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Accurate Screening of COVID-19 Using
Attention-Based Deep 3D Multiple

Instance Learning
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Xue Zhu, Haifeng Wei, and Wei Zhang

Abstract— Automated Screening of COVID-19 from chest
CT is of emergency and importance during the outbreak of
SARS-CoV-2 worldwide in 2020. However, accurate screen-
ing of COVID-19 is still a massive challenge due to the
spatial complexity of 3D volumes, the labeling difficulty
of infection areas, and the slight discrepancy between
COVID-19 and other viral pneumonia in chest CT. While
a few pioneering works have made significant progress,
they are either demanding manual annotations of infection
areas or lack of interpretability. In this paper, we report our
attempt towards achieving highly accurate and interpretable
screening of COVID-19 from chest CT with weak labels.
We propose an attention-based deep 3D multiple instance
learning (AD3D-MIL) where a patient-level label is assigned
to a 3D chest CT that is viewed as a bag of instances. AD3D-
MIL can semantically generate deep 3D instances following
the possible infection area. AD3D-MIL further applies an
attention-based pooling approach to 3D instances to pro-
vide insight into each instance’s contribution to the bag
label. AD3D-MIL finally learns Bernoulli distributions of the
bag-level labels for more accessible learning. We collected
460 chest CT examples: 230 CT examples from 79 patients
with COVID-19, 100 CT examples from 100 patients with
common pneumonia, and 130 CT examples from 130 people
without pneumonia. A series of empirical studies show
that our algorithm achieves an overall accuracy of 97.9%,
AUC of 99.0%, and Cohen kappa score of 95.7%. These
advantages endow our algorithm as an efficient assisted
tool in the screening of COVID-19.
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I. INTRODUCTION

W ITH the outbreak and widespread of SARS-Cov-2
worldwide, artificial intelligence (AI) assisted screen-

ing of COVID-19 from chest CT is significantly urgent and
necessary. SARS-Cov-2 is a novel virus with the human-
to-human transmission, causing an ongoing pandemic of
the respiratory illness known as coronavirus disease 2019
(COVID-19). To date, SARS-Cov-2 has attacked 216 coun-
tries, areas, or territories that involve 6,272,098 confirmed
COVID-19 cases and 379,044 confirmed deaths according to
WHO. Toward fast stopping the widespread of COVID-19,
large-scale screening is imperative to cut off the source of
infection. Clinical practice demonstrates that chest CT is an
effective inspection strategy because it can characterize the
standard features between the majority of COVID-19 cases,
which show ground-glass opacities in the early stage and pul-
monary consolidation in the late stage [1], [2]. While nucleic
acid detection of reverse transcription-polymerase chain reac-
tion is a gold standard to screen COVID-19, the availability,
stability, and reproducibility of the nucleic acid detection kits
are questionable [3]. For example, some patients need to be
checked repeatedly because the false-negative rate is high [3].
Chest CT seems particularly essential and even is called
to replace the detection kits as one of the early diagnostic
criteria in a period of time [4]. However, clinical screening
of COVID-19 from chest CT is under problem with enor-
mous pressure, and its screening sensitivity is unsatisfactory
according to the screening performance test of radiologists [3].
Automated tools can correspondingly assist the clinical prac-
tice in speeding up screening and improving the sensitivity.
Therefore, automated screening of COVID-19 from chest CT,
the main topic of our analysis, is urgently needed to deal with
this problem.

However, accurate screening of COVID-19 still faces enor-
mous challenges from the spatial complexity of 3D volumes,
the labeling difficulty of infection areas, and the slight dis-
crepancy between COVID-19 and common viral pneumonia in
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chest CT. Firstly, despite the advantages of CT compared with
traditional 2D medical radiography, the volumes of CT gener-
ally include hundreds of slices that bring in more difficulties
for computational analysis. Secondly, one possible automated
approach for screening COVID-19 is to build a classifier on
segmented infection areas, unfortunately, which are hardly
labeled manually due to the necessity of expensive cost and
the indistinguishable characteristic of ground-glass opacities.
Finally, COVID-19 and other viral pneumonia share similar
features. Even radiologists cannot distinguish them from chest
CT accurately without other inspection methods [3].

While a few previous studies have made significant advance-
ment for automated screening of COVID-19 from chest CT,
they are either demanding manual annotations of infection
areas or lack of interpretability. According to the input types
of screening classifiers, we divide the pioneering methods into
three classes. The first class is the patch-based methods that
leverage a segmentation model to detect infection areas and
then train a classifier based on them [3]–[6]. Although the two-
stage manner is similar to the observation processes of radi-
ologists on Chest CT, supervised segmentation needs a large
scale of annotations of infection areas. Even if unsupervised
segmentation algorithms do not need annotations, but they are
prone to errors. The second class is the slice-based methods
that use a 2D model to perform slice-wise decisions [7]–[10].
However, such an approach needs to manually select infection
slices among hundreds of chest CT slices for training. The
third class is the 3D CT-based method that takes 3D CT scans
as input, and use 3D convolutional neural networks (CNN)
to make decisions directly [11]. This direct approach can
avoid mistakes caused by intermediate processes; however,
it still a black-box model lacking interpretability of results.
In summary, the direct yet interpretable algorithms would
be more helpful and compelling; however, they are under-
explored so far.

