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Abstract—Fully convolutional neural networks have made
promising progress in joint liver and liver tumor segmentation.
Instead of following the debates over 2D versus 3D networks
(for example, pursuing the balance between large-scale 2D
pretraining and 3D context), in this paper, we novelly identify
the wide variation in the ratio between intra- and inter-slice
resolutions as a crucial obstacle to the performance. To tackle
the mismatch between the intra- and inter-slice information, we
propose a slice-aware 2.5D network that emphasizes extracting
discriminative features utilizing not only in-plane semantics but
also out-of-plane coherence for each separate slice. Specifically,
we present a slice-wise multi-input multi-output architecture to
instantiate such a design paradigm, which contains a Multi-
Branch Decoder (MD) with a Slice-centric Attention Block (SAB)
for learning slice-specific features and a Densely Connected Dice
(DCD) loss to regularize the inter-slice predictions to be coherent
and continuous. Based on the aforementioned innovations, we
achieve state-of-the-art results on the MICCAI 2017 Liver Tumor
Segmentation (LiTS) dataset. Besides, we also test our model
on the ISBI 2019 Segmentation of THoracic Organs at Risk
(SegTHOR) dataset, and the result proves the robustness and
generalizability of the proposed method in other segmentation
tasks.

Index Terms—Liver and liver tumor segmentation, 2.5D con-
volutional neural network, slice-aware design, deep learning.

I. INTRODUCTION

THE liver is a vital organ in the human body as it
is essential for bile secretion and detoxifying harmful

substances into urea. According to the global cancer statistics
reported in 2018 [1], liver cancer is the sixth most frequently
diagnosed cancer and the fourth leading cause of cancer
death worldwide. The liver is also a common site for other
metastatic cancer because of the rich blood supply [2]. In
the current clinical routine, CT is the most frequently used
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(a) Slice thickness: 1 mm (b) Slice thickness: 5 mm (c) Slice thickness: 1mm (resampled 

from 5 mm)

A coronal slice from patient 1 A coronal slice from patient 2 A coronal slice from patient 2

Fig. 1. An illustration of the wide variation in out-of-plane slice thickness with
a fixed in-plane pixel spacing. A CT liver image with slice thickness of 1 mm
(a); another image with slice thickness of 5 mm (b) and the corresponding
resampled image of 1 mm (c). We can observe that, comparing (a) and (b),
CT images show apparent visual difference with different slice thicknesses;
and comparing (a) and (c), CT images still show apparent visual difference
(e.g., blurring) even after being resampled to the same slice thickness.

imaging modality for radiologists and oncologists to make
accurate hepatocellular carcinoma evaluation and treatment
planning [3]. Nevertheless, outlining the liver and liver tumor
in CT slice-by-slice is a time-consuming task and prone to
annotator variations. Therefore, a standardized and automatic
segmentation method is highly desirable to enable efficient
delineation of liver and liver tumor contours in practice.

While remarkable performance on liver and liver tumor seg-
mentation was recently reported with the development of deep
learning [4]–[10], a few challenges deserve wide attention of
the community. Firstly, to achieve a good generalization of
the established model, data are usually collected from various
clinical sites. However, due to the variations in equipment
manufacturers, physical parameters, scanning protocols, and
reconstruction methods, the voxel resolution of CT images
from multiple centers suffers from wide variations, especially
along the out-of-plane direction. Taking the Liver Tumor
Segmentation (LiTS) dataset [11] as an example, its in-plane
pixel spacing ranges from 0.56 mm to 1 mm, whereas its
out-of-plane slice thickness ranges from 0.45 mm to 6 mm.
Secondly, liver and liver tumor segmentation in CT images is
a task to assign coherent semantic masks to the full volume,
rather than to individual slices, which implies that objects in
adjacent slices of a volume usually have intrinsic correlations
in terms of context, shape, and location. In conclusion, han-
dling the information asymmetry as a result of the inconsistent
in- and out-of-plane resolutions and ensuring the inter-slice
segmentation consistency are two critical issues to the liver
and liver tumor segmentation.

There were some remarkable deep learning works for liver
and liver tumor segmentation, which can be roughly classified
as 2D [4], [5], 2.5D [10] and 3D [7], [9] methods. Standard
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2D methods can learn abundant deep semantics by employ-
ing deeper neural networks with large quantities of training
samples. However, losing inter-slice information makes it
hard to learn a smooth segmentation map along the out-of-
plane direction. On the contrary, 2.5D and 3D methods can
exploit 3D context information and thus learn more meaningful
feature representations to maintain 3D coherence. However,
most of the existing methods underestimate the impact of
the differences between the in-plane pixel spacing and out-
of-plane slice thickness, and simply resample the input to a
fixed in-plane pixel spacing and out-of-plane slice thickness.
Although the resampling process can relieve the resolution
anisotropy problem, it does not bring extra information to the
dimension(s) being finely interpolated, while some additional
artifacts may be introduced (see Fig. 1). Besides, 3D methods
usually suffer from high computational cost and GPU memory
consumption, which may hinder application in practice.

In this paper, we propose a novel 2.5D Slice-Aware Multi-
Branch Decoder (SAMBD) network which utilizes not only
the large-scale 2D pre-training but also 3D contextual in-
formation based on the observation of variations in data.
SAMBD is focused on learning discriminative slice-specific
features, and instantiates a slice-wise multi-input multi-output
architecture for this goal. The core components of SAMBD
can be summarized in three parts:

(i) A mutual encoder. We employ the Xception [12] model
with its weights pre-trained on natural images (except for
the first layer) to simultaneously extract deep semantics for
multiple input slices with discriminative feature initialization,
which captures the local volumetric information at different
semantic levels. Motivated by DeepLabv3+ [13], an Atrous
Spatial Pyramid Pooling (ASPP) [13] module is adopted to
fuse features of different scales.

(ii) A Multi-branch Decoder (MD) with Slice-centric
Attention Block (SAB). Since the multiple input slices are in-
discriminately processed by the encoder and the slice-specific
information is thus scrambled, we design an MD to explicitly
re-establish discriminative features for each slice by fully
exploiting the intra- and inter-slice information learned by the
encoder. To further strengthen the discriminative power of each
slice, we propose and embed an SAB into the MD, which
is implemented with the widely adopted attention mechanism
[14], [15]. All these designs are centered around learning the
best features for each slice, thus avoiding directly processing
asymmetric intra- and inter-slice information.

