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Abstract—In tomographic imaging, anatomical structures are
reconstructed by applying a pseudo-inverse forward model to
acquired signals. Geometric information within this process is
usually depending on the system setting only, i. e., the scanner
position or readout direction. Patient motion therefore corrupts
the geometry alignment in the reconstruction process resulting in
motion artifacts. We propose an appearance learning approach
recognizing the structures of rigid motion independently from
the scanned object. To this end, we train a siamese triplet
network to predict the reprojection error (RPE) for the complete
acquisition as well as an approximate distribution of the RPE
along the single views from the reconstructed volume in a
multi-task learning approach. The RPE measures the motion-
induced geometric deviations independent of the object based on
virtual marker positions, which are available during training.
We train our network using 27 patients and deploy a 21-
4-2 split for training, validation and testing. In average, we
achieve a residual mean RPE of 0.013 mm with an inter-patient
standard deviation of 0.022 mm. This is twice the accuracy
compared to previously published results. In a motion estimation
benchmark the proposed approach achieves superior results in
comparison with two state-of-the-art measures in nine out of
twelve experiments. The clinical applicability of the proposed
method is demonstrated on a motion-affected clinical dataset.

Index Terms—rigid motion compensation, reconstruction, in-
terventional CBCT, autofocus, appearance learning

I. INTRODUCTION

APPEARANCE modeling [1] for interpreting images is a
well examined problem in the field of computer vision.

An appearance model is trained to extract invariant represen-
tations of an object of interest [2], [3], e. g., for the tracking
of faces [4] or event detection [5]. Recently, Preuhs et al. [6]
have applied the strategy of appearance learning for motion
detection in tomographic imaging.

The key concept of tomographic imaging is the reconstruc-
tion of internal patient anatomy from a series of measured sig-
nals. This can be the relaxation properties of hydrogen atoms
in magnetic resonance imaging (MRI) or photon attenuation
in X-ray computed tomography (CT). When reconstructing
a tomographic image from measured signals, the geometry
associated with each signal only depends on the system setting,
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i. e., source-detector orientation of a CT system or readout
position for MRI scanners. The object itself is assumed to be
static during the acquisition. As a consequence, patient motion
corrupts the geometry alignment and results in motion artifacts
within the reconstructed tomographic image.

Many efforts have been devoted to the problem of non-static
objects, which are mainly splitted into non-rigid and rigid
approaches. Rigid approaches reduce the number of unknowns
to a 6 dimensional vector per measured signal, i. e., the
respective rigid patient pose. However, complex movements,
as apparent in heart imaging, are not reducible to such a simple
model. In these cases non-rigid motion estimation must be
deployed.

A. Non-Rigid Motion Compensation

Lauritsch et al. [7] presented a gating approach, where the
signal is binned to different motion states. Only similar mo-
tion states are used for reconstruction. This is extended by
Taubmann et al. [8] who developed a primal-dual optimization
scheme based on a spatial and temporal total variation (TV).
Gating approaches were also presented by Larson et al. [9] and
Hoppe et al. [10] for cardiac cine MRI, where the motion bin
is deduced from the k-space center of each readout. Similar
to gating, Fischer et al. [11] devised an MRI-based model for
X-ray fluoroscopy overlays. By binning of 4-D volumes to
cardiac and respiratory phases, the motion field is estimated
using 3-D/3-D registration.

Recent approaches deploy image-to-image translation from
motion-affected reconstructions to such without motion arti-
facts. Here, prior knowledge on the expected manifold of mo-
tion free reconstructions is learned [12]. Kustner et al. [13] and
Latif et al. [14] propose a conditional generative adversarial
network (cGAN) to synthesize motion free MRI reconstruc-
tions from a motion degenerated one. The same approach was
presented for X-ray imaging by Xiao et al. [15].

B. Rigid Motion Compensation

For many anatomical objects, the structure of the expected
motion is already known a priori. The head, for example,
is restricted by the skull to move as a rigid object. Further,
many anatomies move in an approximate rigid structure during
interventions, e. g., the knees or the hands. As the focus of
this article is rigid motion compensation, we give a detailed
overview of published methods which can be clustered into
three categories.
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1) Projection Consistency: A computationally fast ap-
proach is projection consistency, where only the projection raw
data are used, without the need for intermediate reconstruc-
tions. The main idea is that information is redundantly sampled
by the forward operator with each acquired signal, e. g., the
mass of the object. Powerful conditions are the Helgason-
Ludwig consistency conditions (HLCC) [16] describing the
relation between polynomials of degree n and the respective
nth moment of the projections for parallel-beam CT or radial
sampled MR. This was devised by Yu et al. [17] to compensate
motion in fan-beam geometry. A more broadly applicable
approach based on the zero order HLCC and Grangeat’s
theorem is epipolar consistency which was applied for geo-
metric jitter and motion compensation in cone-beam computed
tomography (CBCT) [18], [19], [20], [21]. Similar approaches
have been deployed in MRI motion compensation, where
propeller trajectories measure the k-space center redundantly
and compensate the motion based on this data redundancy
[22].

2) Reconstruction Consistency: Contrary to projection con-
sistency, reconstruction consistency solely uses tomographic
images to estimate a rigid motion trajectory and is therefore
often related as autofocus. The key idea is similar to the image-
to-image translation approaches presented above: a motion-
free reconstruction reveals some inherent properties which can
be measured using an image-quality metric (IQM). In contrast
to cGAN-based approaches, however, a motion trajectory is
estimated by iterative optimization of the IQM. This ensures
data integrity, which is of high importance in a clinical setting.
The first application of this autofocus principle was presented
by Atkinson et al. [23] for MRI reconstructions. They opti-
mize a motion trajectory to find a reconstructed image with
low entropy of the intensity histogram favoring images with
high contrast structures and without motion ghosting or blur.
Kingston et al. [24] presented a similar approach based on TV
minimization. Subsequently various extensions were proposed
[25], [26], [27], [28], including a combination of metrics as
well as additional smoothness constraints.

3) Data Consistency: The last category is based on enforc-
ing data fidelity, which is the consistency of the reconstruction
domain with the signal domain. In CBCT this approach is used
for calibrating the system geometry by minimizing a reprojec-
tion error (RPE) of 3-D spheres on a calibration phantom and
their respective 2-D projections [29]. Using markers attached
to the patient, this strategy was also investigated for motion
compensation in MRI [30] and CT [31].

