and manage the respiratory
efficacy of mechanical ventilation [13]. The broad range of
applicability and relatively low costs make ultrasound imaging
an extremely useful technique in situations when patient
inflow exceeds the regular hospital imaging infrastructure
capabilities. Thanks to its low costs, it is also accessible for
low- and middle-income countries [14]. However, interpreting
ultrasound images can be a challenging task and is prone to
errors due to a steep learning curve [15].

Recently, automatic image analysis by machine and deep
learning (DL) methods have already shown promise for
reconstruction, classification, regression and segmentation of
tissues using ultrasound images [16], [17]. In this paper
we describe the use of DL to assist clinicians in detecting
COVID-19 associated imaging patterns on point-of-care LUS.
In particular, we tackle three different tasks on LUS imaging
(Fig. 1): frame-based classification, video-level grading and
pathological artifact segmentation. The first task consists of
classifying each single frame of a LUS image sequence into
one of the four levels of disease severity, defined by the scoring
system in [12]. Video-level grading aims to predict a score for
the entire frame sequence based on the same scoring scale.
Segmentation instead comprises pixel-level classification of
the pathological artifacts within each frame.

This paper advances the state of the art in the auto-
matic analysis of LUS images for supporting medical per-
sonnel in the diagnosis of COVID-19 related pathologies
in many directions. (1) We propose an extended and
fully-annotated version of the ICLUS-DB database [18]. The
dataset contains labels on the 4-level scale proposed in [12],
both at frame and video-level. Furthermore, it includes a subset
of pixel-level annotated LUS images useful for developing and
assessing semantic segmentation methods. (2) We introduce
a novel deep architecture which permits to predict the score
associated to a single LUS image, as well as to identify
regions containing pathological artifacts in a weakly super-
vised manner. Our network leverages Spatial Transformers
Network (STN) [19] and consistency losses [20] to achieve
disease pattern localization and from a soft ordinal regression
loss [21] for robust score estimation. (3) We introduce a
simple and lightweight approach based on uninorms [22]
to aggregate frame-level predictions and estimate the score
associated to a video sequence. (4) We address the problem of
automatic localization of pathological artifacts evaluating the
performance of state-of-the-art semantic segmentation meth-
ods derived from fully convolutional architectures. (5) Finally,
we conduct an extensive evaluation of our methods on all
the tasks, showing that accurate prediction and localization
of COVID-19 imaging biomarkers can be achieved with
the proposed solutions. Dataset and code are available at
https://iclus-web.bluetensor.ai and at https://github.com/mhug-
Trento/DL4covidUltrasound.

II. RELATED WORK

DL has proven to be successful in a multitude of computer
vision tasks ranging from object recognition and detection to
semantic segmentation. Motivated by these successes, more
recently, DL has been increasingly used in medical applica-
tions, e.g. for biomedical image segmentation [23] or pneu-
monia detection from chest X-ray [24]. These seminal works
indicate that, with the availability of data, DL can lead to the
assistance and automation of preliminary diagnoses which are
of tremendous significance in the medical community.

In the wake of the current pandemic, recent works have
focused on the detection of COVID-19 from chest CT
[25], [26]. In [27], a U-Net type network is used to regress
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Fig. 2. The distribution of the probes and the scores of frames grouped by hospital and overall statistics.

a bounding box for each suspicious COVID-19 pneumonia
region on consecutive CT scans, and a quadrant-based filtering
is exploited to reduce possible false positive detections. Dif-
ferently, in [28] a threshold-based region proposal is first used
to retrieve the region of interests (RoIs) in the input scan and
the Inception network is exploited to classify each proposed
RoI. Similarly, in [29], a VNET-IR-RPN model pre-trained
for pulmonary tuberculosis detection is used to propose RoIs
in the input CT and a 3D version of Resnet-18 is employed
to classify each RoI. However, very few works using DL on
LUS images can be found in the literature [30]. A classification
and weakly-supervised localization method for lung pathology
is described in [17]. Based on the same idea, in [18] a
frame-based classification and weakly-supervised segmenta-
tion method is applied on LUS images for COVID-19 related
pattern detection. Here, Efficientnet is trained to recognize
COVID-19 in LUS images, after which class activation maps
(CAMs) [31] are exploited to produce a weakly-supervised
segmentation map of the input image. Our work has several
differences compared to all the previous works. First, while
in [18] CAMs are used for localization, in this work we exploit
STN to learn a weakly-supervised localization policy from the
data (i.e. not exploiting explicit labelled locations but inferring
it from simple frame-based classification labels). Second,
while in [18] a classification problem is solved, we focus
on ordinal regression, predicting not only the presence of
COVID-19 related artifacts, but also a score connected to the
disease severity. Third, we move a step forward compared
to all previous methods by proposing a video-level predic-
tion model built on top of the frame-based method. Finally,
we propose a simple yet effective method to predict segmen-
tation masks using an ensemble of multiple state-of-the-art
convolutional network architectures for image segmentation.
Additionally, the model’s predictions are accompanied with
uncertainty estimates to facilitate interpretation of the results.

III. ICLUS-DB: DATA COLLECTION AND ANNOTATION

We here present the Italian COVID-19 Lung Ultrasound
DataBase (ICLUS-DB), which currently includes a total
of 277 lung ultrasound (LUS) videos from 35 patients,
corresponding to 58,924 frames.1 The data were acquired
within different clinical centers (BresciaMed, Brescia, Italy,

1https://iclus-web.bluetensor.ai.