(iii) A Densely Connected Dice (DCD) loss. Based on the
assumption that target objects lying in successive slices should
have consistent labels, we propose a DCD loss to regularize
the inter-slice predictions to be more coherent in the label
space, where the intra- and inter-slice constraints can be jointly
optimized.

In summary, the contributions of this work can be summa-
rized as four-fold:

• Instead of considering the debates over 2D versus 3D
networks, in this paper, we identify the wide variation in
the ratio between the intra- and inter-slice resolutions as
an important obstacle to the performance.

• Observing the variations in data, we propose a 2.5D
encoder-decoder network with a multi-input and multi-
output structure, featuring a novel slice-aware multi-
branch decoder with a slice-centric attention block which
not only utilizes the large-scale 2D pre-training but also
3D contextual information for learning discriminative
features for each separate slice.

• An auxiliary loss function is proposed to strengthen
the inter-slice correlations and regularize the inter-slice
predictions to be more coherent.

• We mainly evaluate our method on the CT volumes for
liver and liver tumor segmentation provided by LiTS and
the result outperforms other methods. Besides, extended
validation is conducted on the ISBI 2019 Segmentation
of THoracic Organs at Risk (SegTHOR) dataset and the
result is competitive.

The remainders of this paper are organized as follows. We
review the related work in Section II and elaborate on the
proposed method in Section III. We present experiments and
results in Section IV, a discussion in Section V, and finally
draw the conclusions in Section VI.

II. RELATED WORKS

A. Debates over 2D versus 3D Networks

Prior studies chose either 2D networks for the benefits
of 2D pretraining and large-scale slice-wise training sets or
alternatively 3D networks for native 3D representation learning
[16], [17].

Recently, the LiTS challenge was organized to benchmark
the performance of different automatic algorithms for liver
and liver tumor segmentation, where the top-scoring methods
were dominated by Fully Convolutional Networks (FCNs)
[18]. (i) 2D/2.5D networks. Vorontsov et al. [5] segmented
liver and liver tumor with two FCNs, which were connected
in tandem and trained together end-to-end, using a 2D axial
slice as input. To capitalize on the complementary information
between a few adjacent slices, Han [10] proposed a 2.5D
model, which combined the long-range connection of U-
Net [19] and the short-range connection of ResNet [20].
Other noteworthy works [4], [21], [22] attempted to use
triplanar networks to learn generalized features from the axial,
coronal, and sagittal planes. (ii) 3D networks. There were
some works employing 3D convolution to mine 3D context
information. For example, Liu et al. [7] implemented an
improved 3D U-Net equipped with dilated convolutions and
separable convolutions to segment livers. Deng et al. [9]
proposed dynamic regulation of level-set parameters using 3D
CNN for liver tumor segmentation. (iii) Hybrid approaches.
To simultaneously take advantage of the merits of 2D and
3D networks, Li et al. [6] proposed a novel hybrid densely
connected U-Net named H-DenseUNet, which consists of a
2D DenseUNet for efficiently extracting intra-slice features
and a 3D counterpart for hierarchically aggregating volumetric
contexts for better liver and tumor segmentation. With similar
motivation, Zhang et al. [23] proposed a light-weight hybrid
convolutional network to segment the liver and liver tumors
with an encoder-decoder structure, in which 2D convolutions
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Fig. 2. Schematic view of our proposed framework with a set of five input slices (Cin=5) and the corresponding three central slice predictions (Cout=3).
A multi-branch decoder with a slice-centric attention block is proposed to gradually and explicitly re-establish discriminative features for each slice by fully
exploiting intra- and inter-slice information learned by the encoder.

used at the bottom of the encoder decreases the complexity
and 3D convolutions used in other layers explore both in- and
out-of-plane information.

Despite the remarkable performance achieved by the afore-
mentioned methods, they underestimated the impact of the
inconsistency between the pixel spacing and slice thickness
of 3D volumetric data. Our work begins with the basic
observation of the data variations which motivates us to extract
discriminative features for each slice, based on the fact that
the intra-slice information is more coherent due to the uniform
in-plane pixel spacing than inter-slice information.

B. Approaches to Conquering Data Variations in Resolution

Intuitively, resampling to a unified resolution may be a
solution to the data variation problem; however, the resampled
images suffer from different information densities along the
dimensions, and the resampling operation cannot guarantee
the validity of the interpolated information as also mentioned
in [6].

It is known that thin slice thickness (less than 2.5 mm)
results in better performance both for the human reader and
computer-aided diagnosis (CAD) systems; however, CT scans
with thicker slice thickness (greater than 2.5 mm) are widely
used in clinical setting mainly because of the efficiency in
terms of reading time and storage [24]. Some works [24],
[25] explored to reduce the slice thickness of CT scans
from thick to thin. For example, Bae et al. [24] proposed
a 2.5D image super-resolution (SR) network based on fully
residual convolutional neural networks (CNN) for dense slice
reconstruction. Ge et al. [25] proposed a residual voxel-wise
generative adversarial network, which densely reconstructed

slices into a thin thickness (1 mm) and meanwhile denoised
the CT images into the more readable pattern, from the
widely accessible low-dose thick CT. Although we can adopt
such techniques to reconstruct CT images into thin slices
of a unified resolution, extra computational costs would be
inevitably incurred.

III. METHODOLOGY

In this section, we present the details of the proposed
Slice-Aware Multi-Branch Decoder (SAMBD) network. The
network architecture is depicted in Fig. 2. In general, the
network design adopts the standard encoder-decoder structure,
where the encoder takes a stack of adjacent slices as input
and outputs compact feature representations. Meanwhile, the
decoder restores the feature maps to the original resolution by
fusing features from different levels of the encoder and outputs
the label predictions for the central slices. Here, we use Cin

and Cout to denote the numbers of input slices and output
slice predictions (Cout = Cin − 2 in this work), respectively.
No segmentation output is generated for the top or bottom slice
since there is not enough context for these boundary slices.

A. Encoder

Inspired by the success of the design of DeepLabv3+ [13],
the encoder consists of a modified Xception [12] structure
as the backbone and an ASPP [26] module. By adopting
depthwise separable convolution, the Xception model [12]
achieves improvement in terms of both speed and accuracy in
semantic segmentation. We employ it as our network backbone
for its strong feature representation power and small model
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size. Since the original Xception model processes a three-
channel color image, we modify the input channel number
to Cin to jointly process adjacent slices. The ASPP module
can potentially improve the segmentation performance by
involving different sampling rates and enlarging effective field-
of-views, thus capturing target objects as well as context
information at different scales. We adopt it here to cover the
tumors of various sizes. We initialize the encoder with the
weights pre-trained on PASCAL VOC 2012 [27] provided by
the official implementation of DeepLabv3+ [13].

