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Prior-Attention Residual Learning for More
Discriminative COVID-19 Screening
in CT Images
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and Dahong Qian

Abstract— We propose a conceptually simple framework
for fast COVID-19 screening in 3D chest CT images. The
framework can efficiently predict whether or not a CT scan
contains pneumonia while simultaneously identifying pneu-
monia types between COVID-19 and Interstitial Lung Dis-
ease (ILD) caused by other viruses. In the proposed method,
two 3D-ResNets are coupled together into a single model for
the two above-mentioned tasks via a novel prior-attention
strategy. We extend residual learning with the proposed
prior-attention mechanism and design a new so-called prior-
attention residual learning (PARL) block. The model can be
easily built by stacking the PARL blocks and trained end-
to-end using multi-task losses. More specifically, one 3D-
ResNet branch is trained as a binary classifier using lung
images with and without pneumonia so that it can highlight
the lesion areas within the lungs. Simultaneously, inside
the PARL blocks, prior-attention maps are generated from
this branch and used to guide another branch to learn
more discriminative representations for the pneumonia-
type classification. Experimental results demonstrate that
the proposed framework can significantly improve the per-
formance of COVID-19 screening. Compared to other meth-
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ods, it achieves a state-of-the-art result. Moreover, the
proposed method can be easily extended to other similar
clinical applications such as computer-aided detection and
diagnosis of pulmonary nodules in CT images, glaucoma
lesions in Retina fundus images, etc.

Index Terms— COVID-19, pneumonia, residual learning,
medical image classification, deep attention learning.

|. INTRODUCTION

HE break of novel coronavirus pneumonia (COVID-19)

has rapidly spread to most countries worldwide. To date
(April 10, 2020), there have been 1,521,252 confirmed cases
all around the world [1]. In clinical practice, compared to
the real-time reverse-transcriptase polymerase chain reaction
(RT-PCR), computed tomography (CT) is an effective tool
for much faster screening of COVID-19. However, manual
screening of COVID-19 from CT images is a time-consuming
and labor-intensive task, since doctors must find the lesions
from volumetric chest CT scans in a slice-by-slice manner.
Besides, as shown in Fig. I, the manifestations of COVID-
19 in CT images are similar to other types of viral pneumonia,
which makes it hard to manually distinguish COVID-19.

A reliable computer-aided diagnosis system (CADs) of
COVID-19 is supposed to be useful in clinical practice, which
can alleviate the doctor’s workload and improve the detection
efficiency. However, developing such a system is a challenging
task, because the lesions of pneumonia in CT images have
wide variations in appearances, sizes, and locations in the lung
regions, as shown in Fig. 1. It seems difficult to design suitable
methods to handle the complicated characteristics of the
pneumonia lesions using just the classical image processing
techniques or conventional machine learning methods [2]-[4]
that rely on handcrafted descriptors.

In recent years, the development of deep convolutional
neural networks (DCNNs) has led to a series of breakthroughs
for image classification [5]-[8], object detection [9]-[14], and
semantic segmentation [15]-[19] in the field of natural image
processing. CNNss expert at automatically learning rich high-
level discriminative semantic features from images, removing
the need for handcrafted descriptors. These breakthroughs
also revealed that deeper models can achieve superior per-
formance [5]. Therefore, it is feasible that training very
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(a) COVID-19

(b) ILD

Fig. 1. Examples of (a) COVID-19 and (b) interstitial lung disease (ILD)
in CT images as shown in the left and the right column, respectively. The
main lesion regions are indicated with red arrows and it can be seen that
the lesions have inter-class similarity and intra-class variation, which is
one of the main challenges for the COVID-19 screening task.

deep CNN-based models to achieve promising performance in
COVID-19 screening. Nowadays, it is very easy to construct
robust deep models with more than 100 layers using residual
learning blocks [5].

However, some challenges remain and should be addressed
when applying the above-mentioned deep learning methods for
the proposed COVID-19 screening task. First, it is very hard
to collect sufficient samples together with accurately annotated
labels to train very deep models in a short time, especially
for object detection and segmentation models. Training of
these models requires additional meticulous annotations that
were manually labeled by experienced doctors. One example
is that training most object detection models requires bounding
boxes of desired targets, while training segmentation models
requires lesion-aware masks. Labeling these annotations is
also very time-consuming and impractical to doctors. Second,
a volumetric CT scan has three dimensions. The computational
cost and memory requirement both increase with 3D inputs.
It is infeasible to train a very deep 3D CNN-based model due
to the constraint of hardware resources. Third, a perplexing
problem is the inter-class similarity and intra-class variation
of pneumonia lesions, as demonstrated in Fig. 1. Finally, a lung
image infected with pneumonia still contains a large part of
non-lesion regions, which also have a wide and complicated
variation of tissues. Obviously, the non-lesion regions have
great negative impact on the performance. It is much more
complicated than detecting objects of scenes in natural images.

To address the above-mentioned issues, we propose a
novel multi-task prior-attention residual learning strategy for
one-stage lesion-aware COVID-19 screening in CT images.
It exhibits the following appealing properties:

(1) Two 3D-ResNet based sub-networks are integrated
into a single model for pneumonia detection and its type-
classification. The sub-network for the type-classification task
is implemented as a binary classifier and it can identify
COVID-19 from interstitial lung disease (ILD) caused by other

viruses. Besides, the sub-network for the detection task is also
designed as a binary classifier that can predict whether or
not a given CT scan contains pneumonia. Compared to object
detection or segmentation methods, the proposed method (that
relies on only classification models) is much easier to imple-
ment, because it requires only weak image-level labels and
fewer hyper-parameters at the training stage. Training models
which use only image-level labels make it possible to collect
relatively sufficient samples in a short time.

(2) Inspired by some recent advances of deep attention
learning mechanisms [21]-[24], especially by the self-attention
residual learning for state-of-the-art skin lesion classification
[24], we designed a “prior-attention” mechanism in the pro-
posed models. Many works [25], [26] have demonstrated that a
DCNN model trained for a classification task has a remarkable
localization ability that can highlight the discriminative regions
in images, despite being trained with only image-level labels.
Since the proposed sub-network for the detection task is
designed as a binary classifier and trained using CT scans
with and without pneumonia, it is supposed to have the ability
to provide lesion-attention information. Therefore, we fully
use its hierarchical feature maps to generate lesion-aware soft
attention maps. Then, we feed the attention maps into the
corresponding layers of the type-classification sub-network to
make it focus on the lesion regions.

(3) Similar to the residual learning [5], the proposed strategy
is also based on modular designment. The prior-attention
mechanism is incorporated into residual blocks (referred to
as PARL blocks). Thus, deep models can be easily built by
stacking the PARL blocks and trained end-to-end.

(4) The afore-mentioned issues (i.e., insufficiency of
training data, inter-class similarity, intra-class variation, and
non-lesion regions of images) are the common challenges
in the whole field of medical image processing. Among
these issues, the “non-lesion regions” can aggravate the other
issues and it is the main obstacle in improving performance,
especially under scenarios where the non-lesion regions
in medical images have complicated tissue variations. The
proposed method can alleviate this issue by learning effective
lesion-aware attention information from targeting lesion
images (or patches) and normal images (nor background
patches). Therefore, the proposed method can be also applied
to a variety of similar scenarios in clinical practice, such as
skin lesion classification [24], thorax disease classification
[27], glaucoma detection [28], pulmonary nodule detection
[29] and their malignancy prediction [30], etc.