A second approach to enforce data fidelity is the virtual
application of the forward model to an intermediate recon-
struction and comparing these virtual data with the actually
acquired data. Haskell et al. [32] used a SENSE forward model
to maximize the data consistency with the acquired k-space
data. For transmission imaging, digitally rendered radiographs
(DRR) are commonly used to enforce consistency with the
acquired projections [33], [34]. In this context, Dennerlein
et al. [35] exploit directly and indirectly filtered projections to
compensate for geometric misalignment.

C. Potentials and Limitations in the State of the Art

Non-rigid approaches (see Sec I-A) seem to be unfitting
if the problem is known to be rigid. Image-to-image-based
approaches do not exploit the full problem knowledge. Fur-
thermore, their clinical applicability is limited because the
consistency of the reconstructed image to the acquired data is
not guaranteed and anatomic malformations can vanish [36].

Consistency conditions (see Sec. I-B1) have been used for
the compensation of various other image artifacts as beam
hardening, scatter correction or truncation correction [37],
[38], [39], [40]. This is due to consistency being deduced from
a physical model, which only holds on an approximate basis
for real applications [41]. Additionally, they are insensitive to
certain motion directions and their application is limited to
motion patterns outside the acquisition plane [18], [21].

Image-based methods (see Sec. I-B2) currently use hand-
crafted features not particularly designed for the specific task.
As a consequence, they are object dependent with each object
revealing a different histogram entropy or TV.

A robust approach is based on reducing the RPE using
markers (see Sec. I-B3). However, this approach depends on
additional marker placements, which has not found its way
to clinical routine yet. Marker-free registration approaches are
only working robustly if a prior reconstruction is available.
Otherwise, the optimization becomes ill-posed, as the interme-
diate reconstruction, on which the forward model is applied,
inherently reveals motion artifacts.

Deep learning has high potential to overcome some of
those limitations by replacing bottlenecks of traditional meth-
ods with data-driven algorithms. For example, Bier et al. [42]
tackled the problem of manual marker placement by learning
anatomical landmarks directly from the projection images.
The presented cGAN-based approaches potentially have the
risk of vanishing anatomical malformations, however, they
may solve the chicken-egg problem for marker-free regis-
tration approaches. Additionally, many applications emerged
for learning-based registration [43], [44], [45]. They could
potentially be extended for motion compensation scenarios.

D. Contribution

Despite its great potential in improving rigid motion com-
pensation algorithms, deep learning methods have caught lim-
ited attention from the research community. In Preuhs et al. [6],
we have presented the concept of learning image artifacts
from a single axial reconstructed slice using a simplified
motion model and a vanilla network architecture. The key
concept is that a certain motion state is regressed to an object-
independent measure defined by the RPE. We extend this line
of thinking by developing a new data-driven approach for
appearance learning capable of compensating motion artifacts.
Our network architecture for motion appearance learning is
based on a siamese triplet network trained in a multi-task
scenario. Therefore, we incorporate not only a single axial
slice but make use of information from 9 slices, extracted
from axial, sagittal and coronal orientations. Using a multi-
task loss, we estimate both (1) an overall motion score of
the reconstructed volume similar to [6] and (2) a prediction
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which projections are affected by the motion. To stabilize the
network prediction, we deploy a novel pre-processing scheme
to compensate for training data variability. These extensions
allow us to learn realistic motion appearance, composed of
three translation and three rotation parameters per acquired
view. We evaluate the accuracy of the motion appearance
learning in dependence of the patient anatomy and also
the motion type. In a rigid motion estimation benchmark,
we demonstrate the performance of the appearance learning
approach in comparison to state-of-the-art methods. Finally,
we demonstrate its applicability to real clinical data using a
motion-affected clinical scan.

We devise the proposed framework for CBCT, however,
by exchanging the backward model and training data, this
approach is seamlessly applicable to radial sampled MRI or
positron emission tomography (PET). In addition, by adjusting
the regression target, also for Cartesian sampled MRI.

II. RIGID MOTION MODEL FOR CBCT
A. Cone-Beam Reconstruction

In tomographic reconstruction we compute anatomical
structures denoted by x from measurements y produced with
a forward model A by Ax = y. For X-ray transmission
imaging x are attenuation coefficients and y are the attenuation
line integrals measured at each detector pixel. The system
geometry — e. g., pixel spacing, detector size and source-
detector orientation — is part of the forward model A. Using
the pseudo-inverse

x = A>(AA>)−1y (1)

we get an analytic solution to this inverse problem, which
consists of the back-projection A> of filtered projection
data (AA>)−1y [46], commonly known as filtered back-
projection (FBP). For CBCT with circular trajectories, an
approximate solution is provided by the Feldkamp-Davis-Kress
(FDK) algorithm [47]. The algorithm is regularly used for
autofocus approaches [24], [27] (see Sec. I-B2) due to its low
computational costs. Rit et al. [48] have further shown that
even due to its approximate nature, an FDK-based motion-
compensated CBCT reconstruction is capable of correcting
most motion artifacts. Thus, we use the FDK reconstruction
algorithm, having the benefit of only filtering the projection
images once and thereafter only altering the back-projection
operator for motion trajectory estimation.

It is possible to formulate the FDK algorithm using a tuple
of projection matrices P = (P0,P1, ...,PN ) describing the
geometry of operator A. The measurements y are reshaped
to a tuple of 2-D projection images Y = (Y0,Y0, ...,YN ).
In analogy to [47], we implement the FDK for a short scan
trajectory using Parker redundancy weights Wi(u, v) [49],
where i ∈ [1, 2, ..., N ] describes the projection index and
(u, v) denotes a 2-D pixel. The first step is a weighting and
filtering of the projection images

Y′i(u, v) =Wi(u, v)

∫
R
F Ỹi(η, v) ei2πuv

|η|
2

dη , (2)

with F Ỹi being the 1-D Fourier transform of the ith cosine
weighted projection image along the tangential direction of the
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Fig. 1. Visualization of the geometry for a point a and two geometries Pi and
P̃i. The L2 distance between the two projected points on the 2-D detector
defines the RPE of the scene.

scan orbit. Thereafter, a distance-weighted voxel-based back-
projection is applied mapping a homogeneous world point a ∈
P3 to a detector pixel described in the projective two-space P2

fFDK(a,P,Y) =
∑
i∈N

U(Pi,a)Y
′
i(φu(Pia), φv(Pia)) (3)

with Pi describing the system calibration associated with
Yi. (see Fig. 1). The mapping function φ� : P2 → R is a
dehomogenization

φ�((x, y, w)
>) =

{
x
w if � = u
y
w if � = v

, (4)

and U(Pi,a) is the distance weighting according to [47].