Valle del Serchio General Hospital, Lucca, Italy, Fondazione
Policlinico Universitario A. Gemelli IRCCS, Rome, Italy, Fon-
dazione Policlinico Universitario San Matteo IRCCS, Pavia,
Italy, Tione General Hospital, Tione (TN), Italy) and using a
variety of ultrasound scanners (Mindray DC-70 Exp, Esaote
MyLabAlpha, Toshiba Aplio XV, WiFi Ultrasound Probes -
ATL). Both linear and convex probes were used, depending on
necessities. Of the 35 patients, 17 were confirmed positive to
COVID-19 by swab technique (49 %), 4 were COVID-19 sus-
pected (11 %), and 14 were healthy and symptomless individ-
uals (40 %).

A recent proposal by Soldati et al. describes how specific
imaging biomarkers in LUS can be used in the manage-
ment of COVID-19 patients [12]. Specifically, to evaluate
the progression of the pathology, a 4-level scoring system
was devised [32], with scores ranging from 0 to 3. Score 0
indicates the presence of a continuous pleural-line accompa-
nied by horizontal artifacts called A-lines [33], which char-
acterize a healthy lung surface. In contrast, score 1 indicates
the first signs of abnormality, i.e., the appearance of alter-
ations in the pleural-line in conjunction with vertical artifacts.
Scores 2 and 3 are representative of a more advanced patholog-
ical state, with the presence of small or large consolidations,
respectively. Finally score 3 is associated with the presence of
a wider hyperechogenic area below the pleural surface, which
can be referred to as “white lung”.

A total of 45,560 and 13,364 frames, acquired using
respectively convex and linear probes, were labelled according
to the scoring system defined above. Of the 58,924 LUS
frames forming the dataset, 5,684 were labeled score 3 (10%),
18,972 score 2 (32%), 14,295 score 1 (24%), 19,973 score 0
(34%). A plot showing the distribution of the scores and
probes per hospital is shown in Fig. 2. To guarantee objective
annotation, the labelling process was stratified into 4 levels:
1) score assigned frame-by-frame by four master students
with ultrasound background knowledge, 2) validation of the
assigned scores performed by a PhD student with expertise in
LUS, 3) second level of validation performed by a biomedical
engineer with more than 10 year of experience in LUS and
4) third level of validation and agreement between clinicians
with more than 10 years of experience in LUS.

Additionally, a subset of 60 videos sampled across all
35 patients was selected and video-level annotations were
provided for them. These annotations use the same scoring
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system defined for the frame-level annotations. In order to
address subjective biases in the evaluation of the videos,
five different clinicians provided their evaluation for each
sequence. We assess the complexity of this task by calculating
the inter-operator agreement, comparing the evaluation of the
predictions of each doctor against the average prediction of
the remaining four. The resulting average agreement is about
67% among the available labels.

Finally, for 33 patients, a total of 1,005 and 426 frames
respectively acquired using convex and linear probes, were
semantically annotated at a pixel-level by contouring the
aforementioned imaging biomarkers using the annotation tool
LabelMe [34]. For the frames acquired using the linear probe,
relative pixel-level occurrences for scores 0, 1, 2, and 3 are
6.4%, 0.080%, 0.67%, and 3.7%, respectively. For the convex
probe, these statistics are 1.9%, 0.074%, 1.8%, and 2.1%,
respectively. Notably, a large proportion of pixels is not
associated to either of these scores. These pixels do not display
clear characteristics of a specific class, and are referred to
as background (BG). A few images and the corresponding
annotations are shown in the supplementary material.

IV. DEEP LEARNING-BASED ANALYSIS OF LUS IMAGES

This paper tackles several challenges towards the develop-
ment of automatic approaches for supporting medical person-
nel in the diagnosis of COVID-19 related pathologies (see
Fig. 1). In particular, following the COVID-19 LUS scoring
system in [12] we present a novel deep architecture which
automatically predicts the pathological scores associated to all
frames of a LUS image sequence (Section IV-A) and optimally
fuse them to produce a disease severity score at video-level
(Section IV-B). We also show that the proposed model auto-
matically identifies regions in an image which are associated to
pathological artifacts without requiring pixel-level annotation.
Finally, to further improve the accuracy in the automatic detec-
tion of disease-related patterns, we also consider a scenario
where frames are provided with pixel-level annotations and
we propose a segmentation model derived from a state of the
art convolutional network architecture (Section IV-C). In the
following, we describe the proposed deep learning models.

A. Frame-Based Score Prediction

1) Problem Formulation and Notation: With the purpose of
supporting medical personnel in the analysis of LUS images,
in this paper we introduce an approach for predicting the
presence or the absence of a pathological artifact in each frame
of a LUS image sequence and for automatically assessing
the severity score of the disease related to such patterns
according to the COVID-19 LUS scoring system [12]. We
are also interested in the spatial localisation of a pathological
artifact in the frame without assuming any annotation about
such artifact positions in a frame. The weak localization is
achieved through the use of Spatial Transformer Networks
(STN) [19]. The use of STN stems from the fact that most
of the pathological artifacts are concentrated in a relatively
small area of the image, and, hence the entire image should

Fig. 3. Illustration of the architecture for frame-based score prediction.
An STN modeled by Φstn predicts two transformations θ1 and θ2 which
are applied to the input image producing two transformed versions x1
and x2 that localize pathological artifacts. The feature extractor Φcnn is
applied to x1 to generate the final prediction.

not be considered by the network to make predictions. The
problem can be formalized as follows.

