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Relational Modeling for Robust and Efficient
Pulmonary Lobe Segmentation in CT Scans

Weiyi Xie , Colin Jacobs , Jean-Paul Charbonnier, and Bram van Ginneken

Abstract— Pulmonary lobe segmentation in computed
tomography scans is essential for regional assessment
of pulmonary diseases. Recent works based on convo-
lution neural networks have achieved good performance
for this task. However, they are still limited in capturing
structured relationships due to the nature of convolution.
The shape of the pulmonary lobes affect each other and
their borders relate to the appearance of other structures,
such as vessels, airways, and the pleural wall. We argue
that such structural relationships play a critical role in the
accurate delineation of pulmonary lobes when the lungs are
affected by diseases such as COVID-19 or COPD. In this
paper, we propose a relational approach (RTSU-Net) that
leverages structured relationships by introducing a novel
non-local neural network module. The proposed module
learns both visual and geometric relationships among all
convolution features to produce self-attention weights. With
a limited amount of training data available from COVID-19
subjects, we initially train and validate RTSU-Net on a
cohort of 5000 subjects from the COPDGene study (4000 for
training and 1000 for evaluation). Using models pre-trained
on COPDGene, we apply transfer learning to retrain and
evaluate RTSU-Net on 470 COVID-19 suspects (370 for
retraining and 100 for evaluation). Experimental results
show that RTSU-Net outperforms three baselines and per-
forms robustly on cases with severe lung infection due to
COVID-19.

Index Terms— Computed Tomography, COVID-19, COPD,
Convolution Neural Network, Non-local Neural Networks,
Pulmonary Lobe, Segmentation.

I. INTRODUCTION

THE human lungs consist of five disjoint pulmonary lobes.
The right lung is composed of an upper, middle, and

lower lobe, while the left lung only has an upper and a
lower lobe. The lobes are separated by the pulmonary fissures,
a double-fold of visceral pleura visible as a thin line on CT
images. The lobes are functionally independent units because
each has its own vascular and bronchial supply. As a result,
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the extent of the disease often varies substantially across lobes,
and lobe-wise assessment of pulmonary disorders is of clinical
importance.

Computed Tomography (CT) is the best way to image the
lungs in vivo. COVID-19, the pandemic disease caused by the
SARS-Cov2 virus is straining healthcare systems worldwide.
A CT severity score can summarize the severity of the disease
where each lobe is scored visually by radiologists on a
scale from 0 to 5. The summation of these scores quantifies
lung involvement on a scale from 0 to 25 [1]. The score
provides a tool to assess disease severity and progression,
which further benefits clinical decision making. To automate
the CT severity score, lobe segmentation in COVID-19 scans
is needed. CT scans of COVID-19 patients are affected by
extensive patchy ground-glass region and consolidations and
may even show lobes or complete lungs filled with pleural
fluid. Automated lobe segmentation is highly challenging in
scans with such extensive pathological changes.

Many automatic lobe segmentation approaches focused on
finding visible fissures, assuming that the detected fissures
equivalent to find the lobe segmentation by interpolation.
Both early fissure enhancement filters [2]–[5] and more robust
supervised learning methods [6] relied heavily on hand-crafted
features, thus hard to generalize. Moreover, because incom-
plete fissures are very common [7], interpolation of boundaries
based on visible fissures may not suffice to find the lobe
borders reliably. Instead of finding fissures alone, anatomical
relations between lobes and nearby airways, vessels, and the
lung borders were exploited to account for incomplete fissures
and damaged lung due to pathology [8]–[11].

Recent advances in convolution neural networks (CNN)
provide a data-driven approach for more robust feature
extraction in an end-to-end optimization process. Many
works have successfully adopted CNNs in their lobe
segmentation framework [12]–[15]. In [12], deep supervision
was extensively used in the up-sampling path based on
their V-Net design [16] along with the multi-tasking that
segments lobe and lobe borders at the same time. [13] uses
a relatively deeper architecture based on Dense-Net [17] to
ensure a sufficient receptive field of extracted features. Global
Geometric features were explored [14] as additional input
channels to a convolution layer.

The use of multi-resolution input in a two-stage cascading
CNNs to extract both global and local features has been
proposed for lobe segmentation in CT by Gerard et al. [15].
Their first stage network was trained on low-resolution images
to learn global features from the entire scan. The global
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features were added to the second stage network to provide
contextual guidance, while the second stage network was
designed to focus on capturing local details at a high reso-
lution. Their framework has also been successfully applied
for pulmonary fissure and lung segmentation tasks [18], [19].
In this work, we also employ a two-stage approach, that is
trained in an end-to-end fashion.

Although existing CNN approaches have achieved superior
performance in lobe segmentation, they may still be ineffi-
cient and limited in relational reasoning, such as capturing
the interlobar relationships and other long-range relationships
between lobes and other structures in the CT image. CNN
approaches assumed that such relationships between objects
and object parts in semantic segmentation could be implicitly
learned directly from the CNN training process.