B. Rigid Motion Model
We assume the rigid motion to be discrete w. r. t. the ac-

quired projections. To this end, we define the motion trajectory
M as a tuple of motion states Mi ∈ SE(3) describing the
orientation of the patient during the acquisition of the ith

projection Yi. Each motion state is associated to a projection
matrix Pi. The motion modulated trajectory is obtained by

P ◦M = (P0M0, P1M1, ..., PNMN ) , (5)

where ◦ is the element-wise matrix multiplication of two
tuples. Typically, the motion trajectory is unknown and the
task of motion compensation is to find a tuple of matrices
Ci ∈ SE(3) annihilating the resulting geometry corruption
produced by M. The compensation is successful if an an-
nihilating trajectory C = (C0, ...CN ) is found that suffices
C ◦M = 1, with 1 being a tuple of identities.

Each motion matrix defined in SE(3) is parameterized by 3
rotations (rx, ry, rz) and 3 translations (tx, ty, tz), describing
Euler angles and translations along the corresponding coordi-
nate axis, respectively. Therefore, the annihilating trajectory
has 6N free parameters for an acquisition with N projections.
To reduce the high dimensionality, we model the trajectory
using Akima splines [50]. This reduces the free parameters
to 6M , where M is the number of nodes typically chosen as
M � N . Based on the expected frequency of the motion the
number of spline nodes can be adapted.
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III. APPEARANCE LEARNING

Conventionally, autofocus approaches are based on hand-
crafted features, selected due to their correlation with an
artifact-free reconstruction. For example, entropy gives a mea-
sure on contingency. As the human anatomy consists of mostly
homogeneous tissues, entropy of the gray-value histogram can
be expected to be minimal if all structures are reconstructed
correctly. Motion blurs the anatomy or produces ghosting
artifacts distributing the gray values more randomly. A similar
rational is arguable for TV, which is also regularly used for
constraining algebraic reconstruction [8]. Contrary to algebraic
reconstruction, the motion estimation scenario is non-convex
and optimization of a cost function based on hand-crafted
image features is hardly solvable for geometric deviations
exceeding a certain bound [28].

We aim to overcome this problem by designing a tailored
image-based metric, which reflects the appearance of the
motion structure independent of the object.

A. Object-Independent Motion Measure

Several metrics have been proposed to quantify image qual-
ity of motion affected reconstructions based on a given ground
truth: the structural similarity (SSIM) [51], the L2 distance
[52] or binary classification to motion-free and -affected [53].
However, they were not used for the compensation of motion,
but merely for the assessment of image quality, which is of
high relevance in the field of MRI to automize prospective
motion compensation techniques.

We choose the object-independent RPE for motion quantifi-
cation. Its geometric interpretation is schematically illustrated
in Fig. 1. The RPE measures reconstruction relevant deviations
in the projection geometry and is defined by a 3-D marker
position a ∈ P3 and two projection geometries Pi, P̃i. We
consider Pi as the system calibration and P̃i = PiMi as the
actual geometry due to the patient motion. Accordingly, the
RPE for a patient movement at projection i is defined by

dRPE(Pi, P̃i,a) =

∥∥∥∥∥
(
φu(Pia)

φv(Pia)

)
−
(
φu(P̃ia)

φv(P̃ia)

)∥∥∥∥∥
2

2

(6)

where φ� denotes the dehomogenization described in Eq. (4).
Using a single marker, the RPE is insensitive to a variety of
motion directions. Therefore, we use K = 90 virtual marker
positions ak, distributed homogeneously at three sphere sur-
faces with the radii 30mm, 60mm, and 90mm. The high
number of markers ensures that the RPE is view-independent,
i. e., a displacement of a projection at the beginning of the
trajectory has the same effect on the RPE as a displacement
of a projection at the end of the trajectory. Accordingly, the
overall RPE for a single view is

dRPE(Pi, P̃i) =
1

K

K∑
k=1

dRPE(Pi, P̃i,ak) . (7)

As shown in Strobel et al. [29], Eq. (7) can be rewritten to a
measurement matrix X containing the 3-D marker positions,
a vector p containing the elements of P̃i and a vector d
containing the respective 2-D marker positions. Given at least

six markers, the components of p are estimated as the solution
to ‖Xp − d‖22. Direct application of this method for motion
compensation is non-trivial, as the accurate estimation of ak
is challenging. The 3-D marker positions must be estimated
from projection images with corrupted geometry alignment.

Thus, we follow a different approach: we train a neural
network to predict the RPE directly from the reconstructed
images. To generate training data, we simulate rigid motion
on real clinical acquisitions and compute the corresponding
ground truth RPE via the virtual marker positions and their
corresponding projections using Eq. (7). Thus, we aim to
approximate Eq. (7) from reconstructed slice images using a
neural network.

B. Network Architecture

Our network architecture depicted in Fig. 2 consists of two
stages, a feature extraction stage followed by a regression
stage. The feature extraction is driven by a siamese triplet
network architecture consisting of three weight-sharing feed
forward networks denoted by S. The output of the three
networks is concatenated and fed to the regression networkRt.
The feed forward network is almost identical to the ResNet-
18 architecture [54] upto the last global average pooling. We
devise the network to our task by removing the last fully
connected (FC) layer. Since the input of our network is always
a tomographic reconstruction, we also remove all batch nor-
malization (BN) layers. Expecting three-channel input images
ranging from R70×216 to R256×216 for the different anatomical
orientations, the final 7 × 7 average pooling is replaced by
a 3 × 3 average pooling. The resulting feature maps are
concatenated and represent the input to the regression network.