B. Multi-branch Decoder

In the decoder design, a multi-branch structure is proposed
to distill the slice-specific information from the encoded
volumetric features. Formally speaking, the decoder structure
used in 2D or 2.5D FCNs from previous studies can be seen
as a single-branch decoder (as illustrated in Fig. 3(a)), where
only one central slice is predicted. This single-branch decoder
balances the inherent tension between semantics and loca-
tion, enables precise localization, and produces semantically
meaningful predictions from the rich context. However, there
are three problems that deserve attention. Firstly, anisotropic
volumes have inconsistent information densities along dif-
ferent dimensions. When the slice thickness is much larger
than pixel spacing, the single-branch decoder would learn
mismatched information along different axes. Secondly, the
encoder extracts features by simply fusing intra- and inter-slice
information together using isotropic operators, and it fails to
extract slice-specific features and loses the inter-slice struc-
tural information. Thirdly, the segmentation maps predicted
by standard 2D or 2.5D approaches suffer from semantic
inconsistency in neighboring slices, since each segmentation
map of a slice is separately predicted by one forward inference.

To address the above problems, we design the decoder to
have the same number of branches as the number of output
slice predictions, and each branch shares the same structure
with the single-branch decoder introduced in [13]. The design
of our multi-branch decoder is motivated by the fact that the
slice-specific information is scrambled through the encoder
and we should re-establish them in the decoder with the rich
volumetric information provided by the encoder. In this sense,
we can explicitly associate one particular branch with one
slice, thus bringing more room for improvement by exploiting
structure prior between slices.

As shown in Fig. 3(b), we take the low-level features (from
the first residual block of Xception) and high-level features
(from the outputs of the ASPP module) as the input of the
multi-branch decoder (a design similar to DeepLabv3+ [13]).
For low-level features, we first employ a 1 × 1 convolution
on them to reduce the number of channels, since too many
channels in low-level features would outweigh the importance
of the rich encoder features and make the training harder [13].
Then, Cout number of 1×1 convolutions are conducted on the
outputs to explicitly associate one particular branch with one
slice. For high-level features, we similarly adopt Cout number
of 1× 1 convolutions on them and upsample their outputs by
a bilinear upsampling layer (with a factor of four) to make

Multi-branch
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Features

1x1 Conv

1x1 Conv

1x1 Conv

1x1 Conv

Upsample
by 4

Concat

3x3Conv

3x3 Conv
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Upsample
by 4

1x1 Conv

1x1 Conv

1x1 Conv
Output

High-Level
Features

Single-branch
Decoder

Low-Level
Features

1x1 Conv 1x1 Conv

Upsample
by 4

Concat

3x3 Conv

Upsample
by 4

1x1 Conv Output

High-Level
Features

（a）Single-branch decoder

（b）Multi-branch decoder (𝐶𝑜𝑢𝑡 = 3)

Fig. 3. Single-branch decoder vs. our proposed multi-branch decoder. The
single-branch decoder only generates one-slice output while the multi-branch
decoder simultaneously generates Cout (equals three in this figure) outputs.
Note that the low-level features are from the first residual block of Xception
[12], while the high-level features are the output of the ASPP module [13].

the scale consistent with the low-level branch. After that, we
get the refined slice-specific features that cover information
from both low- and high-level semantics of the encoder. A
concatenation operation is then slice-wisely conducted on
them to merge the multi-scale semantics. Finally, we adopt
another Cout number of bilinear upsampling operations with
a rate of four and 3 × 3 convolutions to form the final
segmentation outputs.

C. Slice-Centric Attention Block (SAB)

Instead of directly splitting the encoded feature maps into
slice-specific parts as shown in Fig. 3 (b), we propose a
novel SAB to strengthen the discrimination of slice-specific
features by considering the inter-slice correlations with an
attention mechanism. The motivation of this block is based
on the observation that the 1 × 1 convolutions employed in
the multi-branch decoder to extract slice-specific information
are overly simplistic, which is hard to effectively extract
discriminative information for individual slices. In contrast,
the attention mechanism steers the allocation of slice-specific
semantic features towards the most informative components
for each output slice and explores the inter-slice correlations,
hence improving the performance in learning slice-specific
features. For implementation, we embed the proposed SAB
into the multi-branch decoder in both the low- and high-level
decoding paths as shown in Fig. 2. Note that the two SABs
do not share weights since they face different contexts in two
different scales.

The attention mechanism is widely adopted in medical
image applications, such as pancreas segmentation [14] and
universal lesion detection [15]. Our work innovatively explores
its usage on the problem of extracting discriminative features
for each slice. Fig. 4 shows the technical implementation of
the proposed SAB. The volumetric features first pass through
a 3×3 convolution layer, with one-eighth of channel numbers
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Fig. 4. Illustration of the proposed slice-centric attention block (Cout = 3). It
strengthens the discriminative power of the multi-branch decoder in learning
slice-specific features with an attention mechanism. C is the channel number
of the high-level or low-level features, which is the same as the original
DeepLabv3+.

of the input feature map. Then, Cout 1× 1 convolution layers
and sigmoid functions are applied to generate Cout weight
maps of size H × W × Cout. These weight maps can be
seen as an attention mechanism for each branch attending to
the key slice-specific information from the abundant features.
The learned weight maps are then separately multiplied by
the input features to extract slice-specific features. As we
will demonstrate in the experiments, although conceptually
simple, the proposed SAB is effective in strengthening the
discriminative power for each slice in feature learning.

D. Loss Function

The Dice loss introduced in [28] is commonly used to
address the class imbalance problem between foreground and
background classes. As defined below in Eq. (1), the Dice loss
with three classes (i.e., background, liver, and liver tumor) is
formulated as:

LDice = −
3∑

c=1

Cout∑
m=1

2
∑V

i=1 p
c
m,ig

c
m,i∑V

i=1(p
c
m,i)

2 +
∑V

i=1(g
c
m,i)

2
, (1)

where pcm,i denotes the predicted probability of voxel i in the
mth slice belonging to class c; gcm,i denotes the corresponding
ground truth; and V is the number of voxels in each slice.