However, as [20], [21] have pointed out, the hierarchical
feature representation computed using a sequence of stacked
convolutional layers can be highly inefficient in inferring
relations between convolution features. As higher-level fea-
tures in CNNs commonly represent objects and object parts,
instead of aggregating these features based on their seman-
tic interactions, convolutional filters act as templates, where
features are aggregated depending on the filter weights. This
may cause inefficiency in capturing relations between features
because filters weights are not invariant to permutations of
features. In addition, convolution filters are limited to capture
long-range relations due to the use of local kernels.

CT findings in patients of a COVID-19 infection [22], [23]
often include multiple regions with focal pathological changes,
ranging from ground-glass to consolidations to organizing
pneumonia. These changes occur more often in the lower
lobes. Here the lobar boundaries can be deformed substan-
tially. In these cases, information from other regions in the CT
image may be crucial for locating and delineating a target lobe.
Therefore, in this paper, we introduce a novel non-local neural
network module to model the global structured relationships
for pulmonary lobe segmentation. The proposed non-local
neural network module computes a feature response at one
location using both appearance and geometric features from
all other positions at the scan-level. We call this approach a
Relational two-stage U-net, or RTSU-Net, for short. The main
contributions of this paper are as follows:

• We propose a novel non-local neural network module that
can capture the global structured relationships between
object and object parts in terms of their visual and
geometric features for the lobe segmentation. The pro-
posed RTSU-Net is robust and produces accurate lobe
segmentations even for scans with severe pathology.

• We used a multi-resolution framework similar to [15],
[18], [19], however, we train both stages in an end-to-end
fashion. This gives the RTSU-Net the ability to capture
the global object relationships at the full scan level from
the first stage network while extracting local details at
the second stage simultaneously in the same optimization
process.

• RTSU-Net is fast and memory-efficient, considering it
consists of a cascade of two CNNs. RTSU-Net requires
only a standard GPU with 12GB memory to train and

takes around 30 seconds to produce lung and lobe seg-
mentations for a full thoracic CT scan at test time. The
time consumption includes the CNN inference time, pre-
processing, and post-processing, excluding the time spent
on IO.

A. Related Work

Although convolutional neural networks (CNNs) have
achieved superior performance in a wide range of medical
imaging segmentation tasks [16], [24], they are still limited
in modeling object relationships, especially the long-range
interactions. Several techniques have been proposed to account
for the missing capability of relational reasoning in CNNs.
Poudel et al. [25] introduced recurrent neural networks to
aggregate features across the axial slices for cardiac segmenta-
tion in multi-slice MRI. A known issue with recurrent network
networks is that they suffer from vanishing gradients [26]
and therefore are hard to train. The object relations could
also be explicitly defined using Graph Models such as dense
conditional random fields (CRF) [27]. However, due to their
heavy computational demands, dense CRFs are often only used
as the post-processing steps and optimized separately on a
heuristic basis, making it hard for this approach to scale well.

Attention is widely used for various tasks such as machine
translation, image and video classification, object detection,
and semantic segmentation. Self-attention methods [28], [29]
capture contextual dependencies between words by comput-
ing the embedding at one word by a weighted summation
of embeddings at all words in sentences. As one of the
self-attention applications, a non-local neural network was pro-
posed for semantic segmentation [30] by computing a global
self-attention map for each feature based on all the other fea-
tures in an input CNN feature map. The attention weights were
determined by predefined similarity measurements between
pairwise features in a linear-projected subspace, as an efficient
way of modeling their conceptual relationships.

There are several recent extensions of this non-local method
in semantic segmentation. CCNet [31] was proposed to employ
a simple criss-cross trick, which reduces the space and time
complexity of the non-local module from O((H × W )× (H ×
W )) to O((H ×W )×(H +W −1)) in two-dimensional images.
Hu et al. [20] aggregated features based on both visual and
geometric correspondence in a locally connected aggregation
graph, thus lacking long-range relationships. A dynamical
aggregation graph was proposed in [21] to capture both short
and long-range relationships, but no geometric correspondence
between features was used.

Our approach is motivated by the above works. Our
self-attention module uses the criss-cross trick to collect global
structured relationships between object and object parts in
terms of their visual and geometric correspondence in the
feature representation.

II. DATA

CT scans used in this study were obtained from two sources.
We refer to the first set as the COPD set and the second set
as the COVID-19 set.
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A large set of scans from subjects with COPD, ranging
from mild to very severe, was obtained from the COPDGene
study [32]. This is a clinical trial with data from 21 imaging
centers in the United States. In total, COPDGene enrolled
10,000 subjects. Each subject underwent both inspiration and
expiration chest CT. Image reconstruction uses sub-millimeter
slice thickness and in-plane resolution, with edge-enhancing
and smooth algorithms. Data from COPDGene is publicly
available and can be retrieved after submitting an ancillary
study proposal (ANC-398 was used for this work).

We randomly selected 5000 subjects and used only Phase I
inspiration CT scans (one scan per subject). Subjects were
randomly grouped into a training set (n = 4000) and a test
set (n = 1000). Slice thickness ranged from 0.625-0.9mm and
pixel spacing from 0.478-1.0mm. Most scans were performed
using 200mAs a tube voltage of 120kVp and B31f and B35f
reconstruction kernels. The CT protocols are detailed in [32].