In this paper, we propose an attention-based deep 3D multi-
ple instance learning (AD3D-MIL) approach towards achiev-
ing accurate and interpretable screening of COVID-19 from
chest CT. Generally speaking, AD3D-MIL views each 3D
chest CT as a bag of instances that can be interpreted into small
3D cubes. The main goal of AD3D-MIL is learning to predict
an individual category label assigned to a chest CT, e.g.,
COVID-19, common pneumonia, or no pneumonia. Another
essential objective is to obtain crucial instances that can reveal
the location of infection areas. Unlike previous MIL works that
assume the existence of already-separated instances, AD3D-
MIL could semantically generate deep 3D instances with
permutation-invariance. For improving the interpretability of
results, AD3D-MIL involves an attention-based MIL pooling
strategy applied on deep 3D instances to give insight into
every instance’s contribution to the bag label. AD3D-MIL
finally learns Bernoulli distributions of the bag-level labels
for more accessible learning. Since existing MIL works
are mainly focusing on binary classification, AD3D-MIL
can also extend MIL to multi-class classification by mod-
eling the joint Bernoulli distribution of multi-class bag
labels. We seamlessly transform AD3D-MIL into a 3D neural
network that performs efficient end-to-end optimization by

backpropagation, successfully achieving accurate screening of
COVID-19. A series of empirical studies on a newly-collected
dataset show that AD3D-MIL, with interpretability of results,
remarkably exceeds the state of the art works.

The main contributions of this study include: The main
contributions of this study include:

• We achieve an accurate and interpretable screening of
COVID-19 that contribute to the large-scale screening in
clinical for the fast stopping of COVID-19 worldwide.

• In the screening problem of COVID-19, we propose a
weakly-supervised learning framework that unifies atten-
tion mechanism and deep multiple instance learning in a
mutually beneficial way.

• We propose, for the first time, an automated deep 3D
instances generator with robust scalability and flexibility.
This approach can extend the MIL into practical tasks.

We arrange the remainder of this article as follows.
In Section II, we review the related works in terms of arti-
ficial intelligence assisted analysis of COVID-19 and involved
methodology. We give some preliminaries in Section III and
describe in detail the proposed AD3D-MIL in Section IV.
In Section V, we provide detailed descriptions of collected
datasets, experiment settings, and evaluation results. Finally,
we conclude and discuss this study in Section VI.

II. RELATED WORK

This section presents related works in terms of automated
screening of COVID-19 and involved methods of our work.

A. Automated Screening of COVID-19

Since medical imaging plays a fundamental function in
the global fight against COVID-19, lots of works have been
devoted to AI-empowered technologies to improve the work
efficiency of medical image analysis. These emerging works of
COVID-19 includes automated screening [3]–[11], lesion seg-
mentation [8], [12], infection quantification [13], and patient
severity assessment [14]. Among them, automated screening
attracts the most attention, for instance, which takes up much
space in the first comprehensive review paper about AI for
COVID-19 [15]. Generally speaking, pioneering screening
works include chest X-ray based and chest CT based works.
Chest X-ray based works leverage 2D CNNs to make decisions
directly [16]–[20]. While chest X-ray has the characteristics
of low radiation and low cost, chest CT is the most commonly
used inspection strategy for the COVID-19 diagnosis because
it can characterize the most common findings [2]. Accordingly,
a large part of screening works is built on chest CT.

Due to the spatial complexity of chest CT, existing screening
works attempt to handle that by adopting three different strate-
gies. The first type is the patch-based methods. As far as we
know, Xu et al. is the first work attempting to study the auto-
mated screening of COVID-19 from chest CT [4]. Based on
618 CT scans, they first leveraged VB-Net to extract regions of
interest (ROI) and then used a CNN to screen COVID-19 from
Influenza-A viral pneumonia and irrelevant to infection groups.
Wang et al. first used a threshold approach to extract ROI
images and then trained a modified inception network to screen
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COVID-19 from typical viral pneumonia [3]. They collected
chest CT scans from 79 cases of COVID-19 and 180 cases of
typical viral pneumonia with an accuracy of 79.3%. Based on
a large-scale dataset, Shi et al. first trained a VB-Net for the
segmentation of ROIs and then extracted manually-designed
features to train a random forest on classifying COVID-19 and
common pneumonia [5]. Jin et al. attempted to combine 3D U-
Net and ResNet-50 to build a screening system in four weeks
with satisfying performance [6]. As we mentioned before,
these two-stage approaches either need lesion annotations or
are prone to the errors from intermediate steps.