Il. RELATED WORK
A. Semantic Segmentation

Semantic segmentation plays important role in the field of
pattern recognition. Its main task is to identify all pixels that
belong to objects of a specific class in an image. To this
end, many DCNN-based segmentation methods [15]-[19] have
been proposed in literature. Long et al. [15] proposed a fully
convolutional networks (FCN) for semantic segmentation in
natural images. Convolutional operations are stacked layer-by-
layer to extract hierarchical feature maps of an input image.
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The final layer of the feature maps is then used to generate
a pixel-wise probability score map indicating which class the
pixels belong to. Upon the FCN, several variants [16]-[19]
were developed for more precise segmentation.

Recentlyy, DCNN models were also developed for
medical image segmentation. Ronneberger et al. [16]
developed a U-Net for biomedical image segmentation.
Tang et al. [31] modified V-Net [32] to a 3D version for lung
lobe segmentation in CT images. In this study, a 3D U-Net
was also trained for lobe segmentation as a pre-processing
step of the COVID-19 detection.

B. Deep Attention Learning

The performance of a model is supposed to depend heavily
on the model depth (i.e., the deeper, the better). To train
robust models as deep as possible, many prior works have
focused on either collecting large-scale datasets (e.g., the Ima-
geNet database [33]) or developing powerful computational
tricks, such as the dropout [34], normalizations [35], [36] and
“shortcut connections” [5]. Among these tricks, the dropout
and normalizations can effectively suppress the over-fitting
issue. However, the main obstacle in training deep models is
the so-called degradation problem [37]. The residual learning
technique [5] successfully addresses this issue using residual
learning blocks with “shortcut connections”. Although these
tricks have demonstrated their validity in many applications,
it is still a challenge to train very deep models in some specific
scenarios (e.g., the field of medical image analysis) due to the
complicated application tasks and the shortage of large-scale
datasets.

Recently, some works [21]-[24] have investigated that
the attention mechanism is an effective technique that helps
further improve the performance of DCNNs. Wang et al. [21]
proposed a residual attention network for image classification.
The network is constructed by a cascade of several attention
modules. Each module contains a trainable encoder-decoder
structure to learn soft attention masks, which are then
multiplied to the convolutional feature maps to highlight
important information. Hu et al. [22] designed a “Squeeze-
and-Excitation” (SE) block, with the goal of improving
the quality of representations from a network by explicitly
modelling the interdependencies between the channels of its
convolutional features. Chen et al. [23] took full advantage
of the three characteristics of CNN features, namely spatial,
channel-wise, and multi-layer, for visual attention-based
image captioning. They designed a novel SCA-CNN model
that learned to pay attention to every feature entry in the multi-
layer 3D feature maps. Inspired by the self-attention ability of
CNNs [26], Zhang et al. [24] designed a novel self-attention
residual network for skin lesion classification. The network
can work well without adding any extra learnable layers.

Although all the above-mentioned attention mechanisms
effectively improve the performance of deep learning models
in large-scale natural image classification tasks, they still
suffer from a main drawback for medical image classification.
Generally, lesions in medical images have the issue of
inter-class similarity, intra-class variation and complicated

contextual information as discussed in Section I. These
attention mechanisms (trained using only targeted lesion
images) may fail to learn rich discriminative representations
of different lesions. In contrast, the proposed prior-attention
mechanism can learn more effective soft-attention maps,
since the training is driven by binary classification between
lesion images and normal images without lesions.

C. COVID-19 Screening

Some attempts [38]-[46] have been made to develop CAD
systems for COVID-19 screening in CT images. For example,
Li et al. [44] trained a 2D convolutional neural network (CNN)
for three-category classification of CT scans, i.e. COVID-19,
community acquired pneumonia (CAP), and non-pneumonia.
The network takes a series of CT slices as input and uses
the 2D-ResNet50 as a backbone to extract CNN features from
each slice of the CT series. The features are then combined
using a max-pooling operation and the resulting map is fed to
a fully connected layer to generate a probability score for each
class. Xu et al. [45] first used a 3D segmentation model, i.e. V-
Net [32] to segment lesion candidates from CT images. Then,
the candidates were classified into COVID-19 or Influenza-A
viral pneumonia using a 2D-ResNet18 model.

Although these attempts have demonstrated their validity
in COVID-19 screening, some drawbacks remain in clini-
cal application. More specifically, there are many causes of
pneumonia such as infections from various types of bacteria
and viruses. Xu et al. [45] classified pneumonia into either
COVID-19 and Influenza-A. This classification task is too sim-
ple for clinical application. In contrast, the work proposed by
Li et al. [44] seems more significant in clinical application as
their model can distinguish COVID-19 from CAP, rather than
just Influenza-A. However, one of the main challenges in clin-
ical practice is identifying COVID-19 from other viral pneu-
monia types. The CAP cases collected by Li er al. [44] contain
a large number of non-viral pneumonia cases. Therefore,
the ability to differentiate COVID-19 from other viral pneumo-
nia types needs further verification. Besides, they trained a sin-
gle 2D-CNN for classifying non-pneumonia (Non-Pneu), CAP,
and COVID-19. This training strategy may fail to learn suf-
ficient discriminative semantic representations for effectively
differentiating pneumonia types due to two main reasons:
(1) Models trained for multi-class categorization tasks may
suffer from the inter-class interference issue [11]. For instance,
the Non-Pneu cases inevitably interfere with the training of
classification between COVID-19 and other pneumonia types.
(2) A lung image infected with pneumonia still contains a large
part of non-lesion regions as mentioned in Section I, which
also prevents the improvement of classification performance.

In summary, our contributions can be concluded as: (1)
our study focuses on developing techniques for classifying
COVID-19 from other types of viral pneumonia. (2) We
directly use 3D CNNs to extract features from the whole
3D lung regions so that richer 3D spatial information can
be learned. (3) We conduct experiments to demonstrate that
the proposed method can achieve state-of-the-art performance.
The main improvement of the proposed method relies on
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the application of prior-attention mechanism and multi-task
training for learning more discriminative lesion-aware repre-
sentation for the COVID-19 screening.

I1l. METHODS

The proposed framework for the COVID-19 screening con-
tains two main stages: (a) lobe segmentation using 3D-Unet
[20] as a pre-processing step and (b) pneumonia prediction
using 3D-ResNets with prior-attention mechanism. Details
of the two stages are presented in Section III-A and III-B,
respectively.

A. Lobe Segmentation

Lung segmentation in CT images is an important pre-
requisite step for automatic pneumonia detection. The left and
right human lungs are divided into a total number of five lobes
(i.e., two lobes in the left lung and three in the right). Previous
investigators used UNet or its variants to segment lung regions
or lung lobes [47]. Lobe segmentation is more complicated
than lung segmentation. However, in clinical practice, lobe
information can play a pivotal role as reference for doctors
to locate pulmonary lesions and perform their quantitative
analysis of the lesions [47]. Hence, it is a basic function in
most commercial CAD systems. In this study, we also directly
segment lung regions into five lobes.