Let X denote the input space (i.e. the image space) and
S the set of possible scores. During training, we are given a
training set T = {(xn, sn)}N

n=1 where xn ∈ X and sn ∈ S.
2) Model Definition: We are interested in learning a mapping

� : X → S, which given an input LUS image outputs
the associated pathological score label. We model � as the
composition of two functions � = �stn ◦ �cnn where �stn :
X → X estimates an affine transformation and applies it to
the input image x and �cnn : X → S assigns the score to the
transformed image. Intuitively, �stn learns to localize regions
of interest in the input image and provides �cnn with an
image crop where information about the score is most salient.
Consequently, �stn produces as a side effect the localization
of pathological artifacts in the frame. The mapping �cnn is
composed by a convolutional feature extractor and a linear
layer with |S|-dimensional output logits. The model �stn is
implemented as a deep neural network derived STN [19].
Fig. 3 shows an overview of the proposed deep architecture.

In the context of deep learning the generalization capability
of a network is of critical importance. To this end, data aug-
mentation has shown to be very effective [35] in improving the
performance of a network. Previous works [18] showed that
augmenting a dataset composed of LUS images can drastically
improve the ability of the network to discriminate healthy
and ill patients. Another way to achieve robust predictions is
to enforce some consistency between two perturbed versions
(colour jitter, dropout, etc.) of the same image [20], [36].
This makes the network produce smoothed predictions by
attending to the salient features in an image. Inspired by this
idea, we propose to use STN [19] to produce two different
crops from a single image and enforce the predictions of the
network to be similar. We name our approach Regularised
Spatial Transformer Networks (Reg-STN).

STN [19] is a differentiable module that applies a learnable
affine transformation to an input image, or more in general to a
feature map, conditioned on the input itself. It consists of three
parts: (i) a localization network that predicts the parameters of
the affine transformation, (ii) a grid generator which selects
the grid co-ordinates in the source image, to be sampled from,
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and (iii) a sampler that warps the input image based on the
transformation, producing the output map.

For what concerns the localization network, it is trained to
output a transformation matrix θ such that:

�
αs

βs

�
= θ

⎛
⎝ αt

β t

1

⎞
⎠ (1)

where αs , βs , αt , β t , are the source and target coordinates in
the input and output feature map respectively. In principle θ
can describe any affine transformation, however, keeping in
mind the properties of LUS images we restrict the space of
possible transformations to rotation, translation, and isotropic
scaling:

θ =
�

σ r1 τα

r2 σ τβ

	
(2)

In our proposed method, an input image, x is processed
by the �stn that predicts two set of transformations θ1 and θ2,
instead of one θ . Subsequently, the transformations are applied
to x, generating cropped images x1 and x2, respectively. The
network �cnn is then applied to x1 and x2, producing two
sets of logits for the same image under different transfor-
mations. As a side effect, the intermediate images x1 and
x2 are produced and can be interpreted as the localization
of the pathological artifacts in the input image x. Finally,
the �cnn(x1) branch then can be trained with any standard
supervised classification loss and (�cnn(x1), �cnn(x2)) is
trained with a consistency enforcing loss (see below).

3) Loss Definition: As stated before, we are interested in
devising a deep network � for automatically predicting the
4-level scores identified in [12]. While this problem can
trivially be cast within a classification framework, in this paper
we argue that ordinal regression [37] is more appropriate as
we are interested in predicting labels from an ordinal scale.
The rationale behind the choice of ordinal regression is that
there exist certain categories that are more correct than others
with respect to the true label, as opposed to an independent
class scenario, in which the order of the levels does not matter.
In fact, errors on low-distance levels should be less penalized
with respect to long-distance error. For instance, predicting a
severely ill patient (score 3) as healthy (score 0) should be
strongly discouraged, while sometimes the difference between
score 1 and score 2 can be subtle and the network should not
be overly penalized.

While ordinal regression can be implemented resorting on
the traditional approach of decomposing the problem assuming
a |S|-rank formulation [38], following [21] we introduce a
lightweight approach for Soft ORDinal regression (SORD).
In practice, we implement an ordinal regression framework by
using a carefully devised label smoothing mechanism. Instead
of one-hot representations of labels, we encode the ground
truth information into soft-valued vectors (SORD vectors) ŝ ∈
R

|S|, where S is the set of possible scores for a frame. Hence,
for a frame x with score s ∈ S the i -th element of the SORD
vector is computed as follows:

ŝi = e−δ(s,i)

j∈S e−δ( j,i)

(3)

where δ is a manually defined distance function between
scores/levels for which we use square distance multiplied
by a constant factor. This formulation produces a smooth
probability distribution over S, in which the magnitude of
the elements decreases while the distance to the ground
truth increases. Encoding ground truth labels as probability
distributions seamlessly blends with common classification
loss functions that use a softmax output. Therefore, at training
time, we simply train the network � using cross entropy:

LS O R D = −
|S|�
i=0

ŝi log

⎛
⎝ exp(� (x)i )
|S|

j exp(� (x) j )

⎞
⎠ (4)

The result is a loss function that yields a smaller cost for
predictions that are in the neighbourhood of the ground
truth label, which, in turn generates smaller gradients, hence
discouraging drastic updates of the network for small errors.
Empirically, we found that our algorithm works best when we
increase the distance of score 0 from the others. As mentioned
before, this is also validated by the semantics of the scores.