The second type is the slice-based methods. Gozes et al.
used a 2D CNN to perform slice-level classification on
270 slices comprised of 120 COVID-19 and 150 nor-
mal slices [8]. Based on a multi-center dataset comprised
of 88 COVID-19, 101 bacteria pneumonia, and 86 healthy
CT scans, Song et al. applied a modified residual net-
work (ResNet-50) for slice-level classification [7]. Moreover,
Jin et al. [10] and Gozes et al. [9] constructed a same pipeline:
a deep ResNet-50/152 to perform slice-level classification and
a gradient class activation mapping for show the heatmaps.
Note that while the heatmaps can also explain results, they are
post-hoc analyses. The slice-based methods need the manual
selection of slices to train the classifier, and they neglect the
spatial correlation in CT scans, which is key for the screening
of COVID-19.

The last type is the 3D CT-based method, and there is
only one existing work to date. Based on 540 CT scans
comprised of 313 COVID-19 and 229 others, Zheng et al.
attempted to leverage a 3D CNN to make decisions directly
with satisfying performance [11]. Since a 3D model is more
complicated than a 2D model, this type of resolution lacks
the interpretability of results. On the other hand, this direct
manner can achieve optimal minima by leveraging end-to-
end optimization, which often obtains better performance than
multi-stage methods. Therefore, to realize the direct screening
and interpretability of results simultaneously, we propose a
novel algorithm of multiple instances learning that integrates
the expression ability of key instances and the end-to-end
optimization.

B. Involved Methods of Our Work

1) Multiple Instance Learning (MIL): MIL is a type of inexact
supervised learning that is a branch of weakly supervised
learning [21]. Concretely, MIL receives coarse-grained labels
where the training data is imperfect. One seminal work in this
field was conducted by Dietterich et al. [22]. For analyzing
the multiple instance setting, this work attempted three types
of approaches for learning axis-parallel rectangles. It showed
that the algorithm that ignores the multiple instance setting
performs very unsuccessfully. After that, many powerful algo-
rithms appeared and performed at two levels: instance-level or
bag-level [23]. Since developing the instance-level classifica-
tion algorithm demands ground truth of instance labels, most
studies focus on the bag-level MIL setting. Almost all bag-
level classification algorithms are extended from supervised
learning algorithms, including MI-SVM [24], MIL-Boost [25],
EM-DD [26], and MILD [27]. These algorithms consider

learning an optimal classification boundary for the MIL
problem.

MIL has been successfully applied to various domains
over the last 20 years, such as computer-aided diagnosis and
detection [28]–[32], image classification/retrieval/annotation
[33]–[36], text categorization [37], spam detection [38], object
detection [25], unsupervised saliency object discovery [39],
object tracking [40], etc. When MIL applies to medical image
analysis, the occurrence and structures of instances (organs)
are beneficial for MIL classifier [23]. For example,
Melendez et al. shown an obvious performance gain by
training an MI-SVM classifier on distinguishing chest X-ray
images into healthy or containing tuberculosis [31]. The appar-
ent improvement is also obtained on the task of diagnosis of
chronic obstructive pulmonary disease (COPD) from breast
CT [32]. Ilse et al. proposed a new attention-based deep
multiple instance learning framework used for the intelligent
detection of cancerous regions in histopathological slides,
in which ROIs can be indicated [41]. To achieve the computer-
aided diagnosis of endoscopic diseases using weak labels,
Wang et al. formulated this task as a MIL problem and built a
weakly labeled endoscopic image dataset [42]. For more work,
please refer to the survey given by Cheplygina et al. [43].
Compared with existing MIL algorithms, our AD3D-MIL
mainly has four advances: 1) extent MIL to 3D tasks, 2) can
generate instances automatically, 3) achieve the classification
of multi-class bags, and 4) introduce attention mechanism
to discover key instances that indicate the infection area of
COVID-19 on chest CT.

2) Attention Mechanism With MIL: Embedding attention
mechanisms in deep learning is an attempt to mimic human
brain actions concentrating on a few important things. It has
given birth to the rise of many breakthroughs in the field of
natural language processing (NLP), such as Transformer archi-
tecture [44] and Google BERT [45]. The attention mechanism
based deep learning framework is generally adopted in the
fields of image captioning [46] and text analysis [47]. There
are only four works integrates attention mechanism into MIL
problem and are in a minimal form. Pappas et al. attempted
to use an additional linear regression module to compute
the attention weights on instances. A one-layer network then
replaces the linear regression model with a single output [48].
Qi et al. attempted to use attention-based MIL operator for
the classification and segmentation of point sets [49]. However,
this attempt performed worst than the max operator of instance
pooling. To improve this attempt, Ilse et al. proposed to adopt
two fully-connected layers as a neural network to learn an
attention-based MIL operator and demonstrated that this idea
exceeds the max operator and the mean operator [41]. Inspired
by this idea, we propose to use the attention mechanism to
apply on 3D data with automated instance generation and end-
to-end optimization through backpropagation.

III. PRELIMINARIES

In this section, we present the necessary notations and
objectives for the task of screening of COVID-19 from chest
CT and then present the underlying assumptions and popular
approaches for the problem of multiple instance learning.
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A. Problem Setting

We first consider the familiar supervised learning setting
in which the learner receives a sample of m labeled training
examples {(Xi ,Yi )}m

i=1 drawn from a joint distribution Q
defined on X×Y , where X is the instance set and Y is the label
set. Y is {0, 1} in binary classification and {1, . . . , K } in multi-
class classification. Denote by Q̂ the empirical distribution.
In this task, X is the set of chest CT scans, and Y is the set
of patient-level labels. Xi is any chest CT scan of one patient,
and Yi is the label of this patient.