To achieve this task, we trained a 3D-UNet [20] for lobe
segmentation in volumetric CT scans. For a given scan,
we first use thresholding and connected-component labeling

algorithms to obtain a binary lung mask that indicates the
coarse lung regions [29]. Then, we crop a sub-image con-
taining lung regions covered by convex hull of the lung mask,
which removes noise outside the lungs, as well as reducing the
cost of GPU memory. Finally, we apply the trained 3D-UNet
model on the sub-image to obtain its lobe mask.

B. Pneumonia Prediction

After the lobe mask is obtained, we crop refined lung
regions according to the lobe mask. The cropped image is
then resized to 96 x 96 x 96 and fed into the 3D-ResNets
for pneumonia prediction.

As shown in Fig. 2, two 3D-ResNet based sub-networks are
designed for two tasks: pneumonia detection (as demonstrated
with green cubes) and pneumonia-type classification (as
demonstrated with red cubes). The detection sub-network is
implemented as a binary classifier that can identify whether
or not a given CT scan contains pneumonia, while the
type-classification sub-network is implemented for binary
classification of ILD and COVID-19. The two sub-networks
are fused together using an extra fully-connected layer (as
illustrated with the yellow rectangle in Fig. 2) for final three-
category classification, i.e., Non-Pneu, ILD, and COVID-19.
To enhance the COVID-19 screening, the convolutional
layers of the two sub-networks are closely combined via
a prior-attention mechanism. The inference procedure can be
expressed as:

P=f (I, Waer, Weis|S Waer), Wie) (1)
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where I is the volumetric lung image that fed into the
model f. Wy, and W indicate the learned convolutional
weights of the detection and the type-classification sub-
network, respectively.W s denotes the learned weights of
the fully-connected layers. S(-) denotes an attention function.
The output P is a softmax probability vector:

P= I:pnon, pild, pcvd:l , (2)

where p"?”, pid_ and p®? are the probabilities corresponding
to the three classification categories (i.e., Non-Pneu, ILD, and
COVID-19), respectively.

Normally, the lung areas in a CT image contain a large part
of non-lesion regions, where complicated variation of lung
tissues exist, e.g., vessels and fibers. Obviously, these non-
lesion regions have negative impact on the type-classification.
To alleviate this issue, we generate soft lesion-aware maps
using the convolutional feature maps of the detection sub-
network who has remarkable lesion localization ability. The
soft maps are then fed into the type-classification sub-network
to make it pay attention to the lesion regions. Since the
attention information is generated from another model, rather
than the type-classification model itself, we call it “prior-
attention”.

In practice, both sub-networks can be trained independently,
i.e., training the detection sub-network followed by training the
type-classification sub-network and the extra fully-connected
layer that is used to fuse the two sub-networks. However, this
training strategy has two main drawbacks. First, multi-stage
training, rather than end-to-end training, is much more time-
consuming. Second, it is complicated to implement the prior-
attention mechanism that transfers the attention information
from a pre-trained detection model to a type-classification
model. Accordingly, we designed a new residual learning
block that incorporated with the prior-attention mechanism
(i.e., the PARL block as shown in Fig. 2) to make it possible
that hierarchical prior-attention information can be transferred
inside the basic blocks. Benefitting from this proposed modu-
lar network design, deep attention models can be easily built
by cascading the blocks and trained end-to-end using multi-
task loss. Details are introduced in Section III-C and III-D.

C. PARL Block

As shown in Fig. 2, each PARL block has two branches:
a branch for the pneumonia detection task (demonstrated by
the green cubes) and another branch for the type-classification
task (demonstrated by the red cubes).

The classification branch is a prior-attention residual learn-
ing unit that is composed of three stacked 3D convolutional
layers, a “shortcut connection”, and an ‘“attention connection”
(each convolutional layer is followed by a batch normalization
layer and a ReLU activation layer which are not drawn
in Fig. 2 for simplicity reasons). If the shortcut connec-
tion, the attention connection, and the underlying mapping
fitted by the convolutional layers are denoted as o2(x,),
a(x1, x2)and h%(x2, W»), respectively, the output of the unit
can be expressed as follows:

F2(x2) =02(x) + i (x2, W) + 7 x a(x1,x2), (3

where xp, W, represent the input feature map of the unit
and the weights learned by the convolutional layers in the
classification branch, respectively. x is the input feature map
of the residual unit in the detection branch. y is a weighting
factor that controls a trade-off between the attention feature
map and other two feature maps. In our implementation, y
is set to 1.0 by default for simplicity reasons. According to
the original residual learning [5], the short connection can be
simply implemented as an identity mapping:

a2 (x;) = x2. 4)

In (3), the attention connection a(xy, x7) is the key factor
to improve the classification performance. It is obtained by
multiplying a soft attention map to the input feature map on
an element-wise basis:

a(x1,x2)=S5(0) - x2, (5)

where O = h'(x|) denotes the feature maps of the final
layer in the detection branch. The term of S (-) represents a
normalization function used to generate the soft attention map
from the feature map O:

o .
e ik
z ; (6)

05,
e
Zi”j’,k/e v

where (i, j, k) and c¢ represent the spatial coordinates and the
channel index of O, respectively. S (+) uses a spatial softmax
function to highlight the important regions in each channel.

Note that the channel number of O should be equal to
that of x, to satisfy the element-wise multiplication (this
is our default implementation for simplicity reasons). Else,
a1l x 1 x 1 convolutional operation can be performed on O
to harmonize the channel number.

D. Model Building and Loss Function

A deep model with arbitrary depth can be easily constructed
by stacking PARL blocks as shown in Fig. 2. Similar to the
original residual learning [5], multiple blocks are grouped
together followed by a transition layer (CNN operations with
stride 2) to reduce spatial size of the feature maps. In our
implementation, two main hyper-parameters are used for build-
ing the model: p and ¢;|i = 1,2,..., p, which are used to
control the number of groups and the number of PARL blocks
in each group, respectively.

To train the model, a mini-batch of samples, including
normal images without pneumonia, images with ILD, and
images with COVID-19 are fed into the model per iteration.
The model is optimized by minimizing an objective function
of multi-task loss that is defined as:

Mis

1 cls . cls
DL (v L9
i=1

M
d det g4
L= > LG, 5 +

i=1

1
Mg

M
_}_% Z Leom (quom ,

i=1

¥y, (D

where the first term, the second term, and the third term are the
cross entropy for the detection, the binary type-classification,
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and the final combined three-category classification task,
respectively. M and M;; are mini-batch size and the number
of positive samples (i.e., ILD and COVID-19) in the mini-
batch. y; and y; represent the ground truth and the predicted
label. For computing the loss of the detection branch, yd‘” i

set to O if the sample is a normal image, and is set to 1 if
the sample is an image infected with ILD or COVID-19. For
computing the loss of the classification branch, the negative
samples (i.e., the normal images) are directly ignored and yClS
is set to 0 or 1 if the positive sarn)ple is infected with ILD

or COVID-19. The term yl.de’ LC ( , 5¢1) means the binary
classification loss is activated only for positive samples (i.e.,
yde" = 1) and disabled otherwise (y?*' = 0). For computing
the loss of the final combined three-category classification
task, yf"’" is set to 0, 1 or 2 for Non-Pneu, ILD, and COVID-

19, respectively.