The regression network Rt is composed of a 1× 1 convo-
lution mapping the 1536×3×3 feature maps to 2048×3×3
feature maps followed by an 1 × 1 global average pooling.
The resulting feature maps are fed to four FC layers, each
representing a different task t ∈ {1, 2, 3, 4}. The first FC layer
maps to a single scalar output R1, the other three FC layers
map to N dimensional outputs R2, R3 and R4, where N
represents the number of projections.

C. Data Generation

Motion-affected reconstructions with corresponding ground
truth motion patterns are rarely available. First, contrary to
spiral CT, CBCT patient data are not available from public
sources and therefore difficult to obtain in general. Second,
the only robust motion compensation is based on external
markers, which is not used in clinical practice. The only
feasible possibility is the generation of artificial motion based
on motion-free acquisitions. To this end, our data-base consists
of 27 clinical head CBCTs, each being ensured to have no
motion artifacts by a medical expert. The data are acquired
with a clinical CBCT system (Artis Q, Siemens Healthcare
GmbH, Forchheim, Germany). After filtering, the high reso-
lution projection images are down-sampled to low resolution
projection images Yi ∈ R320×413 using an average filter. This
improves the computational performance of the method and
matches the voxel size of the volume reconstructed from these
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Input Convolutional Neural Network (CNN) Loss

Fig. 2. Flowchart of network architecture. The input to the siamese triplet network are three slices of different anatomical orientations. The concatenated
output is fed to the multi-task regression network. Based on the four outputs the respective loss is computed.

images. Down-sampling does barely affect the accuracy of the
autofocus method [23].

The first step of the data generation is an alignment process
of the 27 clinical CBCT scans to a mean shape. We perform
this semi-automatically based on a symmetry plane alignment
[18]. The result of the alignment process is a single rigid
transformation which is incorporated into the system trajectory
P.

The second step is the generation of rigid motion which can
be realized by two approaches: (1) the reconstructed volume is
reprojected on a motion modulated trajectory using DRRs and
then reconstructed again using P or (2) the calibrated system
trajectory P is virtually altered by a motion trajectory and
reconstructed. As DRRs are simulated projections, they cannot
model the complexity of a real system and alter resolution
and noise characteristics, where the latter is known to be
critical for convolutional neural networks (CNN) [36], [46].
Therefore, we decide to choose strategy (2) where projection
characteristics of a real clinical setting are preserved. Further,
note that P3 is diffeomorphic to SE(3), as a consequence a
rigid motion can be analogously expressed by a transformation
of the system geometry (PiTi)a or a transformation of the
object Pi(Tia).

The motion generation is applied as follows: First, the
system calibration P is altered by a motion trajectory M,
giving the effective trajectory E = P ◦M. The motion trajec-
tory contains a random misalignment in one of the 6 motion
splines. The length of misaligned motions is chosen to be
distributed over a third of the trajectory and restricted to views
unaffected by the Parker redundancy weighting (see Sec. II-A).
The redundancy weighting alters the appearance of motion
artifacts — e. g., any translations of the last few views would
barely affect the reconstruction quality as those projections
are mostly outfaded — making a consistent mapping of

artifact pattern to RPE infeasible. Secondly, two values are
computed, the corresponding RPE per view using Eq. (7) and
the motion affected reconstruction using Eq. (3). Note that
the RPE is only computed based on virtual marker positions
which is possible because we know the system calibration
P and motion trajectory M during training. The volume is
reconstructed on nine slices distributed in triplets of axial
(R216×256), coronal (R70×216) and sagittal (R70×256) slices
with an isotropic voxel size of 0.84mm. The respective slices
are distributed in a volume (R256×216×70). The field-of-view
is selected such that no truncation artifacts in longitudinal
direction are present if reconstructed from a typical clinical
scan.

D. Motion Learning

The overall goal of the motion learning process is to train
a network that is capable of approximating Eq. (7) only based
on a tomographic reconstruction. Therefore, nine slices of the
tomographic reconstruction are used as input to the network.
To keep the computational effort on a minimum and still cap-
ture all types of motion artifacts, the input of the network are
triplets of three slices oriented in axial (ax), coronal (co) and
sagittal (sa) direction. We denote the respective coordinates
of the nine slices by V = (Vax,Vco,Vsa), where V� is a
set of coordinates defined in P3. Thus, fFDK(Vax,E,Y) will
denote the reconstruction of three slices in axial direction with
effective trajectory E. Let us define a triplet of reconstructed
slice images for a set of projections Y reconstructed with
the effective trajectory E as µ�FDK(E) = fFDK(V�,E,Y) and
further, let the tuple of all reconstructed slices be µFDK(E) =
(µax

FDK(E),µco
FDK(E),µsa

FDK(E)). Then, the input to the regres-
sion network is computed as

ylat(µFDK(E)) = ∪�∈{ax,co,sa}S(µ�FDK(E)) , (8)
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where ∪ denotes concatenation. Thus, each feed forward net-
work processes three slices of the same anatomical orientation
and the result is concatenated representing the latent space
ylat(µFDK(E)). The loss function l is based on a multi-task
loss

l(µFDK(E),E) =

4∑
t=1

‖Rt(ylat(µFDK(E)))− Lt(E)‖22 , (9)

with

Lt(E) =


1
N

∑N
i=1 dRPE(Ei) if t = 1

(dRPE(E1), ..., dRPE(EN )) if t = 2

(dRPE(E
ip
1 ), ..., dRPE(E

ip
N )) if t = 3

(dRPE(E
op
1 ), ..., dRPE(E

op
N )) if t = 4

. (10)

Here, we assume that E is implemented such that it can be
decomposed into P and M allowing to compute the RPE using
Eq. (7). Eop and Eip refer to in-plane an out-plane motion.
Assuming the system is rotating around the z axis, in-plane
motion is within the acquisition plane and represented by
parameters (rz, tx, ty) and out-plane motion is stepping out the
acquisition plane and represented by parameters (ry, rz, tz).
We use this distinction, because in-plane motion is better
detectable in axial slices, whereas out-plane motion is better
detectable in coronal and sagittal slices.

For optimization we use the ADAM optimizer with a learn-
ing rate of 10−4 and a batch size of 32. To avoid over-fitting,
we use the validation set for early stopping. The residual
network S is initialized using pre-trained weights learned for
the ImageNet classification task. The regression network Rk
is randomly initialized.