Another desirable property of the network is to extract
important semantic features of the input image, in order to
enable accurate frame score prediction. This can be strength-
ened by resorting to a regularization in the form of consistency
loss on the two branch predictions (�cnn(x1), �cnn(x2)) with
the rationale that two different crops from the same image
should have similar predictions. In our case, these two crops
are produced by the �stn. In details, the consistency loss is
defined on the network representations as following:

LM S E = ��cnn (x1) − �cnn (x2)�2
2 (5)

Unfortunately, LM S E coupled with learnable affine transfor-
mations produces degenerate solutions in which the localiza-
tion network of the STN learns to output identical parameters
for the affine transformations. In fact, it is enough to impose
θ1 = θ2 to minimize LM S E . To prevent this pathological
behaviour of the network, we enforce a prior on the para-
meters of the transformations. In particular, we stimulate the
localization network to produce reasonably scaled patches by
minimizing |σ −σp |, where σp is a fixed prior. Now, in order
to enable the STN into yielding different parameters θ1 �= θ2,
we simply choose σp1 �= σp2. Hence, a loss is defined as
follows:

LP = |σ1 − σp1| + |σ2 − σp2| (6)

Finally, the proposed Reg-STN model is trained end-to-end
minimizing the following joint loss function:

LT OT = LS O R D + LM S E + LP (7)

4) Training Strategy: We split the ICLUS-DB dataset into
a train and test split. The test split comprises 80 videos
from 11 patients, with a total of 10,709 frames. All the frames
from the remaining videos are included in the train set. The
split is performed at patient level, such that the sets of patients
in the training and test set are disjoint. The STN is modeled
by a ConvNet similar to [17]. Specifically, we removed the
Average Pooling and the output layer and replaced it with
two fully connected layers to predict the affine transformation
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parameters. The CNN architecture [17] is kept unchanged.
The STN and CNN are jointly trained by using the Adam
optimizer with an initial learning rate of 1e − 4, a batch size
of 64 and trained for 120 epochs. We also used similar data
augmentation strategies and learning rate decay as suggested
in [17], [18]. We set the values of σ1 and σ2 to 0.50 and
0.75 respectively, leveraging the prior knowledge about LUS
images that pathological artifacts roughly covers 25% to 50%
area of the image.

B. Video-Level Score Aggregation

1) Problem Formulation and Notation: The identification of
potentially pathological artifacts in LUS images is a crucial
step towards diagnosis support. However, frame-based pre-
dictions should be turned into a single video-based score
prediction in order to assess the pathological state of a patient.
The video-based score aggregation problem can be formalized
as follows. Let v = {xi }M

i=1, be a video, V be the set of videos
of any length, and S the set of scores. The goal of video-level
score prediction is learning a mapping 	 : V → S.

In principle the mapping 	 could be obtained by taking
the maximum score assigned to any frame of the current
video because the identification of an artifact of score s in
a frame implies that the patient has a severity level of at
least s. This hard rule, however, is inapplicable in practice
when dealing with machine-predicted scores, as even a single
frame-based prediction error could harm the overall prediction.
Thus, in this section we propose a more flexible aggregation
mechanism devised for predicting the score associated to a
video, leveraging the video-level annotations provided in the
ICLUS-DB (Section III).

2) Model Definition: In designing the model 	 , we consider
the fact that it needs to operate in a low-data regime, where few
videos are provided with annotations as in the current version
of the ICLUS-DB. Inspired by the hard rule previously men-
tioned, we propose a simple strategy that combines frame-level
predictions using a parameterized aggregation layer, i.e.:

	(v) = 	U (�(x1), . . . ,�(xM )) (8)

Here � is the frame-level mapping and 	U is an aggregation
function based on uninorms [39], which are a principled way
to soften the hard rule. A uninorm U is a monotonic increas-
ing, commutative and associative mapping from [0, 1]× [0, 1]
to [0, 1] with neutral element e ∈ [0, 1]. This means that
U(a, e) = U(e, a) = a for all a ∈ [0, 1]. If e = 1, U is
fully non-compensatory (like taking the minimum between a
and b), while it is fully compensatory if e = 0 (like the taking
maximum). Choosing e ∈ (0, 1) allows the uninorm to have
a hybrid behaviour. Note that being associative, uninorms can
be applied to an arbitrary number of inputs (e.g., U(a, b, c) =
U(U(a, b), c)). Following [22], we learn the appropriate value
for the neutral element e from data. Our aggregation layer
takes as input the sequence of frame-based prediction scores
�(x), aggregates them along each dimension/score using a
uninorm U and returns the softmax of the resulting aggre-
gation as a video-based prediction. The layer has only four
parameters, which are the neutral elements for each candidate

score {0, 1, 2, 3}, and it is thus amenable to training with little
supervision.

Any uninorm with neutral element e can be written as [39]:

Ue(a, b)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eT (
a

e
,

b

e
) if a, b ∈ [0, e]

e + (1 − e)S(
a − e

1 − e
,

b − e

1 − e
) if a, b ∈ [e, 1]

Û(a, b) otherwise

(9)

for a certain choice of T , S and Û(a, b) such that min(a, b) ≤
Û(a, b) ≤ max(a, b). The functions T and S are called t-norm
and t-conorm respectively, and model the non-compensatory
and compensatory behaviour. Different choices for these func-
tions lead to different uninorms. We found the product t-norm
T (a, b) = ab (and corresponding t-conorm S(a, b) = a +
b − ab) to be the most effective choice as it allows the
gradient to flow the most. Concerning the function Û (a, b),
common choices are min(a, b) and max(a, b), producing
the so-called min-uninorms and max-uninorms respectively.
We found min-uninorms to be the best choice in our setting
(with respect to max(a, b) but also mean(a, b)), likely because
of their fully non-compensatory behaviour in the area of
highest discrepancy between frame-based predictions.