The other data set was obtained from Radboud University
Medical Center, Nijmegen, the Netherlands. On March 18,
2020, this institution implemented a low-dose non-contrast CT
protocol and all patients who arrived at the hospital with suspi-
cion of COVID-19 disease and inpatients for whom COVID-19
was considered a possibility underwent CT. In accordance
with local guidelines, we only included scans from subjects
who did not object to the use of their scans for research
purposes and we worked with anonymized data. Permission for
research use was obtained from our review board (file number
CMO 2016-3045, Project 20027). It is the intention to share
these scans via a national Dutch COVID-19 database.

We randomly selected 470 subjects and used one scan per
subject by selecting the CT scan of the smallest slice thickness
in a study. Scans have a pixel spacing between 0.5mm to
0.9mm and a slice thickness of 0.5 mm. Scans were performed
using X-ray tube current ranging from 10mA to 493mA and a
tube voltage of either 100 or 120kVp. Convolution kernels in
reconstruction were lung kernels (FC83, FC86). 370 of these
scans were used for training and the other 100 for testing.

See Table I for the distribution of GOLD stages in the
training and the test set for the COPD set and the distribu-
tion of CO-RADS scores [1] from the COVID-19 set. The
CO-RADS scores defined the level of suspicion COVID-19
and were extracted from the radiology reports. Complete
individual results of reverse-transcription polymerase chain
reaction (RT-PCR) tests were not available at the time of
anonymization of the data, but it is known that the majority
of the test cases were positive for COVID-19 (these test cases
overlap with the data used in [1]).

From the two training data sets, we selected 100 scans as
the validation set for the COPD set, and we selected 50 scans
for validation from the COVID-19 set for retraining all the
models.

A. Reference Standard

Lobe segmentation references were obtained from Thirona,
a company that specializes in chest CT analysis. First, auto-
mated segmentation of the left and right lung was gen-
erated using a commercialized software (LungQ, Thirona,

TABLE I
CHARACTERISTICS OF THE TWO DATA SETS USED IN THIS STUDY.

(a) LISTS THE DISTRIBUTION OF GOLD STAGES AND OTHER

CLASSES, SEE [32] IN THE COPD DATA SET. (b) GIVES THE

DISTRIBUTION OF CO-RADS SCORES [1] ACROSS THE TRAINING

AND TEST SETS. CO-RADS SCORE 1-6 INDICATES THE LEVEL OF

SUSPICION FOR COVID-19 POSITIVE DISEASE, RANGING FROM

VERY LOW, LOW, EQUIVOCAL, HIGH, VERY HIGH, AND CONFIRMED

POSITIVE FROM THE REVERSE-TRANSCRIPTION POLYMERASE

CHAIN REACTION (RT-PCR) TESTS, RESPECTIVELY

(a)

(b)

Nijmegen, NL), followed by manual refinement if needed.
Second, automatic algorithms [6], [9], [33] were used to
extract the lobar boundary with possible interpolation for
incomplete fissures using information from nearby airways
and vessels. Next, the automatically found lobar boundaries
were manually corrected separately for the left and the right
lung, by trained analysts with at least one year experience in
annotating pulmonary structures on CT. Analysts repeatedly
adjusted the control points on the auto-generated lobar bound-
aries until the updated lobar boundaries were satisfactory.
All analysts have a medical background and have received
extensive training in lung anatomy and segmenting lobes in
CT imaging. In case of doubt, radiologists could be consulted.

III. METHODS

We define the lobe segmentation problem as a voxel-wise
classification problem. Given a scan I , the goal is to predict
the voxel label l̂i for every spatial location i , where l̂i ∈ the
label set L = {0, 1, 2, 3, 4, 5} representing the background,
left upper, left lower, right upper, right lower, and the right
middle lobe, respectively.

In this paper, we use a multi-resolution approach with two
cascaded CNNs to capture both global context and local details
for the lobe segmentation, as proposed in [15]. Our framework
is depicted in Fig. 1.

Besides the use of a multi-resolution framework,
we introduce a novel non-local module to capture structured
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Fig. 1. The overview of our lobe segmentation framework with a cascade of two CNNs. At each stage, a CNN (RU-Net) uses the proposed non-local
module to capture the structured relationships between objects and object parts. The output from the RU-Net I is concatenated with the cropped 3D
patches as the input for RU-Net II.

relationships and our efficient network design allows end-
to-end training of our multi-resolution framework. For each
CNN, we place our proposed non-local module to aggregate
relational information for the features at the coarsest
resolution as these features commonly represent high-level
semantics such as objects and objects parts [34]. The
proposed non-local module computes visual and geometric
correspondence between these features, naturally modeling
relationships between objects and object parts. The use of
geometric information is inspired by [14]. Also, the proposed
non-local module can enlarge the receptive fields of these
features because the computation of one non-local response
involves all features in the feature map. We refer the CNN
with the proposed non-local module at each stage to as
relational U-Net (RU-Net), and the details are explained later
in this section.