IV. MATERIALS

For this study, ethical approval was obtained, and the
informed consent requirement was waived (Approval Number:
KY2020036). We collected CT scans of 4657 patients (F/M,
1946/2711; mean age: 46 + 17 years) from several cooperative
hospitals, including a total of 936 normal scans, 2406 scans
with ILD caused by viruses, and 1315 scans with COVID-19.
All the pneumonia diseases were confirmed as positive by
RT-PCR or serum antibody test besides COVID-19. The ILD
patient inclusion or exclusion criteria was executed based on
“An official American Thoracic Society/European Respiratory
Society statement” by two experienced respiratory physicians
(HL with 10 years of experience and FX with 15 years of expe-
rience). All the ILD CT images were independently reviewed
by two experienced radiologists in CT diagnostics (XL with
8 years of experience and CL with 10 years of experience).
The ILD CT images must have the pulmonary fibrosis features.
In clinical practice, there were patients who underwent several
scans. For each of these patients, we selected only the scan
that was firstly reconstructed with the thinnest slice-thickness
for building the dataset.

CT examinations were performed using scanners from
different manufacturers with standard chest imaging proto-
cols. Each scan contained 96-539 slices with a varying slice-
thickness from 0.5 mm to 3 mm. The reconstruction matrix of
each slice was 512 x 512 with in-plane pixel spatial resolution
from 0.63 mm x 0.63 mm to 0.83 mm x 0.83 mm. From these
collected scans, we randomly selected 60 scans (20 scans of
each class) for online-evaluation, 600 scans (200 scans of each
class) for offline-test, and the rest 3997 scans for training and
5-fold cross-validation.

In order to train the 3D-Unet for the lobe segmentation,
we collected a total of 251 chest CT scans with corresponding
voxel-level lobe labels. Among these scans, 51 cases were
pneumonia-free and publicly available. They were chosen from
the LUNA-16 dataset [48] and annotated by Tang et al. [31].
The 3D-Unet trained using just these scans were not reliable
for segmentation of scans infected with pneumonia. Hence,
we collected additional 200 scans with pneumonia to augment
the training dataset. These scans were annotated by the two
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Fig. 3. The 3D-UNet architecture for lobe segmentation. Input image
size is 128 x 96 x 128 and output size is 128 x 96 x 128 x 6 where
the number of channels (i.e., 6) correspond to 6 categories, including
non-lung regions and 5 lobes.

radiologists (i.e., XL and CL) and were not included in the
above-mentioned 4657 scans.

To reduce the variations such as slice-thickness between the
scans, we interpolated each scan to 1 mm x 1 mm x lmm
and converted CT numbers (Hounsfield units) to gray-scale
values using lung window (L/W: -500 HU/1500 HU).

V. EXPERIMENTS
A. Model Configurations

Network architecture of the 3D-UNet trained for lobe
segmentation is shown in Fig. 3. The input image size is
128 x 96 x 128 (Z x Y x X) and the output size is
128 x 96 x 128 x 6. The six channels of output map
correspond to predicted probabilities of six categories,
including non-lung regions, upper and inferior lobes of left
lung, and upper, middle, and inferior lobes of right lung,
respectively. As introduced in Section III-A, to remove most
non-lung regions, each scan is pre-segmented using a coarse
lung segmentation method. The resulting image has a wider
side in the X direction than the Y direction. Hence, we set
the anisotropic input size (i.e., 128 x 96 x 128) empirically
in our implementation to keep the shape and the size of the
image as much as possible.

During the training stage of 3D-Unet, a mini-batch size of
2 samples were fed into the model. In this study, we focused
only on the pneumonia classification tasks, rather than the lobe
segmentation task. More details of 3D-UNet and lobe segmen-
tation can be found in the paper proposed by Cicek et al. [20]
and the paper proposed by Tang et al. [31], respectively.

For classification tasks, we compared the proposed multi-
task prior attention residual learning strategy for the
COVID-19 screening with two baselines. One is the residual
learning without attention and another is the residual learning
with the self-attention mechanism [24]. All of these strategies
are based on modular designment. The major difference of
these residual learning blocks is illustrated in Fig. 4.

In our experiments, a total of five models were built for
comparison, namely WA-66, SA-66, WA-66-M, SA-66-M, and
PA-66-M as tabulated in Table I. The letters “WA”, “SA”,
and “PA” in the model names are the abbreviations of the
without-attention, the self-attention, and the prior-attention
strategy, respectively. The number “66” in the model names
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Fig. 4.  The main difference between the residual blocks (a) without
attention (WARL), (b) with self-attention (SARL) [24], and (c) with the
proposed multi-task prior-attention (PARL).

indicates the number of convolutional layers in each model.
To guarantee comparison consistency, all models have the
same input image size (96 x 96 x 96) and have the same
magnitude of parameters. Each model contains four groups of
corresponding blocks (i.e., p = 4). Similar to many previous
works [43]-[45], the WA-66 and SA-66 were trained as clas-
sifiers that directly identify three categories, i.e., Non-Pneu,
ILD and COVID-19. The WA-66-M, SA-66-M, and PA-66-M
models were trained using the proposed multi-task learning
strategy for ablation studies. Both the WA-66-M and SA-66-M
models have identical network architecture to the PA-66 model
but without the prior-attention mechanism. In the SA-66-M
model, the self-attention mechanism was incorporated in the
pneumonia-type classification branch.

B. Training Details and Evaluation Metrics

All classification models were trained using Google Tensor-
flow (version 2.0 with Keras API) on NVIDIA RTX 2080Ti
GPUs. During the training stage, the loss of each model was
minimized using the momentum optimizer with a learning
rate of 0.0001, decaying every 500 iterations using an expo-
nential rate of 0.95. The total number of iterations was 30k
(300 epochs multiply by 100 iterations).

At each iteration, a mini-batch of 10 samples were fed
into the models, including 4 normal scans, 3 scans with ILD,
and 3 scans with COVID-19. We augmented the samples in
real time by randomly rotating each sample to 0, 90, 180,
and 270 degrees along the Z axis, and randomly flipping
them in the X, Y, and Z directions. Once an epoch was
completed, we performed online-evaluations using 60 samples
(20 samples for each type). To avoid the over-fitting issue,
we saved just the model that achieved the maximum online
accuracy.

During the testing stage, the predicted label y;0f a specific
sample was set to argmax(pxlk € {0, 1,2}), where pg is
the estimated probability corresponding to each category, i.e.,
Non-Pneu (k = 0), ILD (k = 1), and COVID-19 (k = 2).

Ablation experiments were conducted on a total
of 3997 scans using 5-fold cross-validation as mentioned in
Section IV. The scans were randomly split into five subsets
Sili =1,2,...,5, which were used to train five independent
models M;|j=1,2,...,5}. Each model M; was trained

using four subsets S;|i=1,2,...,5 and i # j and evaluated
using the rest subset. The performance of each model was
assessed in terms of accuracy, recall (sensitivity), specificity,
precision, F1-value, and AUC. Then, the overall performance
of the proposed method was assessed by calculating the mean
and standard deviation of cross-validation metrics.