3) Loss Definition: The architecture is trained using the
SORD loss described in Eq. (5) computed over the video-level
prediction.

4) Training Strategy: The frame-based predictor outputs pre-
diction scores with a distribution that differs between the
training and the test set. In order not to overfit the video-based
predictor on the training scores distribution, we completely
separate the training sets of the frame-based and video-based
predictor. We train the frame-based predictor on all video
sequences T without any video-based annotation, and evaluate
it on the remaining sequences T �. We then train and evaluate
the video-based predictor on T �, using a k-fold cross validation
procedure (k = 5) with splits made at the patient level (i.e. all
videos from the same patient are in the same fold). We choose
to use as video-level annotations the ones produced by the first
annotator, the clinician with the highest expertise. We train
our model using an Adam optimizer with learning rate 10−2

without weight decay and with no learning rate scheduling.
For each epoch, we compute the loss for each train video
sequence and accumulate its gradients, performing a single
optimization step at the end of each epoch. We train the model
for a maximum of 30 epochs and use the loss on the training
set to define an early stopping strategy.

Note that the entire architecture including the frame-level
component could be trained entirely end-to-end. However, this
solution is not effective given the vast disproportion in the
amount of supervision at the video and frame levels currently
available in ICLUS-DB. We thus trained the aggregation layer
after freezing the weights of the frame-based architecture. Full
end-to-end training combining frame-based and video-based
supervision will be investigated in future work.

C. Semantic Segmentation

1) Problem Formulation and Notation: Let X = R
i× j

and Y denote the input (i.e. the image space) and output
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Fig. 4. Examples of the image crops produced by the Reg-STN network. The first column shows input images acquired with linear and convex
sensors, respectively. In the second column we report the heatmaps produced by GradCam [44] and the bounding boxes obtained by thresholding. In
the remaining columns, original image overlayed with bounding boxes and the two respective crops (in red and green) produced when the Reg-STN
models: a) only translation and a fixed scaling; b) all possible transformations viz. translation, scaling and rotation, are shown. In each case the
Reg-STN focuses on the most salient parts which contains the pathological artifacts.

(i.e. the segmentation masks) space, respectively. In the earlier
presented frameworks for image- and video-based classifica-
tion, the score set was defined as S = {0, 1, 2, 3}. For semantic
segmentation we however distinguish five different scores, i.e.
the four scores in S, complemented by the background (BG)
score, assigned to pixels that were not annotated for showing
markers associated with any of the classes in S. As such,
Y = {0, 1, 2, 3, BG}i× j .

2) Model Definition: We are interested in learning a mapping

 : X → Y , which given an input LUS image, outputs
the associate pathological segmentation mask. To model 
,
we compare several network architectures for end-to-end
image segmentation, such as the vanilla U-Net [23], and the
more recently proposed U-Net++ [40], and Deeplabv3+ [41].

Our baseline U-Net model has three encoding layer blocks,
each comprising two convolutional layers with ReLU acti-
vations and one maxpool layer (pooling across 2, 2, and
5 pixels in both dimensions, respectively), a latent layer, and
a mirrored decoder (where pooling is replaced by nearest
neighbour upsampling). We use skip connections between
each layer block of the encoder and decoder. To mitigate
overfitting we apply dropout (p = 0.5) during training at the
latent bottleneck of the model. The Unet++ variant leverages
the first four encoder blocks of the ResNet50 model [42] to
construct a latent space. The latent space is upsampled in the
decoder stage by means of transpose 2D convolutional layers.
The decoder contains residual blocks, and also exploits skip
connections between (same-sized) hidden layer outputs in the
ResNet50 encoder and the decoder. The Deeplabv3+ model
similarly employs an encoder-decoder structure, where fea-
tures are extracted using spatial pyramid pooling (i.e. pooling
at different grid scales) and atrous convolutions, resulting in
decoded segmentation maps with detailed object boundaries.

3) Loss Definition: We adopt a pixel-wise categorical
cross-entropy loss between he segmentation masks g(yn) and
the model predictions ŷn = 
(h(xn)). Functions g(·), and h(·)
are pre-processing transformations applied prior to training.

Function h(·) comprises the resizing of all acquired B-mode
images to 260 × 200 pixels, preserving the original aspect
ratio of the scans by appropriate zero padding, and subsequent
normalization between -1 and 1.

4) Training Strategy: Due to the larger (and more represen-
tative) set of pixel-level annotations for the convex probe,
compared to the linear probe acquisitions (1,005 and 426 anno-
tations, respectively), we here specifically focus on the convex
acquisitions. We split our dataset into a train (70%) and test
set (30%) at a patient level, i.e. all movies and frames from
one patient fall into a specific set. Among the 1005 frames,
a total of 1158 imaging biomarkers were segmented.

During training, we are given a training set of N image-label
pairs T = {(xn, yn)}N

n=1 where xn ∈ X and yn ∈ Y . The
model parameters are learned by back-propagating the earlier
defined categorical cross-entropy using the Adam optimizer
(default settings), with a learning rate of 10−5. Training was
stopped upon convergence of the training loss.

Each training batch consists of 32 B-mode images and their
corresponding segmentation masks, which are balanced across
patients and scores to avoid biases resulting from the length
of the ultrasound scan (number of frames in a single video)
and population-level distribution of scores. While these biases
generally aid the overall accuracy, they hamper patient-level
decision making across demographics.