A. Cascading Relational U-Nets

The first RU-Net reads an input scan at a down-sampled
resolution to coarsely segment the lobes and lobe borders.
These coarse outputs are subsequently upsampled to a higher
resolution by trilinear interpolation. The high-resolution input
scan and the output of the first RU-Net are concatenated and
cropped into 3D patches as the input to train the second
RU-Net to precisely segment lobes and lobe borders. The
cascade of two relational U-Nets is trained end-to-end, allow-
ing both local details and scan-level context to be learned
in the same optimization process. Furthermore, we use the
errors found in the predictions of the first RU-Net to optimally
sample 3D patches for training the second stage, which

encourages the second RU-Net to focus on the regions where
the first RU-Net fails. This technique can be seen as a form
of online hard example mining. [35].

B. Relational U-Net

The relational U-Net architecture (RU-Net) is a 3D U-Net
architecture [24] with a smaller number of convolution filters
and an additional non-local module. The RU-Net has three
down-sampling layers in the encoding path, and each layer
consists of two convolutions and a max-pooling operation.
Following the down-sampling path, two more convolutions are
used to double the number of convolution filters. We then place
the non-local module before up-sampling. In the up-sampling
path, three layers are used to reconstruct the resolution, and
each contains one tri-linear interpolation, followed by two
convolutions to reduce the interpolation artifacts. In the end,
features are reshaped via a single 1 × 1 × 1 convolution
in two parallel output branches, and each corresponds to a
different learning objective; one produces 6-channel softmax
probabilities for segmenting the background and the five
lobes. The other provides a single channel probability map
by sigmoid function for predicting the lobe border. Features
from 3×3×3 convolutions are batch normalized and activated
via a rectifier linear unit (ReLU). No dropout is used.

The first RU-Net uses padded convolutions, whereas the sec-
ond uses valid convolutions. The details regarding RU-Net
network architecture on both stages are provided in Table II,
where the names of the down-sampling layers are prefixed with
’Down’, and the name of up-sampling layers are prefixed with
’Up’. The numbers listed are based on the execution order.
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TABLE II
ARCHITECTURES FOR THE FIRST AND THE SECOND STAGE OF THE

RELATIONAL U-NETS. THE CONVOLUTION FILTERS ARE NAMED BY

THE KERNEL SIZES K AND NUMBER OF FILTERS N AS K × K × K,N
(STRIDE 1 FOR ALL). NON-LOCAL LINEAR EMBEDDING PARAMETERS

ARE DEFINED IN EQS. (3) AND (5). � DENOTES THE

OPERATION PERFORMED IN DUAL PATHS

C. The Non-Local Module

The original non-local neural network [30] for semantic
segmentation computes the feature response at a position as
a weighted sum of the features at all locations in the input
feature maps as

yi = 1

ζ(x)

∑
∀ j

f (xi , x j )g(x j ), (1)

where yi at location i is computed as a weighted sum using the
correspondence between the feature xi at the location i and all
features indexed by j in the input feature map x . The feature
correspondence between feature xi and x j is also called the
self-attention in this context, computed by the pairwise func-
tion f , which is used to weigh the feature embedding g(x j )
before normalizing by ζ(x). For simplicity, g is set to a linear
projection: g(x j ) = Wg x j , and the pairwise function f can
be the embedded Gaussian function using linear embeddings
defined as f (xi , x j ) = e(Wθ xi )

T (Wφx j ). We set the normalizing
factor as ζ(x) = ∑

∀ j f (xi , x j ). Then y becomes the softmax
computation along the dimension j written, in matrix multi-
plication form, as y = so f tmax(xT W T

θ Wφx)g(x). To make
the input and output of the non-local module the same size,
the yi is reshaped to have the same dimensions as the input xi

by applying the linear reconstruction function r, r(yi) = Wr yi .

Therefore, the non-local response at location j can be written
as zi = Wr yi + xi .

The feature response zi automatically achieves a global
receptive field with respect to the input. The computed
self-attention map f (xi , x j ) captures the feature correlations,
as relevant features would have higher attention responses.

However, the original non-local module disregards the geo-
metric correspondence between features, while [14] shows
that introducing geometric coordinates improves the perfor-
mance on lobe segmentation. Hence, we propose to compute
non-local responses with a geometric term. Here, we denote
μi , μ j as geometric coordinates for the position i and j . μi is
the center coordinate of the receptive field of the feature at
position i with respect to the original input image and rescaled
to [0 ∼ 1] range by the size of the original input image.
We note that if the feature map is produced from a cropped
input, the center coordinate of the receptive field is then
shifted according to the 3D patch offset to the original input
image. The rescaled geometric coordinates are then shifted
by 0.5 to have zero mean. τ (μi , μ j ) is the pairwise function
for measuring correlations. Then, the non-local response with
geometric terms is defined as:

yi = 1

ζ(x, μ)

∑
∀ j

( f (xi , x j ) + τ (μi , μ j ))g(x j ), (2)

A similar reparameterization can be applied using the softmax
function row-wise under linear projections to reformulate
Equation 2 into matrix multiplications:

y = so f tmax(xT W T
θ Wφ x + max(0, μT W T

ω Wρμ))g(x), (3)

where f (xi , x j ) is parameterized as a dot product in a sub-
space projected using the linear transformation matrix Wθ and
Wφ . Similarly, Wω and Wρ are linear transformations that
are used to project the geometric features μ into a subspace
where their correspondence is measured by the pairwise kernel
function τ , τ (μi , μ j ) = max(0, μT W T

ω Wρμ). Such corre-
spondence is then trimmed at 0, to restrict geometric relations
within a certain threshold.