We denote by � : Y × Y → R a loss function defined
over pairs of labels. For binary classification, we denote by
f : X → {0, 1} a scoring function, which induces a labeling
function h f : X → Y where h f : X → arg maxY∈Y f (X,Y ).
For any distribution Q on X ×Y and any labeling function h f ,
we denote �Q(h f ) = �(X,Y )∼Q�(h f (X),Y ) the expected risk.
Our objective is to select a hypothesis f out of a hypothesis set
F with a small expected risk �Q(h f ) on the target distribution.

B. Multiple Instance Learning

1) MIL Formulation: The MIL algorithm acquires a sample
of m training examples {(Xi ,Yi )}m

i=1 drawn from a joint
distribution Q defined on X × Y . Note that Xi is a bag
of instances and Xi = {x1, x2, . . . , xN } where N denotes
the quantity of instances in a bag. Furthermore, we assume
that each instance xn has a individual label yn ∈ {0, 1}, for
n = 1, · · · , N . However, in this task, these instance labels y
are not easily available due to the expensive annotation cost
in clinical. Xi is any chest CT scan of one patient, and Yi is
the label of this patient. Note that any instance xi is a small
volume in a CT scan, and it may involve the infection area of
COVID-19.

2) MIL Assumption: Traditional MIL studies agree that the
assumption of MIL is as follows.

Y =
{

0, iff
∑

n yn = 0,

1, otherwise.
(1)

In our work, this assumption indicates that the chest CT is
from a COVID-19 patient if it involves at least one lesion.
Based on this assumption, the empirical loss is formulated by

�Q̂(h f ) = 1

m

m∑
i=1

�(h f (Xi ),Yi ), (2)

where h f (·) represents a labeling function induced by an MIL
scoring function f , and �(·, ·) can be any loss functions, such
as 0-1, hinge loss, etc.

3) MIL Decomposition: In practice, the process of MIL
includes several steps, in which each step corresponds to a
specific transformation function. Given an input instance xn ,
the whole scoring function f of the MIL problem can be
revised into

f (X) = g(σxn∈X [τ(xn)]), (3)

where τ and g are continuous functions. σ is a symmetric
function, e.g., max, mean. Accordingly, the MIL problem can
be decomposed into three steps: 1) a transformation function

τ to obtain the features or pseudo-labels of instances; 2) an
asymmetric function σ to generate the feature or predication
label of the bag by combining the features or pseudo-labels of
instances; 3) if the feature of the bag is generated, a trans-
formation function g to pursue the final label of the bag.
Otherwise, this step is needless.

4) MIL With Raw Instances: Traditional MIL methods do
assume that the instances are pre-defined and segmented in
advance. For example, each instance has been defined by
the researcher, and the features of each instance have been
extracted, i.e., the transformation τ is needless. However,
the instances of lots of real-world tasks are raw without
extracted features [28]–[32]. Owing to the strong expression
ability, neural networks are used for the representation extrac-
tion of instances. Given an raw instance xn , a neural network
τ with parameters θτ transforms it into a hidden feature hn :
hn = τ(xn), in which hn ∈ R. Note that R = [0, 1] for
instance-level approach, while R = �

D for embedding-level
approach. The goal of the instance-level approach is to predict
the label of instances rather than generating features for them.

On the contrary, the objective of the embedding-level
approach is to generate the features of raw instances. As men-
tioned above, the function g is needless for the instance-level
approach. For the embedding-level approach, the function g
can also be a neural network to make final decisions based
on the representation z of the bag. The only restriction is that
the symmetric function σ must be differentiable. To achieve
that, MIL pooling operators are leveraged to integrate the
learned representation of instances. There are two standard
differentiable MIL pooling operators: the maximum operator:

∀d=1,...,D : z = max
n=1,...,N

{hnd }, (4)

and the mean operator:

z = 1

N

N∑
n=1

hn . (5)

Both MIL pooling operators are viewed as neural layers and
widely used in the MIL with neural networks. Note that MIL
pooling is different from the max or average pooling layers of
CNNs that perform on the feature maps.

5) Disadvantages: While MIL with neural networks has
made substantial impacts in advancing algorithm designs, there
are two crucial directions for improvement:

1) While the approaches of MIL with neural networks
can extract deep features from a bag of raw instances,
they also need the instances that are separated already.
However, manual separation of instances is inefficient
and suboptimal in many real-world tasks like video or
image analysis, even for the 3D medical image analysis.
The other problem caused by this approach is that when
new tasks appear, the researcher still needs to separate
instances. In the specific new tasks, such as the 3D CT
based screening of COVID-19, the instances are hard
to be defined and designed due to the difficulties of
infection area labeling. As a result, the previous MIL
algorithms cannot be used directly.
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Fig. 1. An illustration of the proposed attention-based deep 3D multi-instance learning compared with traditional learning paradigms.