To further analyze the proposed method and make com-
parisons with existing methods, models were also trained
using the above-mentioned 3997 scans and evaluated using
the testing dataset containing a total of 600 scans. Confusion
matrices were used for quantitative analysis.

VI. RESULTS

The results of 5-fold cross-validation are tabulated in
Table II. By observing the results, two main conclusions can
be drawn: (1) For classification of all three target categories,
all the PA-66-M, the WA-66-M, and the SA-66-M models
achieve higher AUC compared to the WA-66 model and the
SA-66 model. This phenomenon demonstrates that the multi-
task learning strategy can suppress the inter-class interference
issue by splitting the three-category classification task into
two binary classification tasks, and thus the performance is
improved. (2) For pneumonia-type classification (i.e., ILD or
COVID-19), the SA-66-M model outperforms the WA-66-M
model. However, the improvement is very minor. In contrast,
the proposed PA-66-M model improves the performance by a
large margin. The AUC value corresponding to the ILD and
the COVID-19 achieved by the PA-66-M model are 95.7%
and 97.3%, respectively, which are much higher than 93.2%
and 92.8% achieved by the SA-66-M model. This phenom-
enon demonstrates that the proposed prior-attention mecha-
nism, compared to the self-attention, can further improve the
performance.

The above analysis reveals that, compared to just designing
deeper models, developing novel techniques such as attention
mechanisms and multi-task learning strategies also improve
classification performance, especially under scenarios where
large-scale dataset is hard to collect. As listed in Table I, both
the WA-66 and the SA-66 models (containing 19 correspond-
ing residual blocks) are much deeper than the other three mod-
els that contain only 8 corresponding residual blocks but have
wider network architectures (i.e., the WA-66-M, the SA-66-M,
and the PA-66-M models). However, the performances of the
WA-66 and the SA-66 models are inferior to that of the other
three models.

To further validate the proposed method, we trained addi-
tional WA-66-M, SA-66-M, and PA-66-M models using all
the 3997 scans. The main difference between the WA-66-M,
the SA-66-M, and the PA-66-M models is the attention
mechanism that was used in the pneumonia-type classification
branch. To demonstrate the effectiveness of the attention
mechanisms, Fig. 5 shows the training loss curves of the
pneumonia-type classification branch (i.e., L) corresponding
to each model. Evidently, the variation tendencies of curves
corresponding to the WA-66-M and the SA-66-M model are
very close to each other. But minor differences can still
be observed: the SA-66-M model converges faster than the
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TABLE |
FIVE NETWORK ARCHITECTURES FOR COMPARISON
Layer name Output size WA-66 SA-66 WA-66-M SA-66-M PA-66-M
Conv header 48 x 48 x 48 C16, (5,5, 5), /12 C16, (5,5, 5), /2 C16, (5,5, 5), 12 C16,(5,5,5),/2 C16,(5,5,5), /12
Group #1 48 % 48 x 48 C16, WARLs C16, SARLs C16, MWARLSs C16, MSARLs C16, PARLs
(g=3) (g=3) (q=2) (g=2) (g=2)

. C32,(3,3,3),/2; C32,(3,3,3),/2; C32,(3,3,3),/2; C32,(3,3,3),/2; C32,(3,3,3),/2;
Transition 24x24x24 | 03y (333.3)/1 C32.(3.3.3)./1 C32.(3.3.3)./1 C32.(3.3.3)./1 C32.(3.3.3)./1
Groun 2% 24 % 24 C32, WARLSs C32, SARLs (32, MWARLSs C32, MSARLs C32, PARLs

i (q=4) (q=4) (@=2) (@=2) (q=2)

. C64, (3,3, 3), /2; C64, (3,3, 3), /2; C64, (3,3, 3), /2; C64, (3,3, 3), /2; C64, (3,3, 3), /2;
Transition 121212 | 64 (3.3.3). /1 C64,(3,3,3),/1 C64,(3,3,3),/1 C64,(3,3,3),/1 C64,(3,3,3),/1
Group #3 1212 C64, WARLs C64, SARLs C64, MWARLSs C64, MSARLs C64, PARLs

=9 =9 q=2) (g=2) (g=2)
Transition 6% 6x6 C128, (3, 3,3),/2; C128, (3, 3,3),/2; C128, (3,3, 3),/2; C128, (3, 3,3),/2; C128, (3, 3,3),/2;
C128,(3,3,3),/1 C128,(3,3,3),/1 C128,(3,3,3),/1 C128,(3,3,3),/1 C128,(3,3,3),/1
Group #4 6x6x6 C128, WARLs C128, SARLs C128, MWARLSs C128, MSARLs C128, PARLs
P (g=3) (g=3) q=2) q=2) (g=2)
Transition 3x3x3 €256, (3, 3, 3), /2; €256, (3, 3, 3), /2; €256, (3, 3, 3), /2; €256, (3, 3, 3), /2; €256, (3, 3, 3), /2;
€256, (3,3,3),/1 €256, (3,3,3),/1 (256, (3,3,3),/1 €256, (3,3,3),/1 €256, (3,3,3),/1
Flatten I1x1x1 [6912] [6912] (6912, 6912] [6912, 6912] [6912, 6912]
FC1 Ix1x1 [1488] [1488] [512, 512] [512,512] [512,512]
Concat Ix1xl None None [1024] [1024] [1024]
FC2 Ix1x1 [512] [512] [512] [512] [512]
Y Preds Ix1x1 [3] (3] (3] [3] [3]
Total parameters 15,959,851 15,959,851 15,988,903 15,988,903 15,988,903

Input image size is 96 x 96 x 96. WARLs, SARLs, and PARLs are the residual blocks illustrated in Fig. 4. MWARLs and MSARLs mean the multi-
task residual learning block without attention and with self-attention, respectively. q is the number of blocks in each group. C- is the number of
features. (-, -, -) is the kernel size and /- is the stride. [-] means fully connections.