As aforementioned, slice-aware design brings room for
improvement by exploiting structure prior between slices. We
thus propose a regularization term as an additional loss to
improve the coherence between neighboring slices in the label
space. Specifically, we use the union of the two slices in the
prediction results and the union of the corresponding two slices
in the ground truth to calculate the pairwise Dice loss, which
is denoted as

Pm,n = −
3∑

c=1

2
∑V

i=1(p
c
m,i + pcn,i)(g

c
m,i + gcn,i)∑V

i=1(p
c
m,i + pcn,i)

2 +
∑V

i=1(g
c
m,i + gcn,i)

2
,

(2)

where Pm,n denotes the pairwise Dice loss of the mth slice
and nth slice along out-of-plane direction; pcm,i and pcn,i
denote the predicted probability of voxel i belonging to class
c in the mth slice and nth slice, respectively; gcm,i and gcn,i
denote the corresponding ground truth. To further supplement
inter-slice information flow and improve inter-slice coherence,

TABLE I
COMPARISON OF OUR PROPOSED SAMBD (Cin = 7, Cout = 5) WITH

DEEPLABV3+ [13] AND H-DENSEUNET [6] IN TERMS OF PARAMETERS
AND FLOPS.

DeepLabv3+ SAMBD H-DenseUNet

Parameters (M) 41.06 41.26 61.44
FLOPs (G) 0.83 0.84 2841.6

we calculate the pairwise Dice loss in a dense way, where
each slice is coupled with multiple nearby slices to calculate
multiple Dice losses. We name the new loss as the Densely
Connected Dice (DCD) loss. Since the interaction of two slices
decreases with increasing distance, for each paired slices m
and n (n > m), we add a weight wm,n = 1/(n − m). The
DCD loss is defined as:

LDCD =

Cout−1∑
m=1

Cout∑
n=m+1

wm,nPm,n. (3)

The final loss function is composed of a weighted combi-
nation of the Dice loss and the proposed DCD loss:

L = LDice + λ× LDCD, (4)

where we define λ = Cout/(
∑Cout−1

m=1

∑Cout

n=m+1 wm,n) to bal-
ance the importance of the intra-slice semantic constraint and
inter-slice smoothness. λ is such designed that its denominator
normalizes the sum of the weights wm,n in Eq. (3) to one,
whereas its numerator strengthens the supervision with more
output slices. Empirical parameter tuning is likely to yield
better results; in this paper, however, we would like to present
a generally useful regularizer that can be safely applied to
other segmentation tasks without any parameter tuning. We
find that the presented design of λ performs well as validated
by the superior performance on two publicly available datasets
in the experiments.

E. Model Complexity
Due to the effective design of the multi-branch decoder

and slice-centric attention block, the parameters and FLOPs
(undefined) of our proposed SAMBD with Cin = 7, Cout = 5
are very competitive with DeepLabv3+ [13], and markedly
superior to H-DenseUNet [6]. As shown in Table I, our method
only brings 0.49% extra parameters and 1.2% extra FLOPs
compared to DeepLabv3+, and only incurs 67.2% and 0.03%
of the parameters and FLOPs of H-DenseUNet, respectively.

IV. EXPERIMENTS

In this section, we evaluate our approach on the LiTS
[11] dataset to demonstrate the robustness and generalization
capability, compared to several state-of-the-art segmentation
methods. Extended experiments have also been performed on
the ISBI 2019 SegTHOR dataset [29] to validate the gener-
alization capability to other human organs. We implement all
the experiments with Keras [30] using three NVIDIA GeForce
GTX 1080 GPUs. Stochastic gradient descent with momentum
(0.9) is used to update the weights of the network. The initial
learning rate is set to 0.001 and multiplied by 0.9 after each
epoch. We train the network for 80 epochs.
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Fig. 5. The high variations of the LiTS training set. We can observe the
large inconsistency between the in-plane pixel spacing (horizontal axis) and
out-of-plane slice thickness (vertical axis). Besides, the variations in tumor
size (shown in circles with different sizes) are also high.

A. Experiments on LiTS

1) LiTS: The LiTS dataset1 [11] is a publicly available
liver tumor dataset consisting of 201 contrast-enhanced ab-
dominal CT scans collected from various clinical sites over
the world. The dataset was originally split into a training set
(131 scans) and a test set (70 scans), where only the training
set was publicly released with accurate liver and tumor masks.
As aforementioned, the LiTS dataset suffers from apparent
inconsistency between the in-plane pixel spacing and out-of-
plane slice thickness (see Fig. 5). Furthermore, high varieties
and complexities exist for livers and liver tumors, including
the location, size, and shape. Besides, the heterogeneity in
liver and liver tumor contrast is very large between subjects,
as shown in Fig. 6.

2) Implementation Details and Evaluation Metrics: For
image pre-processing, we unify the volume orientations and
truncate the image intensity values of all scans outside the
range of [−200, 250] Hounsfield Unit (HU) to ignore irrelevant
image details. Since the slice thickness varies greatly between
subjects, we resample scans with slice thickness greater than
1 mm to 1 mm in both training and inference phases. We
preserve the original slice thickness for patients whose slice
thickness is less than 1 mm to leverage the original high-
resolution spatial information. We do not unify the in-plane
pixel spacing by the resample operation since the variation
is relatively small and interpolation often introduces artifacts,
which may offset the performance gain from resolution nor-
malization. To alleviate the overfitting problem, we conduct
data augmentation in the training phase; concretely, we first
apply random scaling (from 0.8 to 1.2) to all training data,
and then randomly crop a 256 × 256 × Cin subregion as the
input to the network. For post-processing during the inference
phase, we take the largest connected component as the liver
segmentation and remove liver tumor predictions outside the
liver region.

In the test phase, a sliding-window approach is employed
to predict the segmentation mask for an input volume. Con-

1https://competitions.codalab.org/competitions/17094
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Fig. 6. Examples depicting the heterogeneity of CT scan contrast in liver and
liver tumor areas. The horizontal axis represents the Hounsfield unit values
of CT scans, and the vertical axis represents the proportion of voxels falling
into intervals with different Hounsfield unit values.

cretely, we extract consecutive multi-slice inputs from the
volume by moving along the out-of-plane direction with a
stride of one, and predict the segmentation mask for each of
these multi-slice inputs. Therefore, each slice may appear in
multiple multi-slice inputs due to the overlap and be predicted
multiple times. The final segmentation mask of a slice is then
obtained by averaging its multiple predictions. Finally, the
segmentation masks of all the slices are stacked in sequence
to form the segmentation result of the entire volume, which is
then resampled to the original resolution, if necessary.