2) Both maximum and mean pooling operators are pre-
defined and non-trainable. Maximum pooling is unsuit-
able for the embedding-level approaches, while mean
pooling cannot find the key instances.

These directions are significant challenges for practical algo-
rithm designs. In this paper, we aim to overcome these
challenges by designing an attention-based deep 3D multi-
instance learning.

IV. THE PROPOSED APPROACH

According to the above directions, we propose the attention-
based deep 3D multi-instance learning (AD3D-MIL). As illus-
trated in Figure 1, compared to traditional multi-instance
learning, AD3D-MIL first transforms a raw unseparated bag
into multiple 3D instances with semantic representation (see
Section IV-A). It then combines the deep 3D instances into
the bag representation using an attention-based MIL pooling
(see Section IV-B). It finally transforms the bag representation
into the final prediction by using a neural network to learn
the Bernoulli distribution of the bag (see Section IV-C).
We integrate these three steps into a 3D deep neural network
for end-to-end optimization. We then relax the assumption of
MIL into multi-class classification problem (see Section IV-D).
Finally, we summarize the advantages (see Section IV-E).

A. Deep Instance Generation

As mentioned before, existing popular approaches of MIL
with neural networks treat separated instances as inputs, then
use a deep neural network to transform them into embedding
space. However, such a manner neglects the spatial and global
information between instances among 3D CT scans. Here we
propose a deep instance generator τ that treats one 3D CT
scan as a whole and generate deep instances automatically.
Generally speaking, the deep instance generator can be a fully
3D convolutional neural network (CNN). In practical, given a
3D chest CT scan Xi with the shape of H × W × S, the final

layer of 3D fully CNN outputs a series of 3D feature maps
with the shape of H ∗×W∗ × S∗ × D, where H ∗, W∗, S∗, and
D represent the high, width, spatial, and feature dimension
of 3D feature maps, respectively.

Inspired by [50], we view each point of the H ∗ × W∗ × S∗
cube as an instance with dimension of D × 1. That is, inside
the final layer of the deep instance generator, there are total
N = H ∗ ×W∗ × S∗ instances generated with deep representa-
tion. Following the former notations, we can generate a bag of
deep 3D instances: Hi = {h1, h2, . . . , hN } where N denotes
the quantity of instances in a bag, Hi ∈ �N×D . Note that
the raw location of corresponding instances on the 3D chest
CT can be easily derived according to the location of deep
instances on the cube. Formally, this step can be formulated
into:

Hi = τ(Xi ), (6)

where Xi is a bag of raw input and Hi ∈ �N×D .
In conclusion, the transformation τ in our work not only

transforms of instances into embedding space but generates
instances that are not defined before. Viewing each point in
the feature maps as an instance is a straightforward routine to
create deep 3D instances that consider the spatial relations
between instances. The main difference with the existing
method [50] is that our generator can apply on 3D data.

B. Attention-Based MIL Pooling

Since maximum and mean MIL pooling operators have clear
disadvantages, a flexible and adaptive MIL pooling approach
would be desirable for achieving hopeful performance. After
obtaining a bag of deep 3D instances H, we embed the
attention-based MIL pooling approach into the AD3D-MIL
framework for achieving interpretable screening of COVID-19.
The attention-based MIL pooling is an interpretable symmetric
function proposed by [41].
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Formally, we denote by H = {h1, h2, . . . , hN } a bag of N
deep instances. the attention-based MIL pooling is defined by:

z =
N∑

n=1

an hn, (7)

where,

an = exp{w�tanh(V h�
n )}∑N

j=1 exp{w�tanh(V h�
j )}
, (8)

where w ∈ �N×1 and V ∈ �N×D are trainable parameters.
The hyperbolic tangent tanh(·) element-wise non-linearity is
used for proper gradient flow. The main difference with the
existing attention mechanism is that we apply the attention
mechanism on deep 3D instances. Intuitively, if a deep 3D
instance is assigned to the biggest attention weight, it is the
key instance. That is, the attention weights can give insight
into every instance’s contribution to the bag label. Therefore,
the attention-based MIL pooling gives strong interpretability
for the predictions. Also, the generated bag representation
z is more semantic than traditional MIL pooling operators.
In summary, let σa with parameters θσa represent the the
attention-based MIL pooling, this step can be formulated into:

zi = σa(Hi ). (9)

Based on 3D convolutional neural networks, the attention-
based MIL pooling module can receive deep 3D instances and
generate the semantic representation for 3D data. These endow
AD3D-MIL the ability to process 3D CT data. Because 3D
data contains more and more instances than 2D data, the task
of the 3D MIL task is more complex and challenging than 2D
data. Therefore, the setting of instance number is essential.