TABLE

RESULTS OF 5-FOLD CROSS-VALIDATION OF THE FIVE CLASSIFICATION MODELS FOR COMPARISON

Lesion Type Models Accuracy (%) Recall (%) Specificity (%) Precision (%) Fl-value (%) AUC (%)
WA-66 86.0+1.6 814+73 87.0+3.1 58.3+4.0 67.6+2.3 92.6+1.7
SA-66 84.0+44 83.8+16 84.0+82 56.9+10.9 65.4+42 929+22
Non-Pneu WA-66-M 82.4+5.7 89.9+7.7 80.8+8.5 542+14.2 65.8+6.9 93.8+0.7
SA-66-M 78.4+2.7 95.1+1.6 748 +3.1 454+34 614+33 939+1.5
PA-66-M 91.5+1.0 82.3+4.7 93.5+1.6 73.8+4.2 77.6 2.1 95.3+0.8
WA-66 71.1+7.8 49.1£15.1 97.7+1.3 96.5+ 1.0 63.6+14.0 91.2+29
SA-66 75.5+£7.0 59.0+14.1 953+1.7 94.0+£0.9 71.4+11.0 90.7+2.0
ILD WA-66-M 78.6 3.8 64.7+8.3 95.3+3.3 94.6 £3.0 76.4+58 922+19
SA-66-M 753+4.6 57.0+9.3 974+ 14 96.6 £ 1.6 71.2+74 93.2+1.7
PA-66-M 89.4+1.2 88.5+1.5 90.6+2.6 91.9+19 90.2+1.1 95.7+1.2
WA-66 76.9+ 8.1 93.4+34 70.7+12.2 56.6+10.0 69.8+£6.8 92.1+£1.9
SA-66 81.0+10.9 83.7+£9.2 80.0£18.0 67.4+155 725+ 8.4 922+1.7
COVID-19 WA-66-M 85.7+8.2 79.7+11.1 879+ 143 77.8+£15.8 76.6 £7.6 929+43
SA-66-M 87.1+3.5 81.1+2.1 89.4+49 75.4+8.8 77.8+4.7 929+1.8
PA-66-M 93.3+0.8 87.6+43 95.5+2.1 88.4+4.1 87.8+1.5 97.3+1.1

The highest score in each column of each lesion type is shown in bold.

WA-66-M, especially after 100 epoch iterations. In contrast,
the PA-66-M converges much faster than both the other
models, especially during the stage of the first 100 epochs.
This phenomenon mainly stems from the fact that the proposed
prior-attention mechanism can learn lesion-attention informa-

tion more efficiently than the self-attention mechanism.

We evaluated these models using the offline-testing dataset
containing 600 scans (200 scans for each category) and used
confusion matrices for quantitative analysis. The matrices are

shown in Fig. 6. Each row in a confusion matrix represents
an actual ground truth class, while each column represents
a predicted class. A better classifier which can predict more
correct samples would have larger values on the diagonal of
its confusion matrix (highlighted as red in Fig. 6).

By observing the confusion matrices in Fig. 6, the superi-

ority of the proposed PA-66-M model is evident compared
to the WA-66-M and the SA-66-M models. The superi-
ority mainly reflects in the classification of the ILD and
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Fig. 5. Training loss curves of the pneumonia-type classification branch
corresponding to the three models (i.e., WA-66-M, SA-66-M, and PA-66-
M) trained using the multi-task learning strategy. It can be observed that
the convergence speed of the proposed PA-66-M model is much faster
than that of other models.

COVID-19 categories. The PA-66-M model achieves 191 and
176 correct predictions out of 200 ILD and 200 COVID-19,
respectively, which is higher than 125 and 169 achieved
by the WA-66-M model, and 122 and 167 achieved by the
SA-66-M model. This phenomenon further demonstrates that
the proposed prior-attention mechanism can significantly
enhance pneumonia-type classification performance. However,
all models have misclassifications between the Non-Pneu and
the pneumonia categories. By analyzing the original images of
these misclassified cases, we found that most cases with pneu-
monia looked similar to the normal scans, as the pneumonia
lesions in these cases were not severe. It was difficult to differ-
entiate scans with light pneumonia lesions from normal scans.

We also reviewed relevant state-of-the-art studies on the
CT-based COVID-19 screening task, as listed in Table III.
Most existing studies focused on developing methods for
identifying COVID-19 from other types of pneumonia, includ-
ing non-viral pneumonia. The studies of Wang er al. [42]
and Xu er al. [45] are closer to our work in distinguishing
COVID-19 from other viral pneumonia. However, the main
drawback of their works was that too few metrics were
measured, which is insufficient to accurately reflect the overall
performance of the classification.

VII. DISCUSSION

Classification techniques are more feasible alternatives than
object detection and segmentation-based methods for develop-
ing COVID-19 screening CADs in a relatively short time. This
is because training classification models require only image-
level ground truth labels. Therefore, analogous to most previ-
ous works [38]-[46], we also adopted classification techniques
to implement our CT-based COVID-19 screening task.

Compared to prior works, our method can achieve superior
performance. We attribute the success to two main aspects:
(1) We collected more clinical cases from multiple hospitals
to train our models. (2) We developed a prior-attention residual
learning strategy for training models. In the proposed method,
two 3D-ResNet based sub-networks were integrated into a

single model for both pneumonia detection and lesion type
classification. Since the detection network was trained as a
binary classifier using normal images and pneumonia-infected
images, it can highlight lesion regions more accurately than
models trained using just pneumonia-infected images. Hence,
prior-attention information generated by the detection model
can more effectively guide the lesion-type classification than
self-attention information generated by the type classification
model itself.

Fig. 7 shows two clinical cases that are infected
with COVID-19 and ILD, respectively. To illustrate the
effectiveness of the proposed prior-attention strategy,
we created a heatmap from the convolutional feature maps
of the type-classification sub-network corresponding to a
specific model (i.e., the WA-66-M model, the SA-66-M model,
or the PA-66-M model) using a visualization method [26] and
applied the heatmap to the original input image. By comparing
the heatmaps as shown in Fig. 7 (b), (¢), and (d), it can be
observed that the proposed PA-66-M model can highlight
the lesion regions more accurately than both the WA-66-M
model and the SA-66-M model, and the heatmap of PA-66-M
has larger red areas (high attention) inside the main lesion
regions as indicated with the red dashed rectangles.

Moreover, to obtain the final three-category classification
results, the two sub-networks were fused using a learnable
fully-connected layer (refereed as to late-fusion strategy),
rather than using voting strategies that were commonly
adopted in ensemble learning methods (refereed as to
committee-fusion strategy). A. A. A. Setio et al. [51] have
demonstrated that the late-fusion strategy can achieve higher
performance than the committee-fusion strategy.

However, the proposed classification model currently may
fail to screen out scans with COVID-19 lesions at an early
stage and misclassify normal scans to pneumonia category.
The lesions in these non-severe scans normally appear as
relatively small ground-glass nodules (GGN) that are very
difficult to identify from the whole volumetric lung images.
To alleviate this issue, pulmonary nodule detection [29] can
be adopted as a compensation method. Besides, knowledge
about the location information of pulmonary lesions in lung
lobe regions (i.e. which lobe the lesions are located at) is
useful in clinical practice, e.g. guiding diagnosis or surgery
[49]. However, currently, lobe information obtained using the
3D-UNet is only used to segment lung regions as a pre-
processing step for pneumonia detection. In the future, we will
try to fully use the lobe segmentation result to determine the
lobe location of predicted pneumonia lesions.

It is also worth mentioning that the weighting factor y
(as defined in Equation 3) was set to a fixed value (i.e.,
1.0) in our experiments for simplicity and fairness of the
comparison between the proposed prior-attention strategy and
the self-attention strategy proposed by Zhang er al. [24].
However, in [24], the weighting factor was implemented as
a learnable parameter that can be used to adaptively adjust
the contribution of the attention feature map, avoiding the
interference by a bad attention feature map obtained at the
early stage of model training. Actually, the proposed prior-
attention mechanism can effectively avoid this issue even with
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Fig. 6. Confusion matrices corresponding to the WA-66-M, the SA-66-M, and the PA-66-M models. The accuracy demonstrate that the PA-66-M
achieves much higher performance than that of both the other two models.