To promote invariance to common LUS image
transformations and thereby improve generalization at
inference, each image-label pair is heavily manipulated
on-line during training by a set of augmentation functions
that were each activated on the image-label pair with a
probability of 0.33. The set of augmentation functions,
each applied with a randomly sampled strength bounded
by a set maximum, consists of: affine transformations
(translation (max. ±15%), rotation (max. ±15◦), scaling
(max. ±45%), and shearing (max. ±4.5◦)), multiplication
with a constant (max. ±45%), Gaussian blurring (σmax = 3

4 ),
contrast distortion (max. ±45%), horizontal flipping
(p = 0.5), and additive white Gaussian noise (σmax = 0.015).

5) Inference: To further boost robustness and performance,
we apply model ensembling and calculate the unweighted
average over predicted softmax logits of the U-net, U-net++,
and Deeplabv3+ models (all trained with data augmentation).

To allow for qualitatively assessment of the uncertainty of
the predictions, we produce pixel-level estimates of model
uncertainty by using Monte-Carlo (MC) dropout [43]. During
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TABLE I
F1 SCORES (%) FOR THE FRAME-BASED CLASSIFICATION UNDER DIFFERENT EVALUATION SETTINGS. SETTING 1 REPRESENTS EVALUATION ON

THE FULL TEST SET, SETTING 2 REPRESENTS THE ANALYSIS ON THE TEST SET WITH DROPPED TRANSITION FRAMES AND SETTING

3 REPRESENTS THE ANALYSIS ACCOUNTING FOR INTER-DOCTOR AGREEMENT. THE BASELINE FOR THIS SETTING IS PROVIDED

BY THE EVALUATION ON THE SET OF TEST SEQUENCES WITH VIDEO-LEVEL ANNOTATIONS (VIDEO ANN.). BEST AND

SECOND BEST F1 SCORES (%) ARE IN BOLD AND UNDERLINES, RESPECTIVELY

inference, we stochastically apply dropout in the latent space,
yielding multiple point estimates of our class predictions. The
amount of variation in the resulting predictions, ultimately
provides an indication of uncertainty for every pixel.

V. EXPERIMENTAL RESULTS

A. Frame-Based Score Prediction

To evaluate the performance of our proposed frame-based
scoring method and its constituent components we consider
the following baselines: i) CNN trained with Cross Entropy
loss (CE), ii) CNN trained with SORD, iii) Resnet-18 trained
with SORD, iv) STN based CNN trained with SORD;
v) CNN + Random Crop + SORD, a CNN trained on SORD
with random crops rather than bounding boxes extracted by
STN and vi) Our proposed Reg-STN model.

In Table I, we evaluate the performance of our method
in terms of F1-score. Since, the annotations in LUS images
are quite subjective (see later) we also report results for two
additional metrics, which are then defined as Setting 2 and
Setting 3, respectively. The metrics are: i) Setting 1 considers
the F1 score computed on the entire test set, ii) Setting 2
considers the F1 score computed on a modified version of
the test set obtained by dropping, for each video, the K
frames before and after each transition between two different
ground truth scores, potentially removing ambiguous frames
that present characteristics at the boundary between two
classes, thereby allowing us to identify the impact of noisy
labeling on the performance of the model; and iii) Setting 3,
we drop the most challenging videos by using the inter-doctor
agreement between the 5 independent video-level annotations.
In practice, we only keep in the test set the videos with
at least A doctors agreeing on the video-level annotations.
For completeness, we report under Setting 3 also the scores
obtained on the complete portion of the test set containing
video-level annotations (Video Ann.).

As shown in Table I, our proposed Reg-STN trained with
SORD beat the baseline models in most of the settings and
is the second best in the remaining. On average, Reg-STN
performs the best amongst all baselines. This proves the effec-
tiveness of our proposed method for doing frame-based predic-
tion for pathology detection in LUS images. Our experiments
were run on a RTX-2080 NVIDIA GPU. As for computational

TABLE II
MEAN AND STANDARD DEVIATION OF WEIGHTED F1 SCORE,
PRECISION AND RECALL COMPUTED OVER THE FIVE CROSS

VALIDATION FOLDS, FOR THE PROPOSED VIDEO-BASED

CLASSIFICATION METHOD AND BASELINES

complexity, it takes ∼11 hours to train a CNN + Reg-STN +
SORD model on this hardware.

B. Video-Based Score Prediction

We evaluate video-based score prediction in terms of
weighted F1 score, Precision and Recall. These are obtained
by first computing the metric for each score (zero to three),
and then computing the weighted average over scores, where
the weight is the fraction of instances having that score.
Note that weighted recall corresponds to (multiscore) accu-
racy, i.e., the fraction of correctly predicted scores over the
total number of predictions. Table II reports averages and
standard deviations of these metrics over the five folds of
the cross validation procedure. We compare our video-level
predictor with two standard aggregation methods, max_argmax
and argmax_mean. The former implements the hard rule
described in Section IV-B. It labels each frame with the most
probable score according to the frame-level predictor, and
takes the maximal score along the video. The latter averages
frame-level predictions over the video and returns the score
with the maximal average. The proposed method outperforms
both baselines in terms of F1-score, precision and recall.
Table III shows confusion matrices for the three methods,
obtained by concatenating the predictions for all folds.
As expected, the max_argmax hard rule is strongly biased
towards predicting the highest score, resulting in bad
performance on all other scores. On the other hand,
the argmax_mean baseline has the best performance in pre-
dicting score zero, but performs poorly on the other scores
(under-predicting scores one and three and over-predicting
score two). The uninorm-based aggregation is more balanced,
outperforming each of the baselines on three out of four scores.
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Fig. 5. Four examples of B-mode input image frames (first column), their annotations (second column) including COVID-19 biomarkers
(moderate/score 2: orange, severe/score 3: red), and signs of healthy lung (blue). The corresponding semantic segmentations and contours of
COVID-19 markers by deep learning are given in the third and fourth colomn, respectively.