The Dice-per-case score and Dice-global score are adopted
in the LiTS challenge as the evaluation metrics to measure the
liver and liver tumor segmentation performance. The Dice-per-
case score reflects the averaged Dice score across all patients,
whereas the Dice-global score is the Dice score evaluated by
stacking all volumes into one long volume. For comparison
with other methods, we also use Volume Overlap Error (VOE),
Relative Volume Difference (RVD), Average Symmetric Sur-
face Distance (ASSD), Maximum Surface Distance (MSD),
and Root Means Square Symmetric Surface Distance (RMSD)
as metrics for complementary evaluation. For interpretation of
these evaluation metrics, readers can refer to [11].

3) Ablation Study on LiTS: To analyze the effectiveness
of our approach, we conduct ablation studies on a valida-
tion dataset consisting of 25 volumes, which are randomly
selected from the training set. Since our network backbone
is derived from DeepLabv3+ [13], we take it as the baseline
benchmarking method. We notice that the meta-information
about slice thickness and pixel spacing of some cases in the
training and validation sets provided by the LiTS organizers is
wrong, which makes the values of surface-based metrics in the
ablation study weird compared to those presented in Table VI.
Therefore, we do not present surface-based metrics in Table
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TABLE II
LIVER AND TUMOR SEGMENTATION RESULTS OF AN ABLATION STUDY ON THE LITS VALIDATION DATASET.

Cin
a Cout

a Method MDb SABb DCDb Liver Tumor
Dice per case [%] Dice global [%] VOE Dice per case [%] Dice global [%] VOE

1 1 (a) Baseline 95.27± 1.90 95.39 0.097± 0.032 57.29± 33.03 67.79 0.608± 0.311
5 1 (b) Baseline 95.34± 1.78 95.56 0.087± 0.033 60.02± 29.78 69.67 0.564± 0.289
7 1 (c) Baseline 95.39± 1.76 95.59 0.084± 0.032 60.97± 28.97 70.15 0.561± 0.279

(d) Baseline (1×) 96.08± 1.89 96.56 0.077± 0.034 62.54± 28.33 72.81 0.530± 0.285
(e) Baseline (3×) 96.15± 1.75 96.59 0.076± 0.032 62.67± 27.80 71.25 0.531± 0.276
(f) MD X 96.27 ± 1.78 96.74 0.074± 0.032 64.62± 27.29 72.48 0.510± 0.269

5 3 (g) MD+SAB X X 96.12± 1.79 96.58 0.077± 0.032 66.04± 23.90 75.06 0.503± 0.253
(h) MD+DCD X X 96.13± 1.92 96.61 0.076± 0.035 65.71± 23.60 71.98 0.508± 0.253
(k) MD+SAB+DCD X X X 96.09± 1.80 96.55 0.077± 0.033 67.07± 23.79 73.82 0.491± 0.247
(l) Baseline (1×) 95.69± 3.08 96.51 0.084± 0.034 63.04± 25.00 72.25 0.534± 0.266
(m) Baseline (5×) 95.97± 1.82 96.44 0.079± 0.033 64.60± 26.33 73.66 0.513± 0.258
(n) MD X 96.15± 1.88 96.64 0.076± 0.034 65.69± 22.65 70.67 0.511± 0.245

7 5 (o) MD+SAB X X 96.20± 1.67 96.60 0.074 ± 0.030 66.73± 24.34 74.40 0.494± 0.241
(p) MD+DCD X X 96.15± 1.92 96.65 0.076± 0.035 67.65± 21.00 72.82 0.492± 0.232
(q) MD+SAB+DCD X X X 95.95± 1.96 96.50 0.080± 0.035 70.17 ± 18.06 75.84 0.467 ± 0.212

a Cin and Cout represent the number of input slices and output slice predictions, respectively.
b MD, SAB and DCD represent the Multi-branch Decoder, the Slice-centric Attention Block and the Densely Connected Dice loss, respectively.

II for the ablation study.
a) The number of input slices: Objects in adjacent slices

usually have intrinsic relations in various properties, such
as shape and location. In this sense, we employ a 2.5D
network, which takes a few adjacent slices as the input to
capture the inter-slice information. To verify that the inter-slice
information is useful in the segmentation task, we conduct
experiments with different numbers of input slices. In Table II,
rows (a), (b), (c) show the results of DeepLabv3+, with 1, 5, 7
adjacent slices as input, respectively, and the corresponding
central slice as output. We can observe consistent improvement
when the number of input slices increases, confirming our as-
sumption that more adjacent slices can provide more inter-slice
information for achieving higher segmentation performance.

b) Effectiveness of the multi-branch decoder: To verify
the effectiveness of the proposed multi-branch decoder, a
straightforward baseline is a single-branch decoder that out-
puts the same number of channels as the multi-branch decoder.
The multi-branch decoder consists of Cout parallel branches,
each having the same structure with the single-branch decoder
in the baseline, as shown in Fig. 3(b). Here, we denote
the multi-branch structure as MD. We present two different
settings of the numbers of input slices and output predictions
(Cin = 5, Cout = 3 and Cin = 7, Cout = 5) to verify that our
multi-branch design can bring consistent improvement under
different inter-slice context. The results are shown in Table
II. As we can see, compared to the baseline with the same
input and output settings (rows (d) and (l)), our proposed
multi-input multi-output architecture prominently enhances the
segmentation of liver and liver tumor, with improvements
in both Dice-per-case and Dice-global (rows (f) and (n)).
Besides, to further demonstrate that the improvements upon
the single-branch decoder are not due to the increased pa-
rameters, we also present results of the single-branch decoder
with 3× and 5× channels in rows (e) and (m). We find that
even with more parameters, the single-branch decoder still
performs worse than our multi-branch decoder in both liver
and tumor segmentation. The multi-branch decoder focuses
on modeling the slice-specific information from the mixed
volumetric semantic information, which is of great significance
for network training with anisotropic data.