TABLE I

STATE-OF-THE-ART STUDIES ON THE COVID-19 SCREENING TASK

Literature Material Partition (case) Task Method Result
Total 106 Classification: 95.2% (Accuracy)
Chen et al. [38] . 1. COVID19 2D-UNet++ 100% (Sensitivity)
Not clearly mentioned . . ity
2.others (viral, bacterial Pneu.) 93.6% (Specificity)
- Classification: N e
mesapn e TS DuN ey
2.others (viral, bacterial Pneu.) S0P ty
312 for training Classification: N e
Jin et al. [40] 104 for validation 1.COVID-19 2D-CNN 0% 39t (Soaitien)
1255 for testing 2.others (viral, bacterial Pneu.) 270 (5P
. Classification: N .
a4 DO )
2.others (viral, bacterial Pneu.) '
Total 250 Classification:
Wang et al. [42] N(()) ¢ clearly mentioned 1.COVID-19 2D-CNN 82.9% (Accuracy)
Y 2.Viral Pneu.
164 for training %gg}gﬂogn:
Song et al. [43] 27 for validation 2.Ba terial Pn 2D-ResNet-50 86.0% (Accuracy)
83 for testing -acte eu.
3. Normal
Classification:
. 3920 for training 1.COVID-19 90.0% (Sensitivity)
Lietal[44] 436 for testing 2.CAP (viral, bacterial Pneu.) 2D-ResNet-50 96.0% (Specificity)
3.Normal
Classification:
528 for training 1.COVID-19 N
Xu et al.[45] 90 for testing 2 Influenza-A. 2D-CNN 86.7% (Accuracy)
3.Normal
Total 2685 Classification: 87.9% (Accuracy)
Shi et al.[46)] 5_fold cross validation 1.COVID-19 Random Forest 90.7% (Sensitivity)
2.CAP (viral, bacterial Pneu.) 83.3% (Specificity)
3997 for 5-fold cross Classification: o
Proposed validation S 1.COVID-19 . ?\I;i-t}}?eSNets prior- ggz‘;‘: ggggzi?\i}g)
60 for validation 2.ILD (only viral Pneu.) attention) 95.5% (Specificity)

600 for testing

3.Normal

a constant weighting factor, which has been demonstrated
in Fig. 5: the PA-66-M model converges much faster than
the SA-66-M model, especially at the early stage of model
training. Definitely, in the future, the performance may be
further improved if the weighting factor is also implemented as
a learnable parameter in the proposed prior-attention strategy.

Finally, it is worth noting that the proposed prior-attention
residual learning strategy can also be applied to other medical
image classification tasks. For example, in a pulmonary
nodule detection system, the detection sub-network can
be trained using positive nodule samples and negative
background images that are randomly cropped from normal
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Fig. 7. Two clinical example patients infected with COVID-19 and ILD, respectively. To demonstrate the effectiveness of the proposed method,
heatmaps are created from feature maps of each deep model and imposed to the original image. By comparing the heatmaps of (b), (c), and (d),
it can be observed that the proposed PA-66-M model can highlight the lesion regions more accurately than both the WA-66-M and the SA-66-M
models (see the regions indicated with the red dashed rectangles).
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(CVPR), Las Vegas, NV, USA, Jun. 2016, pp. 770-778.

is trained for a specific task such as malignancy prediction (6] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-vé,
of detected pulmonary nodules [30]. inception-ResNet and the impact of residual connections on learning,”
2016, arXiv:1602.07261. [Online]. Available: http://arxiv.org/abs/1602.
07261
VIIl. CONCLUSION [7]1 K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
In this paper, we presented a novel multi-task prior- 2015, pp. 1-14.

attention learning strategy to implement COVID-19 screening  [8] M. D. Zeiler and R. Fergus, “Visualizing and understanding convo-
lutional neural networks,” in Proc. Eur. Conf. Comput. Vis., 2014,

in volumetric chest CT images. Specifically, we integrated pp. 818-833
two ResNet-based branches into one model framework for  [9] R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf Comput. Vis.
end-to-end training by designing a prior-attention residual (ICCV), Dec. 2015, pp. 1440-1448.

learning (PARL) block. Inside these blocks, hierarchical [0 S- Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” [EEE

attention information from lesion region detection branch was Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149,
transferred to COVID-19 classification branch for learning Jun. 2017.
more discriminative representations. Compared to other [11] K. He, G. Gkioxari, P. Dolldr, and R. Girshick, “Mask R-CNN,” in Proc.

hods with self ; d with . hod IEEE Int. Conf. Comut. Vis., Venice, Ttaly, Oct. 2017, pp. 2980-2988.
methods with self-attention and without attention, our method 151 w Ly ¢ al., “SSD: Single shot multibox detector,” in Proc. Eur: Conf.

located lesion regions more correctly so that the extra supervi- Comput. Vis., Amsterdam, Netherlands, 2016, pp. 21-37.
sion information is more effective to enhance the performance [13] T-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,

. . . “Feature pyramid networks for object detection,” in Proc. IEEE Conf.
of COVID-19 classification tasks. Experimental results Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,

demonstrated that our method surpassed other state-of-the-art Pp. 936-944.
COVID-19 screening methods. In the near future, more efforts  [14] T. Kong, A. Yao, Y. Chen, and F. Sun, “HyperNet: Towards accurate

: : : : : region proposal generation and joint object detection,” in Proc. IEEE
will be devoted to exploring how to identify COVID-19 in Conf. Comput. Vis. Pattern Recognit. (CVPR), Las Vegas, NV, USA,
the early stages and how this prior-attention mechanism can Jun. 2016, pp. 845-853.
be applied in other medical image analysis problems. [15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks

for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431-3440.

REFERENCES [16] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. MICCAI, in Lecture Notes
[1]1 WHO. (Apr. 10, 2020). Coronavirus Disease 2019 (COVID-19) Situation in Computer Science, vol. 9351. Munich, Germany: Springer, Oct. 2015,
Report-81.  [Online].  Available:  https://www.who.int/docs/default- pp. 234-241.

source/coronaviruse/situation-reports/20200410-sitrep-81-covid-19.pdf? [17] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
sfvrsn=ca96eb84_2 convolutions,” 2015, arXiv:1511.07122. [Online]. Available: http://arxiv.