TABLE III
CONFUSION MATRICES (%) FOR THE PROPOSED VIDEO-BASED

CLASSIFICATION METHOD AND BASELINES

C. Semantic Segmentation

Fig. 5 shows several illustrative examples of semantic
segmentation results of our ensemble network, along with
their ground-truth annotations. A quantitative assessment and
comparison of segmentation performance for the U-Net,
U-Net++, Deeplabv3+, and ensemble models are provided
in Table IV. We observe that using on-line augmentation of
images and annotations in combination with model ensembling
yields a strong performance gain over a baseline U-Net,
increasing the Dice coefficient from 0.64 to 0.75 for the
union of COVID-19 markers. The ensemble model yields a
categorical Dice score of 0.65 (mean across the segmentations
for score 0, 2 and 3). This metric was 0.47 for our baseline
U-net.

TABLE IV
SEGMENTATION PERFORMANCE IN TERMS OF THE MEAN

CATEGORICAL ACCURACY ACROSS ALL PIXELS AND

SCORES (ACC.), THE DICE COEFFICIENT FOR THE

UNION OF COVID-19-RELATED SCORES (DICE),
AND THE MEAN DICE ACROSS SCORES 0, 2,

AND 3 (CAT. DICE). SCORE 1 WAS EXCLUDED

DUE TO THE LOW NUMBER OF ANNOTATIONS

In Fig. 6 we provide a visualization of uncertainty in the
predicted segmentations for two example images by plotting
the pixel-wise standard deviation yielded by MC dropout
across 40 samples. Arrows in (A) indicate a region displaying
COVID-19 markers for which ambiguity in the exact shape
and extent are well reflected in the pixel-level uncertainty.
Arrows in (B) indicate a seemingly false-positive region which
was assessed as a high-grade COVID-19 marker by the deep
network, and not annotated as such. Interestingly, retrospec-
tively the network output was judged as a true positive by the
annotators, showing an area of hyperechogenic lung below the
pleural surface [12], which characterizes a high permeability
and advanced disease state.
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VI. DISCUSSION AND CONCLUSIONS

A. Frame-Based Score Prediction Evaluation

In Table I we ablate the contribution of the building blocks
of our model for frame-based prediction. The replacement of
the traditional cross-entropy (CE) with the SORD loss for
ordinal regression clearly improves the performance. On the
other hand, we found that the addition of STN leads to a drop
in the F1-score because of the additional trainable parameters
(as many as the CNN) introduced by the STN and the absence
of a regularisation. However, STN comes with two positive
side effects: (i) it provides weakly supervised localizations
without using fine-grained supervision; and (ii) enables the use
of consistency-based regularization, which is very beneficial
in terms of performance. Our full model, which embeds the
STN module, the SORD loss and the proposed consistency loss
achieves an F1-score of 65.1, outperforming all the baselines
by a large margin. To further investigate if the boost occurs
because of the consistency term or the STN, we conducted an
experiment using two sufficiently overlapping random crops
and enforced consistency loss between the two. Unsurpris-
ingly, the F1-score for CNN + Random Crop + SORD stays
much below to our proposed method. We hypothesize that the
consistency loss is only useful when the crops cover the area
of the artefact.

In contrast to the previous work [18], we found that the use
of more complex architectures like ResNet18 does not bring
any positive improvement in performance. We reason that this
is due to the low intrinsic complexity of the task. Conversely,
we suggest that most of the confusion of the model is caused
by the noise in both frames and labels. In turn, we believe
that this noisiness is due to the subjectivity of the annotation
and the presence of ambiguous frames. In fact, frame labels
do not take into account that multiple artifacts can be present
at a time. This happens mostly when the sensor is moving,
causing a transitions from one score to another. In order to
highlight the concentration of the errors of our models around
transitions, we devise the experimental Setting 2, as shown in
Table I, in which we drop frames close to transition points. The
results in the Table I show that removing ambiguous frames
from the test set dramatically reduces the amount of errors of
the model, regardless of the architecture, empirically validating
our hypothesis about noisy labeling.

In Table I we also measured how the subjectivity of the
annotated scores affects the performance of the model in
Setting 3 and discovered that when there is a strong agreement
among doctors (more than 2 doctors agree on a score) our
network performs notably better, increasing the F1-score by
almost 3 points. This suggests that some videos are intrinsi-
cally more ambiguous than others. In addition, we found that,
on this matter, the network seems to be behave similarly to
human annotators, which is a desirable property. Moreover,
although it seems counter-intuitive, our experiments point out
that the performance of the model does not change much after
a certain degree of agreement between doctors (A = 3 vs.
A = 4). This is probably caused by the fact that imposing
stronger agreement makes the test set smaller, yielding less
statistically significant results.