IV. EXPERIMENTS AND RESULTS

In this section we evaluate the network performance w. r. t.
three aspects: (1) the behavior of the network in its core task,
i. e., the regression of the RPE, (2) the performance of the
network in a motion compensation benchmark in comparison
to state-of-the-art methods, and (3) the applicability of the
proposed method to motion-affected clinical data.

A. Network Accuracy

Using the data generation proposed in Sec. III-C, we gen-
erate 9001 different motion affected reconstructions. The am-
plitude of the applied motion is in the range of 0 ◦\mm to
15 ◦\mm, i. e., mean RPEs (mRPE) are in a range of 0mm
to 0.74mm. Using a 21-4-2 split, this provides us with a total
of 189021 samples for training, 36004 samples for validation
and 18002 samples for testing. The number of spline nodes is
set to M = 20. Following the training described in Sec. III-D,
we achieve the optimal validation loss after 12×103 iterations
(see Tab. I).

1) Ablation Study: To inspect the network performance as
well as the influence of the pre-processing, Tab. I displays the
respective best validation loss values for alterations in the
network structure or input data. The most important perfor-
mance boost is obtained by the pre-processing step of aligning
the respective reconstructions and slight improvements are

TABLE I
BEST PERFORMING VALIDATION LOSS FOR DIFFERENT NETWORK

SETTINGS.

L1 L2 L3 L4

Proposed 0.0098 0.2493 0.1615 0.1981
Proposed with BN 0.0138 0.2835 0.2145 0.2412
Proposed no alignment 0.0436 0.5644 0.5815 0.8192
Proposed no pre-training 0.0171 0.4350 0.2941 0.3279
Proposed dual task 0.0146 0.2481 x x
Proposed with DenseNet 0.0205 0.3331 0.1929 0.2818
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Fig. 3. Boxplots showing the deviation of the mRPE (L1) from the ground
truth for each patient. The boxplots are grouped to training (Train Pat.),
validation (Val. Pat.) and test (Test Pat.) patients. All outliers are displayed
as circles.

obtained by removing the BN. Further, a pre-training of S on
ImageNet increases the accuracy. Without the distinction of in-
plane and out-plane motion (dual-task learning), the accuracy
of L2 decreases slightly, however, the mRPE (L1) accuracy
increases by ≈ 50 %. A replacement of the residual network
architecture S with a pre-trained DenseNet [55] worsens the
accuracy.

2) Patient and Motion Variability: An important aspect of
motion appearance learning is the independence to the patient
anatomy, similar motions applied to different patients should
be predicted alike. Therefore, following the data generation
presented in Sec. III-C we generate 300 additional motion
shapes per patient ranging from mRPEs of 0mm to 0.7mm.
Note, that the simulated motion is random and therefore not
part of the training set. Consequently, the applied motion was
never seen by the network. The results depicted in Fig. 3 show
the patient-wise accuracy in predicting the mRPE (L1). Most
of the outliers are within a range of 0.2mm, and no outlier is
exceeding an error of 0.35mm. While the accuracy is high
with an mRPE of 0.013 mm, there is a slight tendency of
overestimating the mRPE. The inter-patient variability of the
estimation is small with a standard deviation of 0.022 mm.
From the patients never seen during training, we can observe
a good generalization of the learned features. The tendency
to overestimate the mRPE is even slightly less observable.
Besides the mRPE the network further predicts three view-wise
RPEs (vRPE) split to in-plane motion (L2), out-plane motion
(L3) and both (L4). The accuracy for this task is depicted in
Fig. 4. Comparing the accuracy of the vRPE estimations to
the mRPE we observe higher deviations and a higher number
of outliers in the vRPE estimations. The accuracy of the in-
plane vRPE is higher than for the out-plane vRPE. In-plane
motion is mostly distributed in axial slices, which can be
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Fig. 4. Boxplots visualizing the deviations to the ground truth for the in-
plane (L3), out-plane (L4) and combined (L2) vRPE and the mRPE (L1).
The evaluation is based on the four validation and two test patients.
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Fig. 5. Boxplots showing the mRPE deviations from the ground truth for
motions clustered to the 6 motion directions. The evaluation is based on the
four validation and two test patients. All outliers are displayed as circles.

reconstructed without significant cone-beam artifacts and are
best suitable for motion prediction. The patient-wise deviations
are more pronounced compared to the mRPE, however, still
on a reasonable low level.

Figure 5 shows the mRPE clustered w. r. t. the motion direc-
tions for all patients. All motion directions can be predicted
with similar accuracy, however, a slight tendency is observable
that out-plane motion is predictable with less deviations.

In conclusion, the experiments have shown the patient
independence of the proposed appearance learning approach,
as well as the independence of the motion direction. This
provides us a method that has no inherent limitations to certain
motion patterns as apparent, e. g., in epipolar consistency [21],
which is sensitive to out-plane motion, but barely applicable
to in-plane motion.

3) RPE Trajectory Prediction: Using the same data as in
Sec. IV-A2, we investigate in this experiment the performance
of the estimated vRPE for motion classification. The predicted
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Fig. 6. Binary soft-classification results plotted over the respective views.
FN relates to a motion-affected region that is classified by the network as
motion-free. FP relates to a misclassification to the motion-affected class. TP
and TN are correctly predicted views.

vRPEs are interpreted as soft-classifiers, where we define a
view to be in the motion-free class (negative) if the average
predicted value for view i satisfies

1

2
R2 +

1

4
R3 +

1

4
R4 ≤ 0.1 . (11)

In Fig. 6 the accuracy is displayed encoded to false negative
(FN), false positive (FP), and the combination of FP, true
positive (TP) and true negative (TN). If the predicted value
is used as an indicator function (see Sec.IV-B) in a motion
estimation scenario a low FN rate is important. Regions
classified as motion free will receive little attention within
the optimization. On the opposite, a FP classification does not
worsen the result and is therefore non-critical. These properties
are satisfied as observable from Fig. 6. The FN rate is ≈ 0%
and the FP rate is ≈ 25%. Note that the peaks in the FP curve
are due to the spline nodes, where transitions from motion-
affected to motion-free views arise with increased frequency.