(a) (b) (c) (d) (e) (f) (g) (h) (k) (l) (m) (n) (o) (p) (q)
Methods in Table I
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Fig. 7. Box-plots of each method in Table II on tumor segmentation.
Horizontal axis represents the methods listed in Table II, and vertical axis
represents the Dice-per-case score.

c) Effectiveness of the slice-centric attention block: Next,
we verify the effectiveness of the slice-centric attention block,
which is abbreviated as SAB in Table II. Rows (g) and (o)
show the detailed results with the multi-branch decoder and
SAB for liver and liver tumor segmentation. Compared to
(f) and (n), which are equipped only with the multi-branch
decoder, the SAB achieves 1.42% and 1.04% improvements
in Dice-per-case for tumor segmentation. The improvements
demonstrate that the deep semantics learned by the encoder
contains vast amounts of redundant information, and directly
decoding with convolution operators cannot effectively extract
slice-specific features. With the proposed attention mechanism,
the network can steer the allocation of available semantic
features towards the most informative components for different
slices, thus bringing improvements in terms of accuracy.

d) Effectiveness of the DCD loss: Besides the regular
Dice loss which measures the difference between the segmen-
tation prediction and given ground truth mask, the method is
further equipped with a DCD loss as shown in Eq. (4), which
is proposed to regularize the inter-slice predictions to be more
coherent in the label space. To investigate the effectiveness of
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TABLE III
THE SEGMENTATION RESULTS OF BASELINE (d) AND BASELINE (l) IN TABLE II WITH UNIFIED RESOLUTION ON THE LITS VALIDATION DATASET.

Cin
a Cout

a Unified Resolution Liver Tumor
[mm] Dice per case [%] Dice global [%] VOE Dice per case [%] Dice global [%] VOE

2 91.02± 7.21 92.43 0.158± 0.103 46.42± 32.67 64.18 0.636± 0.297
5 3 1 95.41± 1.80 95.74 0.088± 0.032 63.80± 24.27 72.14 0.440± 0.260

0.75 95.25± 2.07 95.79 0.090± 0.037 63.42± 24.89 68.02 0.489± 0.263
2 95.11± 1.85 95.45 0.093± 0.033 55.89± 32.17 72.05 0.503± 0.310

7 5 1 95.66± 1.95 96.17 0.083± 0.035 63.75± 25.36 72.53 0.486± 0.255
0.75 95.27± 1.95 95.78 0.090± 0.035 65.52± 24.06 69.87 0.468± 0.254

a Cin and Cout represent the number of input slices and output slice predictions, respectively.

TABLE IV
THE SEGMENTATION RESULTS OF 3D U-NET [31] WITH UNIFIED RESOLUTION ON THE LITS VALIDATION DATASET.

Unified Resolution Liver Tumor
[mm] Dice per case [%] Dice global [%] VOE Dice per case [%] Dice global [%] VOE

2 90.95± 7.05 92.34 0.160± 0.102 40.43± 35.03 63.34 0.433± 0.364
1 93.55± 3.19 94.27 0.120± 0.054 59.06± 27.79 65.29 0.529± 0.272

0.75 95.41± 1.79 95.77 0.087± 0.319 62.49± 27.27 71.80 0.492± 0.275

TABLE V
P-VALUES FOR THE PAIRED T-TESTS BETWEEN OUR METHOD AND THE

SINGLE-BRANCH DECODER THAT OUTPUTS THE SAME NUMBER OF
CHANNELS AS THE MULTI-BRANCH DECODER.

Cin = 5, Cout = 3 Dice-per-case Cin = 7, Cout = 5 Dice-per-case

p-value 0.034 p-value 0.010

the DCD loss, we conduct several ablation studies. First, we
train the network with the multi-branch decoder using only the
DCD loss, as shown in Table II, rows (h) and (p). Compared
to training with the Dice loss (rows (f) and (n) in Table II),
the DCD loss improves the overall Dice-per-case score for
tumor by 1.09% and 1.96%, respectively. Then, we add the
slice-centric attention block to the network (rows (k) and (q)
in Table II) and train it with the Dice loss and the DCD loss,
respectively. We get a 1.03% improvement in Dice-per-case
score for tumor with 5-slice input and 3-slice output, while
3.44% improvement with 7-slice input and 5-slice output.
It is worth mentioning that compared to the baseline, the
proposed method performs preferably in segmenting tumor
with an improvement of about 7.13% in Dice-per-case score
by comparing rows (l) and (q), which proves the effectiveness
of the proposed network with all modules enabled.

e) Statistical analysis: To analyze whether the perfor-
mance improvement of the proposed SAMBD is statistically
significant, we conduct the paired t-test as [32] on tumor seg-
mentation between our method and the single-branch decoder
that outputs the same number of channels as the multi-branch
decoder with two configurations of Cout and Cin. We evaluate
the significance for Dice-per-case with a significance level of
0.05. The p-values are shown in Table V. As we can see, all the
p-values are below 0.05, demonstrating that our improvements
upon the single-branch decoder are statistically significant.

f) Box-plots: In Fig. 7, we show the box-plots of each
method listed in Table II in terms of Dice-per-case on tumor
segmentation. Compared to other methods (rows (a)−(h) and

(l)−(p)), the proposed SAMBD presents results that not only
have higher median accuracy but also show less dispersion,
indicating consistently better performance in general.

4) Does a unified resolution help address the data vari-
ability problem?: In the medical image segmentation, a widely
adopted approach to the data variability problem is resampling
the data into a unified resolution. We present the results of
the single-branch decoder that outputs the same number of
channels as the multi-branch decoder with different unified
resolutions in Table III. Compared to the results of SAMBD in
rows (k) and (q) of Table II, the results with the single-branch
decoder still present a large performance gap in Dice-per-case,
Dice-global, and VOE.

Since 3D networks are good at extracting contextual in-
formation and the resampling operation is widely adopted
to process data suffering large variations, we present extra
experimental results with 3D U-Net [31] to see if it can
produce sound results with a unified resolution. The results are
shown in Table IV. From the table, we can observe that 3D U-
Net produces significantly different results with different input
resolutions. The best performance is achieved at the highest
resolution (0.75× 0.75× 0.75 in mm), yet substantially lower
than the results of SAMBD in row (q) of Table II (e.g., 62.49%
vs. 70.17% in Dice-per-case for tumor segmentation).

The superior performance of the proposed SAMBD towards
2D/3D networks with a unified resolution verifies the effec-
tiveness of our slice-aware design in processing anisotropic
data.

5) Comparison with Other Methods: Based on the results
from the ablation study, we pick the best network architecture
and hyper-parameters, and train the model on the whole LiTS
training set with 131 CT scans. We evaluate the model on
70 test cases and submit the results to the challenge website.
Table VI tabulates the quantitative comparison results of our
proposed SAMBD and several state-of-the-art methods already
published. All of these top-ranking methods employ deep
learning based approaches, demonstrating the effectiveness of
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TABLE VI
COMPARISON WITH STATE-OF-THE-ART METHODS FOR LIVER AND TUMOR SEGMENTATION ON THE LITS TEST DATASET.