The Equation 3 however, has high computational cost
because the self-attention map requires computing xT W T

θ Wφx
and μT W T

ω Wρμ on all pairs of locations. Each term has
complexity in time and space of O(C × W 2 × H 2 × D2)
where C is the dimension of linear projected subspace and
W, H, D denotes the width, height, and depth of a 3D fea-
ture map. To reduce computational complexity, we adopt the
criss-cross trick [31], which has a time and space complexity
of O((C × W × H × D) × (H + W + D − 2)). In CCNet,
Equation 2 is modified to:

yi = 1

ζ(x, μ)

∑
j∈�j

( f (xi , x j ) + τ (μi , μ j ))g(x j ), (4)

where � j indicates the neighboring voxels with respect to
j under criss-cross connectivity, such sparse connectivity
requires having three recurrent criss-cross modules to cover
all spatial locations in computation.
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Given the input feature xi , the non-local response zt
i for a

feature location i at each t-th recurrent criss-cross module can
be written as follows:

zt
i =

{
xi if t = 0

Wr yt−1
i + zt−1

i if t = 1, 2, . . . , T

yt
i = 1

ζ(zt , μ)

∑
j∈�j

( f (zt
i , zt

j ) + τ (μi , μ j ))g(zt
j ) (5)

At each recurrent step, the non-local response zt
i is used as

the input feature for computing the non-local response for the
next recurrent step. For the size of scans used in this work,
full global context can be achieved with three recurrent steps
for a 3D input feature map. Therefore, we set T = 3.

D. Online Hard Example Mining

As shown in Fig. 1 using the red dashed lines, we compute
the mean square errors (MSE) between the lobe-wise softmax
probabilities of the first RU-Net and the lobe reference stan-
dard. We then go through all sliding window 3D patches, and
find K patches with the highest integral of MSE and use them
for training the second RU-Net.

K is set to 1.0 such that all patches are used to train at the
beginning and continuously reduced until it reaches a coverage
of only approximately 20% of the scan volume at the end of
the training process. The proposed online hard example mining
does not introduce extra forward and backward passes on the
network, therefore the additional computational cost is trivial.

E. Learning Objectives

There are two learning objectives for each RU-Net:
lobe segmentation and lobe border segmentation, inspired
by [12], [15]. Therefore, the final loss function is a summation
of four terms, and each is the generalized Dice loss [36]. The
lobe border reference is pre-computed from the lobe reference
by detecting object boundaries.

Let r be the segmentation reference with n-th voxel values
rln for the class label l and r̂ln be the predicted probabilistic
map for the label l over n-th image voxel, then the generalized
Dice loss is defined as:

GL D = 1 − 2

∑
l wl

∑
n rlnr̂ln∑

l wl
∑

n rln + r̂ln
,

with wl = 1/(
∑Nl

n rln)2, where Nl the in total number of
voxels for the class label l in the segmentation reference. wl is
to re-balance learning against the variance in object volumes.

IV. EXPERIMENTS

As the COVID-19 pandemic emerged only recently, it was
not possible to obtain a large amount of CT scans with
annotations of COVID-19 patients. Therefore, we used a
transfer learning approach in our experiments. For training of
the models on the COVID-19 data, the models were initialized
with the trained weights from our models developed on the
COPD data set.

A. Training Details

Training, validation, and testing of each experiment were
carried out on a machine with a NVidia TitanX GPU with
12 GB memory. The methods were implemented using Python
3.6, Pytorch 1.1.0 library [37]. The trainable parameters of
each method were initialized using Kaiming He initialization
when training from scratch [38] and were optimized using
stochastic gradient descent with a momentum of 0.9, and
the initial learning rate set to 10e-6. The initial models were
trained using CT scans from the COPD data set. Therefore,
these models may not be familiar with the visual patterns
in COVID-19 scans. For efficiently training on new visual
patterns, all models were retrained using a combined loss
between the generalized Dice loss (as we used to train the
initial models) and top-K cross-entropy loss where K is set
to 30% of all voxels in the input. The top-K cross-entropy loss
was implemented simply as the voxel-wise cross-entropy loss
but selecting only K voxels with the largest cross-entropy to
back-propagate.

B. Comparison With Previous Work

We compared our approach with three baselines, the
well-known 3D U-Net and two recently published methods
for lobe segmentation in CT..