B. Motion Estimation Benchmark

1) Autofocus: The motion estimation benchmark is based
on the four validation patients and two test patients. We
apply a known motion trajectory M to the projection matrices
P and evaluate the performance of six metrics (see IV-B3)
to find the annihilating trajectory C (see II-B). We describe
the trajectory as a function of six motion spline nodes
m = (mtx ,mty ,mtz ,mrx ,mry ,mrz ). Each element of
m ∈ R6×M describes the respective spline node within
the trajectory. Thus, mry,420 describes the rotation around
the y-axis at acquisition view 420. Then, the motion curve
vector t(m) = (tx, ty, tz, rx, ry, rz) is computed by evalu-
ating the spline for each acquired view. For example tx =
(ηmtx

(0), ηmtx
(1), ..., ηmtx

(N))>, with ηmtx
(i) denoting the

spline evaluation at position i based on the spline nodes mtx

as proposed in [50]. From the six motion curves described
by t we can directly compute the annihilating trajectories
denoted by C(t(m)). Note, that the motion trajectory itself
is generated in an equal way.

The components of m are found by optimizing the IQM
fIQM

m̂ = argmin
m

fIQM (fFDK(V,P ◦C(m),Y)) . (12)

2) Optimization: Equation (12) is optimized using the
gradient free downhill simplex algorithm [56]. We optimize
only one node at a time iterating over all nodes in sequential
order. We use a coarse to fine strategy by defining 5 stages. In
the first three stages we define a starting stepsize of 1 ◦\mm for
the simplex and set the number of iterations to 2. This allows
a rough estimate of the trajectory. In the last two stages, we
set the number of iterations to 100 with initial stepsize of
0.5 ◦\mm. The optimization is finished if either the maximum
number of iterations is exceeded or the improvement in m is
below 0.001 ◦\mm.

3) Image Quality Metrics: We define three IQMs denoted
by Ent, Tv and Cnn. Ent and Tv refer to the histogram entropy
and TV of the slice images, respectively. We implement Ent
following the methodology of Herbst et al. [28] and Tv as
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Fig. 7. The motion trajectories for both motion scenarios. The motion is
applied respectively to the motion axis under investigation. The curves are
generated using 20 spline nodes and 17 spline nodes for scenario A and B,
respectively.

proposed in Kingston et al. [24]. We selected these two metrics
due to their popularity in the literature. Ent was found to
be superior for geometry alignment in a study by Wicklein
et al. [25]. Cnn is our proposed method. In addition we define
Ent+, Tv+ and Cnn+, each denoting an initial optimization
with either Ent, Tv or Cnn followed by a fine-tuning of
the annihilating trajectory with an additional optimization
stage using Ent (for Tv+ and Cnn+) or Tv (for Ent+). For
Ent and Tv the implementation of fIQM is straightforward: the
histogram entropy or total variation of the nine reconstructed
slices are calculated. Following Wicklein et al. [25] we use
a bone window for the histogram calculation. Their studies
showed that restricting the histogram calculation to values
within a bone window improves the method’s performance,
because only relevant image features are captured. The im-
plementation of fIQM for Cnn and Cnn+ uses an additional
indicator function 1M, where M describes the set of views
satisfying Eq. (11). Thus, the IQM for Cnn is defined by

fIQM = R1(ylat(V,P ◦C,Y)) s. t. 1M|t(m)| = 0 , (13)

with | · | denoting element wise absolute value. Note that 1M
is not updated during the iterations.

4) Motion Scenarios: We design two motion scenarios
(scenario A and scenario B) differing in their motion shapes
and the number of spline nodes used for both, the motion
trajectory and annihilating trajectory. Scenario A uses 20
spline nodes for the motion curves and the same number of
spline nodes for the annihilating curves. Scenario B uses 17
spline nodes for the motion curves and 40 spline nodes for the
annihilating curves. The two motion amplitudes are depicted
in Fig. 7. For both scenarios the respective motion is applied
to one of the 6 motion axes, respectively. In each scenario, we
optimize only for the axis which is affected by the motion.

5) Motion Estimation Results: To quantify the perfor-
mance, we measure the mismatch of the respective motion
curves and estimated annihilating curves. For a complete
compensation, we need M ◦ C = 1, which is the case if
the motion curve and the annihilating curve add up to zero.
The second metric measures the reconstruction quality by
computing the SSIM of the respective motion-compensated
reconstruction and the ground truth.

Figure 8 and Fig. 9 show the misalignment of the motion
curve for motion scenario A and B, respectively, averaged
over the 4 validation and 2 test patients for Ent, Tv, Cnn and
Cnn+. Numeric results showing the misalignment for all six

metrics are displayed in Tab. II and Tab. IV and numeric results
showing the SSIM values for all six metrics are displayed in
Tab. III and Tab. V, respectively. Selected reconstructions for
both motion scenarios are presented in Fig. 10.

The proposed method performs well in both scenarios.
In motion scenario A, the state-of-the-art methods perform
similar to the network-based solution. In the majority of cases,
the network-based results are superior. However, in almost
50% of the experiments, either Tv or Ent achieves the best
results. A fine-tuning of the traditional metrics (Ent+, Tv+)
barely improves the results and can lead to a degeneration
of the performance. The margin by which the network-based
method outperforms both state-of-the-art metrics is much
higher than vice-versa. Figure 10 shows that the network-based
approach is further capable of dealing with metal artifacts.
In this case, the network without post-optimization using the
entropy (Cnn) achieves the best results. Note, that our training
set also includes patients with metal artifacts.

For scenario B, our method is constantly outperforming the
state-of-the-art metrics, both in terms of SSIM and measured
misalignment. By an additional post-optimization with the
entropy-based compensation, the best results are achieved with
Cnn+. As can be seen from Fig. 10, the network is capable of
approximating the true motion curve but ignores small high-
frequent motions. These motions are then eliminated by the
entropy. However, deploying entropy alone produces mediocre
results because the optimization gets stuck in local minima.
Tv performs worst w. r. t. the misalignment of the annihilating
and motion curves, however, the SSIM is comparable to the
entropy-based procedure.

C. Motion-Affected Clinical Data

1) Data and Preprocessing: To demonstrate the effective-
ness of the proposed method in clinical practice, we apply it
on a motion-affected clinical dataset. Similar to the acquired
data used for the network training and evaluation, the patient
was scanned with a clinical CBCT system (Artis Q, Siemens
Healthcare GmbH, Forchheim). The projections were down-
sampled and aligned following the same procedure (i. e., step
1 of data generation) as presented in Sec. III-C.