Method Liver Tumor
Dice per case [%] Dice global [%] VOE RVD ASSD MSD RMSD Dice per case [%] Dice global [%] VOE RVD ASSD MSD RMSD

Han [10] 96.0 96.5 0.077 -0.004 1.15 24.499 2.421 67.6 79.6 0.383 0.464 1.143 7.322 1.728
3D DenseUNet [6] 93.6 92.9 - - - - - 59.4 78.8 - - - - -
H-DenseUNet [6] 96.1 96.5 0.074 -0.018 1.45 27.118 3.15 72.2 82.4 0.366 4.272 1.102 6.228 1.595

AH-Net [8] 96.3 97.0 0.07 -0.004 1.099 23.992 2.398 63.4 83.4 0.353 0.365 1.185 6.482 1.667
DeepX [33] 96.3 96.7 0.071 -0.01 1.104 23.847 2.303 65.7 82.0 0.378 0.288 1.151 6.269 1.678

SAMBD 96.5 97.0 0.065 0.004 0.971 21.997 2.034 72.8 81.0 0.405 -0.208 1.258 6.582 1.796
SAMBD (ensemble) 96.6 97.1 0.065 0.002 0.953 21.933 1.998 73.6 81.2 0.401 -0.196 1.174 6.18 1.675

(a) Axial (b) Sagittal (d) 3D(c) Coronal

Fig. 8. Example segmentation results on the LiTS test set. Each row shows a CT scan acquired from an individual subject with different slice thickness (0.7
mm, 2.5 mm, and 5 mm from top to bottom, respectively). The first six columns show the original CT scans and corresponding segmentation results in the
axial, sagittal, and coronal planes, respectively. The last column shows segmentation results in a 3D view. Red represents the liver and green the liver tumor.

CNNs in the field of medical image analysis. Han [10] adopted
a 32-layer U-Net-alike architecture, where adjacent slices were
employed as input and produced segmentation maps through
a single-branch decoder. Li et al. [6] and Liu et al. [8]
transferred convolutional features learned from 2D images
to 3D volumes and then applied 3D convolutional kernels
to extract 3D context. Yuan [33] developed a hierarchical
framework to segment the liver and tumor in three steps.
Compared to these methods, we are the first who pay attention
to the large inconsistency between the in-plane pixel spacing
and out-of-plane slice thickness.

As shown in Table VI, our method achieves the best
segmentation accuracy for both liver and tumor in the Dice-
per-case score even with a single model. Using an ensemble
version, we achieve state-of-the-art performances in three of
the four main evaluation metrics, including the Dice-per-case
score of the tumor, and Dice-global and Dice-per-case scores
of the liver, demonstrating the effectiveness of our method.
Besides, our methods show very competitive results on the
complementary evaluation metrics, achieving the best results
in VOE, RVD, ASSD, MSD, and RMSD for liver, as well
as best results in RVD and MSD for tumor. Fig. 8 shows
several examples of the segmentation results with different
slice thickness (0.7 mm, 2.5 mm, and 5 mm, respectively).
By taking into consideration the information asymmetry along
with the in- and out-of-plane directions into our network

(a) Axial (b) Sagittal (d) 3D(c) Coronal

Fig. 9. A typical CT scan in the SegTHOR dataset and the corresponding
segmentation ground truth with red for the esophagus, green for the heart,
blue for the trachea, and yellow for the aorta.

design, our method presents decent ability in segmenting liver
and liver tumors across a wide range of resolution settings.

B. Experiments on SegTHOR

1) SegTHOR: The dataset2 [29] is provided by ISBI 2019,
with the purpose of addressing the problem of Organs at Risk
(OAR) segmentation in CT images. SegTHOR focuses on four
OARs: heart, aorta, trachea, and esophagus (refer to Fig. 9 for

2https://competitions.codalab.org/competitions/21145
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TABLE VII
SEGMENTATION RESULTS ON THE TEST DATASET IN LEADERBOARD OF 2019 SEGTHOR CHALLENGE (UNTIL MAY 10, 2019 WHEN THE LIVE

CHALLENGE OF ISBI ENDED.)

Rank User/Method Esophagus Heart Trachea Aorta
Dice [%] Hausdorff Dice [%] Hausdorff Dice [%] Hausdorff Dice [%] Hausdorff

1 gaoking132 86.51 0.2590 95.36 0.1272 92.76 0.1453 94.64 0.1209
2 MILab [34] 85.94 0.2743 95.00 0.1383 92.01 0.1824 94.84 0.1129
3 Jone 85.91 0.3185 94.89 0.1435 92.19 0.1590 94.73 0.1251
4 hyang 83.81 0.3534 95.42 0.1208 92.33 0.1973 94.43 0.1290
5 dp 83.39 0.3351 95.19 0.1325 91.57 0.2041 93.51 0.1980
6 grr 85.82 0.2928 94.56 0.1867 91.53 0.2090 93.91 0.2010
7 dlachinov 85.72 0.2686 94.36 0.1761 91.55 0.1736 91.82 0.2214
8 ZWB 82.03 0.3838 94.58 0.1594 92.17 0.2045 94.33 0.1551
9 svesal [35] 85.79 0.3303 94.15 0.2263 92.57 0.1929 93.75 0.2971
10 Louisvh 83.61 0.3399 94.02 0.1973 90.68 0.2091 93.32 0.2732
- Chen et al. [36] 81.66 0.4914 93.29 0.2417 89.10 0.2746 92.32 0.3081
- Zhang et al. [37] 77.32 1.6774 93.84 0.2089 89.39 0.2741 92.32 0.3081
2 SAMBD 86.57 0.2478 95.28 0.1296 92.56 0.1817 94.43 0.1498

data visualization), and pays particular attention to esophagus
segmentation (the esophagus is the most challenging to seg-
ment due to its variable location relative to neighboring organs
and low-intensity contrast to background). All CT images
are obtained from 60 patients (11,084 slices) with non-small
cell lung cancer and have already been randomly split into
a training set with 40 volumes (7,390 slices) and a test set
with 20 volumes (3,694 slices). The planar size is 512× 512
in pixels and the in-plane pixel spacing varies from 0.9 mm
to 1.37 mm, while the out-of-plane slice thickness varies
from 2 mm to 3.7 mm. All the organs are delineated by an
experienced radiation oncologist.