Finally, we visualize the crops yielded by the STN and
illustrate them in Fig. 4. We considered two kind of affine
transformations modeled by the Reg-STN in our experiments:
i) learnable translation with fixed scaling; and ii) learnable
translation, scaling and rotation. We compute an F1-score
of 65.9 when the STN models a learnable translation with
fixed scaling. In both the cases the STN produces highly
localized crops that mostly hinges around the area of patholog-
ical artifact. Interestingly, for both convex and linear sensors
acquisitions, the Reg-STN learns to ignore the area above
the pleura, which is essentially irrelevant for the prediction
of a frame. This validates the usefulness of incorporating
STN blocks in our frame-based predictor. We also report the
heatmaps produced by GradCam [44] for the same images.
Qualitatively, GradCam does not always focus on the relevant
areas of the image. For example, for the linear probe image
displayed in the figure, attention is given to the intercostal
tissue layers and not to the areas of the image below the
pleural-line, which are the areas of interest for the analsysis of
LUS data. Also, we noticed that the quality of the heatmaps
deteriorates when the prediction of the network is incorrect.
Moreover, we found it hard to produce reasonable boxes
from the heatmaps produced by GradCam, since it requires
thresholding. For these reasons, we believe that STN produces
superior localizations.

B. Video-Based Score Prediction Evaluation

When trained on the annotations by the most expert clini-
cian, video-based classification achieves an F1-score of 61%,
a precision of 70% and a recall of 60%. It is noticeable
that these values are in line with the low inter-annotator
agreement reported in Section III, which together to the small
number of samples with video-level annotations can explain
the high variance of the scores across folds. We expect that
extending our relatively small set of video-level annotations
will help counteracting the labeling noise, increase the model
performance and reduce its variance.

C. Segmentation Evaluation

Our segmentation model is able to segment and dis-
criminate between areas in B-mode LUS images that con-
tain background, healthy markers and (different stages of)
COVID-19 biomarkers at a pixel-level, reaching a pixel-wise
accuracy of 96% and a binary Dice score of 0.75. Alongside
these segmentations, we provide spatial uncertainty estimates
that may be used to interpret model predictions.

Interestingly, and importantly, none of the highest (and most
severe) score index annotations in the test set were missed
by our model, judged by visual assessment of the result-
ing segmentations, and by analysing the relative image-level
intersections among the corresponding predicted and anno-
tated regions. Moreover, we observed model predictions of
COVID-19-positive regions, that had however not been anno-
tated as such. Fig. 6B shows a representative example of
such a case. After re-evaluating some of such examples from
the test set, together with the annotators, we learned that
the annotators were sometimes unsure whether to annotate a



2686 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 39, NO. 8, AUGUST 2020

Fig. 6. Two examples (A, B) of class uncertainty in the segmentations, showing B-mode input image frames (first column), annotations (second
column), including COVID-19 biomarkers (moderate/score 2: orange, severe/score 3: red), the corresponding semantic segmentations by deep
learning (third column), and pixel-level COVID-19 class uncertainty by MC-dropout (fourth column).

region as e.g. score 2 or 3, and therefore decided that the
marker was not clear enough to annotate the region at all,
leading to the aforementioned discrepancy.

Segmentation performance and extraction of semantics
could be further boosted by leveraging temporal structure
among frames in a sequential model. Such models could
learn from annotations across full videos, or through partial
annotations and weak supervision. We leave these extensions
of the present method to future work.

D. Limitations of the Dataset

In order to unravel the specific characteristics of this disease,
researchers needed to gather as much data from patients as
possible. However, due to the enormous impact and rapid
spread of infected patients, data gathering in an organized
manner proved a challenge. As a result, the precise demo-
graphics of the patient group in our database remain unknown.

Ideally, the dataset should be larger, more heterogeneous,
and more balanced in term of scores in order to be used for
learning accurate deep models. In our case, the data has been
collected in a limited set of hospitals, all of them located
in Italy. Furthermore, the way data was collected is prone
to certain bias, e.g. due to a high patient inflow, the most
severe patients were prioritized and assessed, and ultrasound
diagnosis was performed on patients with a high clinical
suspicion. No subsequent testing was done, resulting in the
possible inclusion of false positive cases.

Labels in the ICLUS-DB turned out to be noisy. Further-
more, for frame-based classification and segmentation tasks
the inter-operator agreement was not available. The noise
can be indirectly observed in Table I, where using only
a selection of training samples, performance improves by
almost 5%. Extending the database to obtain frame-level labels
from multiple annotators would surely lead to more robust
models. Finally, the included LUS videos with score 0 are
all of healthy patients, and therefore by no means we claim
to distinguish between COVID-19 patients and those with
different pathologies.

E. Possible Applications

A benefit of using ultrasound is the low risk of
cross-infection when using a plastic disposable cover and
individually packaged ultrasound gel on a portable handheld
machine [45]. This is in contrast with use of CT, for which
rooms and systems need to be rigorously cleaned to prevent
contamination (and preferably reserved for patients with a
high COVID-19 suspicion). LUS can be performed inside the
patient’s room without need of transportation, making it a
superior method for point-of-care assessment of patients.

Moreover, ultrasound renders real-time images and, com-
bined with our DL methods, provides results instantly. It may
also directly assist in triage of patients; first-look estimation
of the disease’s severity and the urgency at which a patient
needs to be addressed. In addition, low and middle-income
countries, where diagnosis through RT-PCR or CT may not
always be available, can particularly benefit from low-cost
ultrasound imaging as well [46]. However lack of training on
the interpretation of these LUS images [47] could still limit
its use in practice. Our proposed DL method may therefore
facilitate ultrasound imaging in these countries.
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