2) Motion Compensation Scheme: We model the annihilat-
ing trajectory with an Akima spline consisting of 20 spline
nodes equally distributed over the trajectory. We adapt the
optimization scheme from Sec. IV-B2. We sequentially opti-
mize for all six motion parameters in the following sequence
(tz ,tx,ty ,rx,ry ,rz). To optimize for motion we use Cnn and
Cnn+.

3) Motion Compensation Results: Figure 11 displays re-
constructed slice images from the motion-affected clinical
dataset (None) as well as motion-compensated reconstruc-
tions (Cnn, Cnn+). As ground-truth reconstructions are not
available, only a qualitative inspection is possible. In slice
1 we observe motion artifacts especially at the boarders of
the temporal bones as well as near the nasal cavities and
ethmoid bone. The anatomy contours can be well recovered
using Cnn or Cnn+. As can be observed from the difference
images (dCnn, dCnn+), streaks at the bone contours are
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TABLE II
MEAN MISALGNEMT [◦\MM] BETWEEN ANNIHILATING TRAJECTORY AND

GROUND-TRUTH TRAJECTORY FOR MOTION SCENARIO A.

tx (ip) ty (ip) tz (op) rx (op) ry (op) rz (ip)
None 0.45 0.45 0.45 0.45 0.45 0.45
Ent 0.69 0.20 0.13 0.10 0.33 0.33
Ent+ 1.07 0.16 0.16 0.12 0.35 0.39
Tv 0.97 0.12 0.45 0.32 0.46 0.69
Tv+ 0.95 0.14 0.46 0.27 0.46 0.69
Cnn 0.27 0.24 0.15 0.24 0.21 0.18
Cnn+ 0.28 0.20 0.13 0.19 0.19 0.14

TABLE III
SSIM VALUES NORMALIZED TO THE RANGE [0,100] FOR MOTION

SCENARIO A. THE SSIM IS COMPUTED BETWEEN THE GROUND-TRUTH
RECONSTRUCTION AND THE RESPECTIVE COMPENSATED

RECONSTRUCTION. IN BRACKETS, THE SSIM IS COMPUTED IN A
VOLUME-OF-INTEREST. THE VOLUME OF INTEREST COVERS THE NASAL

BONES ONLY.

tx ty tz rx ry rz
None 58 (64) 81 (89) 75 (72) 81 (68) 79 (86) 68 (66)
Ent 53 (67) 94 (97) 95 (95) 97 (97) 89 (97) 76 (81)
Ent+ 50 (65) 94 (97) 95 (95) 97 (98) 89 (97) 74 (82)
Tv 51 (66) 97 (98) 78 (77) 88 (85) 82 (93) 66 (70)
Tv+ 49 (67) 96 (98) 77 (78) 90 (89) 83 (94) 63 (71)
Cnn 69 (81) 90 (95) 92 (92) 90 (87) 90 (97) 83 (87)
Cnn+ 69 (81) 92 (97) 94 (95) 92 (92) 92 (98) 86 (91)
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Fig. 8. Boxplot for motion scenario A, showing the misalignment of the
annihilating curve to the motion curve plotted for each of the four different
IQMs used in the motion estimation benchmark.

TABLE IV
MEAN MISALGNEMT [◦\MM] BETWEEN ANNIHILATING TRAJECTORY AND

GROUND-TRUTH TRAJECTORY FOR MOTION SCENARIO B.

tx (ip) ty (ip) tz (op) rx (op) ry (op) rz (ip)
None 1.52 1.52 1.52 1.52 1.52 1.52
Ent 1.70 1.18 1.24 1.09 1.32 1.43
Ent+ 1.93 1.06 1.26 1.09 1.33 1.57
Tv 2.01 1.34 1.54 1.38 1.55 1.83
Tv+ 1.95 1.17 1.43 1.18 1.48 1.79
Cnn 1.20 0.54 1.15 0.84 0.76 0.83
Cnn+ 1.14 0.45 0.90 0.67 0.69 0.62

TABLE V
SSIM VALUES NORMALIZED TO THE RANGE [0,100] FOR MOTION

SCENARIO B. THE SSIM IS COMPUTED BETWEEN THE GROUND-TRUTH
RECONSTRUCTION AND THE RESPECTIVE COMPENSATED

RECONSTRUCTION. IN BRACKETS, THE SSIM IS COMPUTED IN A
VOLUME-OF-INTEREST. THE VOLUME OF INTEREST COVERS THE NASAL

BONES ONLY.

tx ty tz rx ry rz
None 49 (49) 65 (71) 66 (61) 69 (45) 66 (68) 54 (56)
Ent 46 (47) 66 (76) 66 (61) 72 (51) 67 (71) 55 (55)
Ent+ 46 (47) 68 (78) 66 (59) 72 (52) 67 (71) 55 (55)
Tv 48 (48) 67 (74) 65 (60) 70 (47) 66 (68) 53 (55)
Tv+ 45 (46) 67 (76) 65 (59) 71 (48) 65 (69) 52 (54)
Cnn 46 (51) 75 (85) 67 (66) 73 (58) 72 (80) 54 (57)
Cnn+ 50 (54) 81 (90) 70 (67) 78 (67) 75 (84) 66 (65)
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Fig. 9. Boxplot for motion scenario B, showing the misalignment of the
annihilating curve to the motion curve plotted for each of the four different
IQMs used in the motion estimation benchmark.

eliminated. In slice 2 the motion artifacts are severe in the
orbital bone structures. The streak artifacts are reduced in both
motion-compensated reconstructions, restoring the homoge-
neous regions. A small residual motion is still observable with
the motion-compensated reconstructions, however, the image
quality could be improved substantially. From the difference
images between the Cnn-based and Cnn+-based compensated
reconstructions (dCnnCnn+) we see that the entropy-based
fine-tuning barely affects the reconstruction quality.