1) 3D U-Net: We implemented 3D U-Net following the orig-
inal paper [24]. The input is a mini-batch of two 132 × 132 ×
132 3D patches randomly cropped from the pre-processed
scan (refer to IV-D). As a result of using valid convolutions,
the output of this network is 44 × 44 × 44 voxels. During
test time, the softmax probabilities of all 3D patches are tiled
together by sliding over the entire scan without overlaps to
build up a scan-level probability map. The final prediction is
then made by assigning each voxel to the label with the highest
probability.

2) FRV-Net and PDV-Net: We compare the proposed method
with two existing end-to-end lobe segmentation methods.
FRV-Net [12] follows the design of the V-Net [16] and
extensively uses the idea of deep supervision at almost all
scales in the up-sampling pathways. PDV-Net [13] uses dense
connections, following the DenseNet [17], to design their
network with a considerably large receptive field to cap-
ture contextual information. PDV-Net takes the entire CT
scan as the input, thus potentially capable of learning the
global information. Note that these two works have specific
pre-processing and post-processing strategies. The input scan
in FRV-Net is resized into a fixed size of 128 × 256 × 256
and intensities are clipped into the range [−1000 ∼ 400] HU.
In PDV-Net, the input scan is resized into 128 × 512 × 512.
We implemented both architectures following the paper at our
best efforts.

C. Ablation Studies

To assess the contribution of the proposed non-local module
in RTSU-Net, we performed several ablation studies. During
these experiments, the models were trained from scratch
using the COPD training set and retrained on COVID-19 and
performance is measured on the COPD test set of 1000 cases
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and 100 COVID-19 cases. The performance of our proposed
model was assessed without the geometric features in the
non-local module, and without the non-local module in the
relational two stage U-Net framework.

D. Pre-Processing and Post-Processing

All training and test scans were standardized by clamping
intensity values to the [−1200 ∼ 400] range before re-scaling
into [0 ∼ 1]. Then all scans were down-sampled using trilinear
interpolation to have a 256 × 256 in-plane resolution while
z-spacing is adjusted to make the scan isotropic.

The input size of the second CNN for our proposed method
consisted of two 116 × 116 × 116 sized 3D patches. The
pre-processed scan was down-sampled by a factor of 2 using
trilinear interpolation as the input for the first stage (padding
with zeros are needed if the size on z axial is not divisible
by 16). The softmax probability outputs of all 3D patches at
the second stage were tiled together by sliding over the entire
scan without overlaps to produce a scan-level probability map,
which is used to generate the final prediction by assigning each
voxel to the label with the highest probability.

As a post-processing step, the predictions were then
up-sampled by nearest neighbor interpolation to match the
original resolution of the scans. All evaluations are per-
formed by using predictions and reference segmentations at
the original resolution.

E. Evaluation Metrics

The Intersection over Union (IOU), and average symmetric
surface distance (ASSD) between predictions and segmen-
tation references were used for quantitative evaluation of
segmentation performance. The IOU between two binary
masks X, Y is defined as:

I OU(X, Y ) = |X ∩ Y |
|X ∪ Y | ,

Denote two surfaces as SX ,SY from the masks X, Y , and coor-
dinate indices on the surface as x ,y. The average symmetric
surface distance (ASSD) is defined as:
ASSD(X, Y )

=
∑

x∈SX
miny∈SY d(x, y) + ∑

y∈SY
minx∈SX d(y, x)

|SX | + |SY |
with d(·) being the Euclidean distance, and |SX | and |SY | the
surface area for SX and SY , respectively.

Besides the lobe-based measurements, we also evaluated the
performance of all models in the lung segmentation task by
taking the union of all lobes as the lung. Furthermore, we add a
metric to measure fissure alignment by computing the average
symmetric surface distance in the interlobar borders between
the predictions and the segmentation references.

The overall performance of the method was evaluated by
computing the average of the per-lobe metrics. A Wilcoxon
signed-rank test was employed to assess whether the perfor-
mance difference was statistically significant (p < 0.01 with
Bonferroni correction).

Fig. 2. Box and whisker plots of IOU per-lobe for different methods on
the COPD data set (top) and the COVID-19 data set (bottom).

Also, we computed the number of Multi-Adds operations
(MAC) and the number of parameters to assess computational
efficiency. We also provide a comparison with independent
human readers on a subset of 100 subjects from the COPD
data only.

V. RESULTS

A. Quantitative Results

Table III reports the quantitative results on both data sets.
The proposed method significantly outperformed the baseline
methods and two published end-to-end lobe segmentation
methods on both data set ( p < 0.01 with Bonferroni correc-
tion) consistently in all measurements. Our model also exhibits
more robust performance, considering the smaller standard
deviations.