C. Transform Into Final Bag Labels

Given a representation zi of a bag Xi , we use two fully
connected layers as the transformation function g. This func-
tion can transform the bag representation zi into the bag label
Yi . Specifically, this step can be formulated into:

Yi =
{

1, iff g(zi ) > τ,

0, otherwise.
(10)

We define the distribution of the bag label to Bernoulli
distribution with the parameters θg , i.e., g(zi) ∈ [0, 1],
which represents the probability pi of Yi = 1 given the bag
representation zi . In this paper, the Bernoulli distribution is
a discrete distribution having two possible outcomes labeled
by Y = 1 and Y = 0 in which Y = 1 (COVID-19) occurs
with probability p and Y = 0 (Non-COVID-19) occurs with
probability 1 − p, where 0 < p < 1. We use the two fully
connected layers to learn the Bernoulli distribution of the bag
label, where neural networks fully parameterize the bag label
probability. The final layer outputs a scalar that represents the
probability of being COVID-19. If the probability p > τ
(a threshold), the bag label is COVID-19, else is Non-
COVID-19. Without loss of generality, the final bag label
Ŷi is determined by the threshold τ of 0.5. Note that the
transformation function g projects the bag representation into

Algorithm 1 AD3D-MIL Algorithm
input : parameters θτ , θσa , θg , learning rate η, max

epoch T , threshold τ
output: θτ , θσa , θg

1 initialize parameters θτ , θσa , θg

2 for t = 1, 2, . . . , T do
3 /* step 1: Deep 3D instance generation */
4 preprocess 3D CT scans [X]m

i=1
5 obtain feature maps:O = τ(X)
6 reshape feature maps O into H
7 /* stage 2: attention-based MIL pooling */
8 obtain attention weight a by Equation (8)
9 combine instance representation z = ∑N

n=1 an hn

10 /* stage 3: transform into Bernoulli distribution */
11 obtain Bernoulli distribution p = g(z) of bag
12 produce bag label Ŷ with threshold τ
13 update θτ = θτ − η∇�(Ŷ ,Y )
14 update θσa = θσa − η∇�(Ŷ ,Y )
15 update θg = θg − η∇�(Ŷ ,Y )
16 end

Bernoulli distribution rather than a binary vector generated
by the traditional softmax layer. Compared with the softmax
layer, such a manner is more suitable for the MIL hypothesis.
It makes the learning (optimization) problem easier through
learning a MIL algorithm by minimizing the log-likelihood
function as follows.

D. Optimization and Extension

We finally integrate the deep instance generator τ ,
attention-based MIL pooling σa , and transformation function
g into an end-to-end optimization by backpropagation. The
workflow of optimization is shown in Algorithm 1. For the
traditional MIL problem with binary classification, we mini-
mize a log-likelihood loss function, which is in the following
form:

arg min
θτ ,θσa ,θg

−
m∑

i=1

Yi log(g(σa[τ(Xi )]))

+(1 − Yi ) log(g(σa[τ(Xi )])). (11)

In practice, multi-class classification is demanding. For
example, practical screening of COVID-19 not only needs
the model to distinguish chest CT into COVID-19 and Non-
COVID-19, but also demands the model to distinguish chest
CT into COVID-19, common pneumonia, and no pneumonia
due to the difficulty of distinguishing COVID from viral
pneumonia.

Typical MIL approaches leverage one-vs.-rest (OvR) or one-
vs.-all (OvA) strategies, but which need to train multiple mod-
els. In this work, we relax the assumption of MIL problem,
that is, only if given a bag representation zi , we can construct
a multi-class transformation function gmc that projects zi into
a joint Bernoulli distribution pi = pi(Yi = 1) · pi (Yi =
2) · · · · · pi(Yi = K ) where K is the class number. The class
with max probability is the final label of the bag. For the MIL
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problem with multi-class classification, we minimize the multi-
class cross-entropy loss function without the softmax function,
which is in the following form:

arg min
θτ ,θσa ,θg

−
m∑

i=1

p(Yi ) log(gmc(σa[τ(Xi )]). (12)

In conclusion, the AD3D-MIL algorithm not only projects
the semantic representation of bags into two-class Bernoulli
distribution but also can project them into the joint Bernoulli
distribution of multiple classes.

E. Advantages of AD3D-MIL

1) Scalability: Intuitively, the deep instance generation mod-
ule allows multiple types of data, such as text, image, video.
The size of the last layer of this module can be modified
according to the needed size of instances. When a new task
occurs, the user only changes the size of the last layer to
avoid manual pre-define and pre-process of instances. The
used attention-based MIL pooling can allocate distinct weights
over instances within a bag, and it allows AD3D-MIL to
find multiple critical instances rather than one key instance.
Moreover, the attention-based MIL pooling is trainable and
fully differentiable. Finally, the last transformation function
can project bag representations into the Bernoulli distributions
of binary or multiple classes. These advances together can be
transformed into an end-to-end neural network, and another
state of the art approaches can replace each of them. Therefore,
the proposed AD3D-MIL algorithm has excellent flexibility
and scalability.

2) Interpretability: In the new task of COVID-19 screening,
it is beneficial to provide infection areas together with the last
screening result to the radiologists. Fortunately, the setting of
multiple instance learning makes the AD3D-MIL algorithm
more interpretable because the discovered key instances can
indicate the location of infection areas of COVID-19. More
importantly, the used attention-based MIL pooling module
assigns high attention weights to instances that contribute
to the positive label of the bag. It can easily interpret the
provided decision and give the attention weights of instance
for indicating the vital attribute of each instance. Therefore,
AD3D-MIL, together with the attention mechanism, has the
potential of great interest in practical applications.