[2] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., org/abs/1511.07122
vol. 20, no. 3, pp. 273-297, 1995. [18] L. Chen, G. Papandreou, L. Kokkinos, L. Murphy, and A. L.
[3] J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy K-nearest neighbor Yuille, “DeepLab: Semantic image segmentation with deep convolu-
algorithm,” IEEE Trans. Syst., Man, Cybern., vol. SMC-15, no. 4, tional nets, Atrous convolution, and fully connected CRFs,” 2016,
pp- 580-585, Aug. 1985. arXiv:1606.00915. [Online]. Available: https://arxiv.org/abs/1606.00915
[4] L. Breiman and A. Cutler. (2007). Random forests-Classification ~ [19] G. Lin, A. Milan, C. Shen, and I. Reid, “RefineNet: Multi-path
Description: Random Forests. [Online]. Available: http://stat-www. refinement networks for high-resolution semantic segmentation,” 2016,

berkeley.edu/users/breiman/RandomForests/cc_home.htm arXiv:1611.06612. [Online]. Available: http://arxiv.org/abs/1611.06612



WANG et al.: PARL FOR MORE DISCRIMINATIVE COVID-19 SCREENING IN CT IMAGES

2583

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

0. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and
O. Ronneberger, “3D U-net: Learning dense volumetric segmentation
from sparse annotation,” 2016, arXiv:1606.06650. [Online]. Available:
http://arxiv.org/abs/1606.06650

F. Wang et al., “Residual attention network for image classification,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Honolulu,
HI, USA, Jul. 2017, pp. 6450-6458.

J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation
networks,” 2017, arXiv:1709.01507. [Online]. Available: http://arxiv.
org/abs/1709.01507

L. Chen et al., “SCA-CNN: Spatial and channel-wise attention in
convolutional networks for image captioning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 6298-6306.

J. Zhang, Y. Xie, Y. Xia, and C. Shen, “Attention residual learning
for skin lesion classification,” IEEE Trans. Med. Imag., vol. 38, no. 9,
pp. 2092-2103, Sep. 2019.

B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2921-2929.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.,
Oct. 2017, pp. 618-626.

Q. Guan, Y. Huang, Z. Zhong, Z. Zheng, L. Zheng, and Y. Yang,
“Diagnose like a radiologist: Attention guided convolutional neural
network for thorax disease classification,” 2018, arXiv:1801.09927.
[Online]. Available: http://arxiv.org/abs/1801.09927

L. Li et al., “A large-scale database and a CNN model for attention-
based glaucoma detection,” IEEE Trans. Med. Imag., vol. 39, no. 2,
pp. 413-424, Feb. 2020.

J. Wang et al., “Pulmonary nodule detection in volumetric chest CT
scans using CNNs-based nodule-size-adaptive detection and classifica-
tion,” IEEE Access, vol. 7, pp. 46033-46044, 2019.

J. Wang et al., “Feature-shared adaptive-boost deep learning for invasive-
ness classification of pulmonary sub-solid nodules in CT images,” Med.
Phys., vol. 47, no. 4, pp. 1738-1749, Apr. 2020. [Online]. Available:
https://apm.onlinelibrary.wiley.com/doi/10.1002/mp.14068

H. Tang, C. Zhang, and X. Xie, “Automatic pulmonary lobe segmenta-
tion using deep learning,” 2019, arXiv:1903.09879. [Online]. Available:
http://arxiv.org/abs/1903.09879

F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” 2016,
arXiv:1606.04797. [Online]. Available: http://arxiv.org/abs/1606.04797
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Miami FL, USA, Jun. 2009, pp. 248-255.

N. Srivastava, G. Hiton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A simple way to prevent neural networks
from overfitting,” J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958,
2014.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. Int. Conf.
Mach. Learn., 2015, pp. 448-456.

J. Lei Ba, J. Ryan Kiros, and G. E. Hinton, “Layer normalization,” 2016,
arXiv:1607.06450. [Online]. Available: http://arxiv.org/abs/1607.06450

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[471

(48]

[49]

[50]

[51]

R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very
deep networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015,
pp. 2377-2385.

J. Chen et al. Deep Learning-Based Model For Detecting 2019 Novel
Coronavirus Pneumonia on High-Resolution Computed Tomography:
A Prospective Study. Accessed: Apr. 3, 2020. [Online]. Available:
https://www.medrxiv.org//10.1101/2020.02.25.20021568v2

C. Zheng et al. Deep Learning-Based Detection  For
COVID-19 From Chest CT Using Weak Label. Accessed:
Apr. 3, 2020. [Online]. Available: https://www.medrxiv.org/
content/10.1101/2020.03.12.20027185v 1.full.pdf

C. Jin et al. Development and Evaluation of an Al System For
COVID-19 Diagnosis. Accessed: Apr. 3, 2020. [Online]. Available:
https://www.medrxiv.org/content/10.1101/2020.03.20.20039834v2.

S. Jin et al Ai-Assisted CT Imaging Analysis For COVID-
19 Screening: Building and Deploying A Medical Al System
in Four Weeks. Accessed: Apr. 3, 2020. [Online]. Available:
https://www.medrxiv.org/content/10.1101/2020.03.19.20039354v 1

S. Wang et al. A Deep Learning Algorithm Using CT Images
to Screen for Corona Virus Disease (COVID-19). Accessed:
Apr. 3, 2020. [Online]. Available: https://www.medrxiv.org/
content/10.1101/2020.02.14.20023028v4

Y. Song et al Deep Learning Enables Accurate Diag-
nosis of  Novel Coronavirus (COVID-19) With CcT
Images.  Accessed:  Apr. 3, 2020. [Online].  Available:
https://www.medrxiv.org/content/10.1101/2020.02.23.20026930v 1

L. Li et al, “Attificial intelligence distinguishes COVID-19
from community acquired pneumonia on chest CT,” Radiology,
to be published. Accessed: Apr. 3, 2020. [Online]. Available:
https://pubs.rsna.org/doi/pdf/10.1148/radiol.2020200905

X. Xu et al, “Deep learning system to screen coronavirus dis-
ease 2019 pneumonia,” 2020, arXiv:2002.09334. [Online]. Available:
http://arxiv.org/abs/2002.09334

F. Shi et al., “Large-scale screening of COVID-19 from commu-
nity acquired pneumonia using infection size-aware classification,”
2020, arXiv:2003.09860. [Online]. Available: http://arxiv.org/abs/2003.
09860

F. Shi et al., “Review of artificial intelligence techniques in imaging
data acquisition, segmentation and diagnosis for COVID-19,” IEEE Rev.
Biomed. Eng., early access, Apr. 16, 2020, doi: 10.1109/RBME.2020.
2987975.

A. A. A. Setio et al., “Validation, comparison, and combination of
algorithms for automatic detection of pulmonary nodules in computed
tomography images: The LUNAI16 challenge,” Med. Image Anal.,
vol. 42, pp. 1-13, Dec. 2017.

E. M. van Rikxoort, B. de Hoop, S. van de Vorst, M. Prokop, and
B. van Ginneken, “Automatic segmentation of pulmonary segments from
volumetric chest CT scans,” IEEE Trans. Med. Imag., vol. 28, no. 4,
pp. 621-630, Apr. 2009.

Q. Dou, H. Chen, L. Yu, J. Qin, and P.-A. Heng, “Multilevel con-
textual 3-D CNNs for false positive reduction in pulmonary nodule
detection,” IEEE Trans. Biomed. Eng., vol. 64, no. 7, pp. 1558-1567,
Jul. 2017.

A. A. A. Setio et al., “Pulmonary nodule detection in CT images:
False positive reduction using multi-view convolutional networks,” IEEE
Trans. Med. Imag., vol. 35, no. 5, pp. 1160-1169, May 2016.


http://dx.doi.org/10.1109/RBME.2020.2987975
http://dx.doi.org/10.1109/RBME.2020.2987975


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