Box and whisker plots are provided in Fig. 2. These plots
show that for both the COVID-19 and the COPD cases,
the right middle lobe is the most difficult to segment, which is
not surprising given its known high variance in shape and the
fact that the minor fissure is often incomplete or even absent.
RTSU-Net clearly outperforms the other methods on both data
sets. It can be also observed that there are less outliers with
low IOU, indicating RTSU-Net is more robust.
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TABLE III
QUANTITATIVE RESULTS ON THE COPD AND COVID-19 TEST SETS. IOU AND ASSD (IN mm) METRICS ARE GIVEN IN MEAN ± STANDARD

DEVIATION. BOLDFACE DENOTES THE RESULT SIGNIFICANTLY BETTER THAN OTHERS (p < 0.01 WITH BONFERRONI CORRECTION)

In terms of computational efficiency, the proposed method
consumes even less memory than the baseline approach, with
only a slight increase in the Multi-Adds operations (MAC).
Hence, we conclude that the proposed method outperforms the
other methods without introducing a substantial computational
overhead. The proposed method processes a single scan at test
time in 30 seconds on average, of which around 20 seconds
are spent on model inference and the remainder on pre- and
post-processing.

B. Ablation Study

Table IV shows the results of the ablation study, where we
compare the two-stage cascading framework without non-local
modules, the framework with non-local modules without the
geometric term, and the RTSU-Net. The results on both the
COPD and COVID-19 data demonstrate the added value
of the non-local module and show that the introduction of
the geometric features increases the performance over the
non-local module alone. This effect is most pronounced for
the surface distance metric.

C. Effect of the Non-Local Module

In theory, the proposed non-local module can achieve
a global receptive field in an efficient way instead of
using aggressively down-sampled input or relying on much
deeper CNN architectures. To measure the effective receptive
field (ERF) size before and after the non-local operation,
we computed the gradients ∂F

∂ I

∣∣
i of the feature at the location

i in the feature map F to the input image I . We run a forward
pass for the first RU-Net on a CT scan from the COVID-19
test set. The ERF of the features at the same corresponding
location before and after the non-local operation are visualized
in Fig. 3 for three orthogonal slices.

The figure renders non-zero gradients in green and indicates
the center of the ERF with a red square. The center is a mapped

TABLE IV
ABLATION STUDY ON THE BOTH DATA SET FOR THE NON-LOCAL

MODULE (NON-LOCAL) AND THE GEOMETRIC FEATURES

(GEOMETRIC) INTO THE TWO-STAGE CASCADING FRAMEWORK.
BOLDFACE DENOTES THAT A RESULT IS SIGNIFICANTLY BETTER

THAN OTHERS IN THE SAME COLUMN (p < 0.01
WITH BONFERRONI CORRECTION)

coordinate from the chosen feature in the feature map to the
input image via up-sampling. Thus a slight shift may occur.
The left image shows the ERF before the non-local operation is
contained in a square due to the nature of stacked convolutions.
However, the ERF after non-local on the right side shows a
non-square distribution, reaching the other side of the lung.
We, therefore, conclude that the non-local module can enlarge
the effective receptive field dramatically.

To study the structured relationships between features,
we visualize the self-attention weights for the feature at
location i given the feature map x and geometric features
μ. We run a forward pass for the first stage RU-Net on
two CT scans from the COVID-19 test set. The attention
weights are the i -th row vector in the self-attention matrix
corresponding to f (xi , x j ) + τ (μi , μ j ) from the equation 2.
Fig. 4 (a) shows the feature at the location i (green dot)
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Fig. 3. Effective Receptive Field (ERF) before the non-local module
(2nd row) and after (3rd row) by running forward pass for the first RU-Net
on a CT scan from the COVID-19 test set. The green area indicates
non-zero gradients (with respect to the input scan) of a feature at a
location in the input scan corresponding to the red square (1st row).

mostly depends on the information within the lobe when the
healthy lung is present. We can also clearly see the attention
weights follows the lobe borders. Fig. 4 (b) shows a case with
multiple ground-glass lesions, where the interactions between
the feature representing the region nearby the right middle
lobe and features presenting other regions in the entire lung.
Interestingly, we note that by introducing the geometric term
in the non-local module, attention weights also correspond to
the lung bounding box.

D. Qualitative Results

Fig. 5 shows results for the 3D U-Net, PDV-Net [13],
FRV-Net [12], and the RTSU-Net from top to bottom. For
comparison, reference segmentations are provided in the
bottom row. We selected three COPD (4-6 column) and
three COVID-19 cases (1-3 column) with various levels of
pathological and anatomical variations. We observed that all
methods usually do not produce oversegmentation of the lungs.
By capturing feature dependencies, we see that the proposed
method generates generally smoother lobe borders and is even
able to infer the approximately correct lobe shapes when the
lung is filled with fluid (1st column).

E. Comparison With Human Readers

To evaluate human performance, we asked two independent
human readers (analysts) to manually segment the lobes from
scratch, given segmentation of the lung. Their results are
evaluated on a random set of 100 scans from the COPD
test set. The human readers achieved 0.953 ± 0.017 IOU
and 0.501 ± 0.193 ASSD (in mm) on average, while the

Fig. 4. The Self-Attention weights (2nd row) from the proposed non-local
module for the feature whose location is shown using the green spot in the
original input scan (1st row). We use color map jet [39] for this plot. Two
scans from the COVID-19 test set are shown. (a) demonstrates mostly
the feature dependencies within the lobe in the clear lung. (b) indicates
long-range dependencies are required when the target lobe is affected
by disease.

RTSU-Net achieved 0.953 ± 0.015 IOU and 0.541 ± 0.231
ASSD. The human readers and the RTSU-Net method are both
significantly better than the other methods.