V. EXPERIMENTS

We evaluate the proposed algorithm on a newly-collected
dataset against the state of the art methods. The entire code
will be publicly available at https://github.com/zhyhan.

A. Data and Set-up

In this study, we collected a multi-class multi-center chest
CT dataset comprised of 460 transverse-section CT examples.
This dataset includes 230 CT examples from 79 patients with
COVID-19, 100 CT examples from 100 patients with common
pneumonia, and 130 CT examples from 130 people without
pneumonia. The randomly selected CT images are illustrated
in Figure 2. The chest CT examples from the same patient

Fig. 2. The visualization of typical transverse-section chest CT slices
from the collected dataset.

have at least tow days gap. The splitting of the training set and
testing set is according to the patient-level, i.e., no chest CT
from the same patient exists in training and testing sets, simul-
taneously. Without loss of generality, the common pneumonia
patients are with viral pneumonia or bacterial pneumonia.
Note that these 130 people without pneumonia are either
healthy or have other diseases. The dataset is collected from
the designated COVID-19 hospitals in Shandong Province.
Every COVID-19 patient was confirmed with nucleic acid
detection kits of reverse transcription-polymerase chain reac-
tion. The chest CT scans of COVID-19 patients without
image manifestations were excluded. Moreover, the chest CT
scans of common pneumonia patients are collected because
it is tough yet critical to distinguish them from suspected
patients with COVID-19 in clinical worldwide. This study and
all research were approved and conducted following relevant
guidelines/regulations.

We conduct two screening tasks for better verifying the
proposed AD3D-MIL algorithm in the problem of COVID-19
screening. The first task is the screening of COVID-19 CT
scans: the positive class is COVID-19, and the negative class
is Non-COVID-19. From the practical point of view, the Non-
COVID-19 CT scans involve both common pneumonia and no
pneumonia. The second task is the classification task of three
classes: COVID-19, common pneumonia, and no pneumonia.
60% of data is used for training, 20% of data is used for
model selection and super-parameters adjustment, and the
remaining 20% of data is used for testing. We employ standard
five-fold cross-validation on the training and validation set
for adjusting super-parameters. Each experiment is repeated
five times to obtain fair comparisons. The evaluation metrics
include accuracy, F1 score, precision, recall, Cohen kappa
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Fig. 3. The confusion matrix of three classes classification: COVID-19, common pneumonia (CP), and no pneumonia (NP).

TABLE I
CLASSIFICATION RESULTS ON THE BINARY CLASSES: COVID-19 AND

NON-COVID-19 (COMMON PNEUMONIA, NO PNEUMONIA).
STANDARD DEVIATION VALUES ARE ZEROS

score, the receiver operating characteristic (ROC) curve, and
the area under the ROC curve (AUC).

We compare our designed AD3D-MIL algorithm with state
of the art methods: C3D [51] and DeCoVNet [11]. C3D
is an effective approach for spatiotemporal feature learning
using deep 3D convolutional networks. DeCoVNet is a newly-
designed 3D deep convolutional neural network to screen
COVID-19 from CT scans. C3D and DeCoVNet are super-
vised methods under the supervised learning setting.

We implement the AD3D-MIL algorithm in Pytorch. We use
the 3D convolutional layers of DeCoVNet as the deep instance
generator τ . We set the output shape H ∗×W∗ × S∗ × D of τ
be 8×8×8×32 according to cross-validation. The input shapes
of CT slices are 256 × 256, and the slice number varies. The
transformation function g is a 2-layer neural network. We set
the training epoch T to 100. Data augmentation strategies,
including color jittering and random affine transformation,
were used. Adam optimizer is used with default parameters
and an initial learning rate of 1e-5. All the compared models
are implemented according to their open-source codes in
Pytorch.

B. Results

1) Binary Classification: Table I reports the results on the
screening of COVID-19 from chest CT. All the used algo-
rithms are achieving promising performance. Among them,
AD3D-MIL significantly outperforms the C3D and DeCoVNet
models on almost all metrics. Note that while all the methods
achieve promising performance, our algorithm can obtain a
more interpretable result, as illustrated in Figure 8.

Figure 4 shows the confusion matrixes of AD3D-MIL,
DecovNet, and C3D. The AD3D-MIL algorithm obtains a
balance performance. Figure 5 illustrates the ROC curve of
the AD3D-MIL algorithm, which characterizes the robustness

Fig. 4. The confusion matrix of the binary classification task.

Fig. 5. The receiver operating characteristic curve of binary classification
between COVID-19 and Non-COVID-19.

TABLE II
CLASSIFICATION RESULTS ON THREE CLASSES: COVID-19,

COMMON PNEUMONIA, AND NO PNEUMONIA

and stability on the screening of COVID-19. From another
view, these results demonstrate that the characteristic features
of COVID-19 on chest CT are different from Non-COVID-19.
Therefore, they are easy to be distinguished by deep models.