V. DISCUSSION

We propose an appearance learning approach that can be
deployed for image-based motion compensation. For that
purpose, we devise a framework that learns the mRPE as well

as vRPEs from reconstructed slice images. Exact computa-
tion of the RPE allows for geometric calibration for high-
quality CBCT [29]. Hence, given a 100% network accuracy,
minimizing the network-predicted mRPE would yield highly
accurate motion parameters. The axis with lowest accuracy in
predicting the mRPE is also the axis with lowest performance
in the motion compensation benchmark.

We further show that we can learn general features applica-
ble to all three types of translations and rotations. The learned
features are even less dependent on the motion axis than
traditional methods. For example, Tv shows superior results in
compensating translation along the y-axis as observable from
motion experiment A.

Autofocus methods are characterized by optimizing an IQM
in the reconstruction domain. Inherently, information from
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Gt Ent Cnn Gt Ent Cnn

None Tv Cnn+ None Tv Cnn+

dNone dEnt dTv dCnn dCnn+ dNone dEnt dTv dCnn dCnn+

Motion Scenario A for Patient 16 (tx) Motion Scenario B for Patient 18 (rx)

Fig. 10. Selected reconstructions (HU [50-2000]) from the motion benchmark. Left block: Motion scenario A using 20 spline nodes to model the annihilating
trajectory, and right block: Motion scenario B using 40 spline nodes to model the annihilation trajectory. The respective bottom row displays the difference
images to the Ground truth (Gt). The deviation of the annihilating curve to the negative motion curve is None = 0.44 mm, Ent = 0.74 mm, Tv = 0.69 mm,
Cnn = 0.37 mm and Cnn+ =0.45 mm for motion scenario A, and None = 1.52 mm, Ent = 0.62 mm, Tv = 1.23 mm, Cnn = 0.36 mm and Cnn+ = 0.31 mm for
motion scenario B.

None Cnn Cnn+ None Cnn Cnn+

dCnnCnn+ dCnn dCnn+ dCnnCnn+ dCnn dCnn+

Slice 1 Slice 2

Fig. 11. Top row: two reconstructed slices (HU [50-2000]) of a motion-affected clinical dataset (None) and motion-compensated data using Cnn or Cnn+,
respectively. Bottom row: difference images of motion compensated and motion-affected reconstruction (dCnn, dCnn+) as well as difference image of motion
compensated reconstructions using Cnn and Cnn+, respectively (dCnnCnn+). Display windows within each row are equal.
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which part of the trajectory a misalignment is expected can
only be deduced from the gradients within the optimization.
We aim to overcome this by learning an initial estimate
about the distribution of the expected motion. The view-
wise prediction can be used as a soft-classifier to steer the
optimization. The FN range is close to 0%, ensuring that the
optimization cannot be worsen by applying the soft-classifier
for optimization steering.

We use randomly generated motions that are limited in
their frequency due to the deployed splines. However, the
network is capable to generalize to unseen motion frequencies.
In motion scenario B we compensate the motion with a spline
controlled by 40 spline nodes, whereas in training, only motion
patterns generated with 20 spline nodes were shown to the
network. Hence, the network is capable to generalize to higher
frequency motion patterns. However, we can observe, that very
small but high-frequent motion artifacts are barely accounted
for by the network (see Fig. 10, scenario B). These types of
motion patterns where not part of the network training. Besides
those small motion artifacts, the overall motion trajectory can
be estimated well by the network. This property is synergistic
with traditional IQMs. After fine-tuning with the entropy-
based IQM the fine motion artifacts are eliminated.

Traditional IQMs measure the artifact strength by a limited
set of image features. If the reconstruction is not corrupted
by motion, the image shows homogeneous soft-tissue areas
and clear bone-boundaries. This results in a low TV value
and low histogram entropy. Motion corrupts the homogeneous
regions and blur bone-edges increasing the histogram entropy
and TV value. However, the image features recognized by
TV and entropy are not directly linked to the patient motion
strength and therefore are susceptible to local minima. Thus,
both metrics are successful if the motion is small but fail if
the motion is large. This is shown by the experiments, where
both metrics, Tv and Ent, perform well in scenario A. For
larger motions as apparent in motion scenario B, both metrics
fail. In those scenarios, the learned metric Cnn outperforms
the traditional methods in all six experiments.

Besides being only trained on synthetically generated mo-
tion, the network generalizes well to real clinical motion.
We demonstrate this using a clinical motion-affected scan.
Due to the rigid structure of the motion, a transformation of
the object can be equivalently described by a static object
and a transformation of the system geometry. This allows
realistic generation of motion artifacts from artifact-free CBCT
acquisitions.

VI. CONCLUSION AND OUTLOOK

Our proposed method can be used in a variational manner
for image-based autofocus techniques. The result is always
based on the acquired raw-data and ensures data integrity.
This is a strong advantage to all other learning-based ap-
proaches found in our literature review. Current learning-based
approaches perform an image-to-image translation, without
any guarantee for the consistency with the acquired raw
data. In contrast, using the proposed method the images are
always reconstructed from the raw data minimizing the risk
for generating clinical images leading to improper diagnosis.

The experiments show that motion artifacts can be learned
by a neural network and that our learning-based approach
can outperform state-of-the-art IQMs in a motion estimation
benchmark. We devised the approach based on the FDK algo-
rithm and artificial motion. Using a motion-affected clinical
dataset, we further demonstrate that the method translates
to real clinical motion. The FDK is suitable for autofocus
approaches [27], [24] due to its computational efficiency. A
possible extension, however, would be a reconstruction algo-
rithm, capable of reconstructing arbitrary trajectories [57]. The
FDK assumes two fundamental properties: (1) homogeneous
object in the direction perpendicular to the acquisition plane
and (2) equally sampled trajectories along an arc. If any of
those assumptions are not met, the reconstruction reveals cone-
beam artifacts or intensity inhomogeneities. Therefore, it can
only compute approximate solutions for motion compensation.

Although our experiments are tailored for head CBCT,
the concept is neither limited to rigid head motion nor to
transmission imaging. By replacing the filtered back-projection
with the inverse model for MRI — e. g., non-uniform Fourier
transform [58] — the approach can be directly trained for
propeller trajectories in MRI. By additionally replacing the
RPE-based regression metric with an appropriate metric (e. g.,
energy of a spline deformation field), also Cartesian sampled
MRI can be tackled. Similar strategies are thinkable for PET.

Disclaimer: The concepts and information presented in
this article are based on research and are not commercially
available.
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