In terms of lung segmentation, the analysts reached 0.974±
0.015 IOU and 0.34 ± 0.214 ASSD on average, while the
RTSU-Net achieved 0.977±0.009 IOU and 0.325±0.2 ASSD
on average.

Regarding the fissure alignment, the analysts reached
0.686±0.361 ASSD on average while the RTSU-Net achieved
0.835 ± 0.398 ASSD on average. We conclude that the
RTSU-Net method performs comparably to humans for seg-
menting the lung and the lobes.

F. Validation on LOLA11

We have applied our method to the 55 scans of
the LOLA11 challenge, available on https://lola11.
grand-challenge.org/. This is an independent test set
in which approximately half of these scans are very difficult to
segment due to the presence of gross pathology. Lobar borders
are completely invisible in some of these scans.
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Fig. 5. Qualitative comparison of segmentation results for six representative test cases. The left three columns show COVID-19 cases, the right three
columns show COPD cases. From top to bottom: input image, 3DU-Net baseline, PDV-Net, FRV-Net, the proposed RTSU-Net, and the segmentation
reference. � right upper, � right middle, � right lower, � left upper, � left lower lobes.

Our method (submission date May 3, 2020) reaches a
mean IOU of 0.9197 for the lobe segmentation and 0.9706 in
lung segmentation. This score is comparable to the other top

participants and ranks #2 for automatic lobe segmentation
methods, after submission of a not yet published variant of
LobeNet (submission date November 20, 2019).
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VI. DISCUSSION AND CONCLUSION

We have presented a novel method using relational
two-stage convolution neural networks for segmenting pul-
monary lobes in CT images. The proposed method is capable
of capturing visual and geometric correspondence between
high-level convolution features, which may represent the rela-
tionships between objects and object parts. This proposed
non-local module can also be used to effectively and efficiently
enlarge the receptive field of convolution features. This module
can be easily used as a common neural network layer in
other computer vision tasks such as object detection and
classification.

We show in our results that learning feature dependencies
improves the lobe segmentation performance significantly on
the COPD and the COVID-19 data set. The average symmetric
distance metric in the ablation study shows that using geo-
metric features is effective for generating more precise object
boundaries. This can also be observed from the qualitative
results, where the lobe boundaries from the proposed method
are more consistent with the reference lobe shapes. Without
depending on prior lung segmentation, our approach serves as
an end-to-end lobe segmentation framework that can be used
for lung segmentation as well, by taking the union of lobes
per lung.

In terms of computational efficiency, our method main-
tains the same level of Multi-Adds operations (MAC) as
the standard 3D U-Net and two other approaches previously
proposed for pulmonary lobe segmentation. It requires even
fewer trainable parameters compared to the standard 3D U-
Net. Our method can be trained and tested on a consumer-level
GPU with 12 GB memory, and speed at test time is around
30 seconds for a full resolution CT scan (20 seconds for
deep learning inference and 10 for pre-processing and post-
processing).

For segmenting the lobes in scans of COPD patients,
the previously published LobeNet method [15] reported excel-
lent performance on 1076 scans from COPDGene, with an
ASSD of 0.138 mm, well below the voxel resolution and
well below what RTSU-Net and independent human analysts
achieved in a set of 100 COPDGene scans in this study
(Sect. V-E). These metrics are not directly comparable as [15]
used a different set of scans and a reference partly provided by
a software package. For future studies, it would be interesting
to directly compare both approaches. On LOLA11, LobeNet
outperformed RTSU-Net by a very small margin. We noticed
failures of RTSU-Net on scans with abnormalities distinct
from what occurred in the COPD and COVID-19 training data.

Segmentation of lobes in scans of patients with severe
pneumonia due to COVID-19 is not an easy task. In this work,
we used only 370 COVID-19 CT scans for training. Thanks
to pre-training on 4000 COPD scans, we still obtained good
results with a small training set, and we were able to provide
lobe segmentations robust to the presence of ground-glass,
consolidations, and crazy paving.

Lobe segmentation is an important prerequisite for accurate
quantification of lung damage in COVID-19 CT scans. Fig. 5
shows that the standard 3D U-Net (2nd row), PDV-Net
(3rd row), and FRV-Net (4th row) may miss areas of

consolidation (3rd column) while the RTSU-Net found the
lobes accurately. RTSU-Net also performs reasonably well
when this lobe is completely filled with pleural fluid (first
column). Nevertheless, we also see that sometimes the border
of the segmentations of the proposed method is incorrect (3rd
column, the right upper lobe shows a slight oversegmentation
across the lobar borders towards the shoulder),

We hypothesize that a larger training set would further
improve performance, especially for cases with gross patho-
logical changes that are not yet well represented in the current
training scans. Nevertheless, the results presented here are
sufficient for further analysis, and we believe that they will
prove useful in automated per-lobe severity scoring. This is a
topic for future research.

We freely share our segmentation algorithm on
https://grand-challenge.org/algorithms/
and provide results for public data such as the scans from
https://coronacases.org/.
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