2) Multiple Classification: Table II reports the results on
the difficult three-class classification tasks. Briefly speaking,
the AD3D-MIL algorithm outperforms compared algorithms
by a large margin. The AD3D-MIL algorithm obtains a
classification accuracy of 94.3%, which outperforms the C3D
model by 4.6% and the DeCovNet by 3.7%. Even both the
spatial complexity of 3D CT scans and weak labels lead
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Fig. 6. Classification results on the binary classification with different
instance numbers: 8*8*8 denotes that there are 512 deep instances
generated from three axes of x, y, and z (best in color).

Fig. 7. Classification results on the binary classification with different
instance pooling strategies: maximum, mean, attention.

to unusual difficulties, our algorithm still obtains accurate
performance, which demonstrates its strengths in addressing
these difficulties.

Figure 3 reports the confusion matrix to give strong evi-
dence that AD3D-MIL obtains small predication errors and
accurately screens COVID-19 without any missed case. These
excellent results show that the AD3D-MIL algorithm success-
fully achieves accurate and robust screening of COVID-19.

We further perform statistical analysis to ensure that the
experimental results have statistical significance. A paired
t-test between the DeCovNet and AD3D-MIL is at a 5%
significance level with a p-value of 0.008. This analysis
result clearly shows that the improvement of our method is
noticeable. The p-values of all compared algorithms are less
than 0.05. These analyses verify that our insight that viewing
the screening of COVID-19 from chest CT as a MIL problem
is correct.

C. Analysis

This section gives an ablation study to demonstrate the
effect of each new module.

1) Number of Generated Deep Instances: Figure 6 reports
the results of our ablation study on different generated instance
numbers. When testing with different instance numbers, they
resulted in minor changes in the proposed algorithm’s per-
formance. These results demonstrate that the flexibility and
efficacy of the deep instance generator.

Fig. 8. The visualization of key instances in COVID-19 CT. The red
points in (b) indicate the infection area (best in color). (c) and (d) are
class activation maps (CAM).

2) MIL Pooling Operators: We dissect the strengths of the
attention-based MIL pooling. Intuitively, Figure 7 charac-
terizes the results of our ablation study on different MIL
pooling operators. The mean operator performs worse than the
maximum operator. The maximum operator performs worse
than attention-based MIL pooling with an extent margin. These
results once demonstrate that the attention mechanism plays a
crucial role in the AD3D-MIL algorithm.

3) Key Instances: While Figure 7 has demonstrated the
strengths of our attention-based MIL pooling of improving the
screening accuracy, we provide a broader spectrum for more
in-depth analysis. Figure 8 demonstrates that the AD3D-MIL
algorithm can find the key instances in accordance with the
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Fig. 9. The statistical analysis of training and validation in the multiple
classification tasks.

infected areas. While the class activation maps generated by
DeCoVNet and C3D only indicate the lung areas in 2D slices
coarsely, the key instances of our method precisely indicate the
infection areas of COVID-19. These illustrations demonstrate
the interpretability of our method. Compared to the analysis
of the class activation maps, the advantages of AD3D-MIL
are three-fold. Firstly, AD3D-MIL can precisely discover the
infection areas of COVID-19 by key instances. Secondly,
AD3D-MIL can find 3D infection areas that are more bene-
ficial for large-scale screening of COVID-19. Class activation
maps can only apply to 2D slices. Finally, the process of
finding key instances is natural and easy-to-implement, while
generating class activation maps is still a post-hoc analysis.
We have also conducted more analyses to discover what kinds
of pathology features contribute to the diagnosis of COVID-19.
We mainly found that the ground-glass opacities mostly appear
in the early stage and pulmonary consolidation in the late
stage, which are consistent with clinical findings.

4) Training Stability: Although all the results have verified
the advantages of the AD3D-MIL algorithm, we should prove
its convergence and stability. Figure 9 presents the training
loss and accuracy curve of AD3D-MIL and DeCoVNet on the
multi-class classification task. Our newly-proposed algorithm

maintains fast convergence and stable accuracy, which are
more optimal than DeCoVNet’s.

VI. CONCLUSION

We reported a new attempt of weakly-supervised screening
of COVID-19 from chest CT, an under-explored but more
realistic scenario. We proposed a novel attention-based deep
3D multiple instance learning (AD3D-MIL) for the screen-
ing of COVID-19 with weak labels yet high interpretability.
AD3D-MIL includes a deep instance generator to generate
deep 3D instances automatically, an attention-based MIL
pooling to combine deep instances into an informative bag
representation, and a transformation function to transform the
bag representation into Bernoulli distribution or joint distrib-
utions for multiple classes of bags. The combination of these
three functions can boost the generalization and interpretability
of screening algorithms. Comprehensive results have demon-
strated that AD3D-MIL can achieve high yet interpretable
results. In-depth analyses have revealed the effectiveness and
potential of AD3D-MIL as a clinical tool to relieve radiologists
from laborious workloads, such that contribute to the large-
scale screening of COVID-19.
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