2) Implementation Details and Evaluation Metrics: We set
the HU value range to [−1000, 500] to exclude irrelevant
organs and objects. The slice thicknesses of all subjects are
resampled to 2.5 mm. Hyperparameters and data augmenta-
tion are the same as those used in the experiments on the
LiTS dataset. In addition, there are great variations of shape
and position among four organs: some extend along the out-
of-the plane direction (e.g., esophagus) and some have a large
volume (e.g., heart). To address these issues, we cut the 3D CT
scans into slices along the axial, sagittal, and coronal plane,
respectively, and then feed them into the network together. The
size of the axial slices is 512 × 512 pixels, whereas those of
the sagittal and coronal slices are 512× z and z × 512 pixels
(z is the number of axial slices), respectively. To facilitate the
segmentation network, the sagittal and coronal slices are then
resized to 512 × 512 pixels. In the test phase, we separately
predict the segmentation masks in three orientations (i.e., the
axial, sagittal, and coronal) for each volume in a way similar to
the experiments on the LiTS dataset, and ensemble them with
the majority voting to produce the final segmentation mask.

The overlap Dice metric and the Hausdorff distance [35]
are used by the SegTHOR challenge as the official evaluation
metrics. The Dice score and Hausdorff distance are comple-
mentary metrics and our aim is to make the Hausdorff distance
close to 0 while the Dice score close to 1.

3) Comparison with Other Methods: In this experiment, we
pay special attention to the segmentation of the esophagus,
because of its hard-to-distinguish boundary and low contrast.

Table VII lists the performance of the top 10 teams on the
leaderboard. Our method outperforms other methods on the
segmentation of the esophagus and achieves very competitive
performance for heart and trachea segmentation. We finally
achieve the tied second place by the overall rank and the
first place on esophagus segmentation. It is worth mentioning
that our method is not specially tailored for the tasks of
SegTHOR—unlike the contrasting methods in Table VII which
were intended for the specific challenge—yet produces such
competitive results, demonstrating its generalizability.

Among all the methods listed in Table VII, He et al. [34]
developed a uniform U-like encoder-decoder architecture for
the segmentation of thoracic organs, which combined the
major task of local pixel-wise segmentation and an auxiliary
task of global slice classification. Vesal et al. [35] employed
a 2D U-Net combined with dilated convolutions using only
one slice as input. Chen et al. [36] and Zhang et al. [37]
segmented thoracic organs through a two-stage strategy, where
four organs were first localized and then the precise segmen-
tation stage was applied based on the location. Our method
concentrates on making use of the relationships between
adjacent slices and learning slice-specific information, which
helps identify inconspicuous objects. The segmentation result
of the esophagus in Table VII confirms this. We conclude that
our method can conquer the challenge and well segment the
OARs from CT scans.

V. DISCUSSION

Accurate segmentation of liver and liver tumors in CT
images facilitates the quantitative assessment of the tumor
burden, treatment planning, and prognosis. There have been
considerable debates over 2D versus 3D networks on 3D
medical images—choosing 2D networks for the benefit of
2D pretraining and large-scale training sets or alternatively
3D networks for native 3D representation learning [16], [17].
This paper innovatively identifies the wide variation in the
ratio between intra- and inter-slice resolutions as a crucial
obstacle to the performance, which may in turn affect decision-
making in choosing 2D or 3D networks. This argument is also
supported by the five-fold cross-validation results of nnU-Net
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[38], in which 2D U-Net produces inferior results on the brain
tumour, heart, hippocampus, lung, and pancreas tasks than 3D
U-Net, but better results on prostate and liver tasks. In this
sense, we hope this work would provide a different perspective
of deciding 2D or 3D networks.

It is common to take multiple slices as input and output
a single slice, either for making up a three-channel image
for pre-trained weights or pursuing a 3D context [10]. Our
work takes a step further to output multiple slices, which
enables to explore extra design space for the decoder and loss
function for supervision to maintain 3D coherence between
slices. Our focus is then on how to learn the most discrimi-
native features for each individual slice, which avoids directly
processing anisotropic information. To this end, we propose a
multi-branch decoder to explicitly re-establish discriminative
features for each separate slice by associating each slice with
a separate branch. As far as we know, only few existing works
emphasize learning slice-specific features in a 2.5D network.
As verified in the experiment, such a slice-aware design greatly
boosts the performance compared to the multi-output single-
branch decoder that does not distinguish different slices in
the feature learning. Although in clinical practice, some data
may not show large variations, we believe that the slice-
aware design would still bring extra help to the segmentation
performance.

The limitation of such an explicit design of the multi-
branch decoder is that it is computationally prohibitive when
the number of output slices becomes large. In this work, we
leverage and embed an attention mechanism into the multi-
branch decoder, which is expected to steer the allocation of
slice-specific semantic features towards the most informative
components for each output slice by fully-exploiting the inter-
slice correlations. We believe that it is novel to adopt such an
attention mechanism to strengthen the discriminative power
of each slice, yet we acknowledge that there should also
be other design choices of the attention block. We plan to
integrate our multi-branch decoder with other well-designed
attention blocks (e.g., considering multi-scale features) in
future work, seeking more accurate segmentation of the images
with slice-aware modeling. Besides, in this work we only
study the proposed SAMBD with Cin = 5, Cout = 3 and
Cin = 7, Cout = 5. Future work should investigate an optimal
way to determine the configuration that is general enough
for satisfactory results in most cases. Moreover, although our
framework demonstrates competitive computational complex-
ity with the DeepLabV3+ [13] and H-DenseUNet [6] (Table I),
methodologies for more compact deep neural network designs
(e.g., [39]) can be considered in future work.

A potential concern of the DCD loss is that it may po-
tentially affect the proper training when the slice thickness
is large. Actually, the motivation of this regularizer is to
supplement inter-slice information and thus improve inter-
slice coherence. There should be a balance between the main
loss function and the regularizer just as traditional machine
learning algorithms (such as Lasso). In Fig. 10, we group
the segmentation accuracy of different methods (rows (n),
(p), and (q) in Table II) by slice thickness into three groups:
less than, equal to, and greater than 1 mm. From the figure,
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Fig. 10. The segmentation accuracy of different methods in rows (n), (p), and
(q) of Table II grouped by slice thickness less than, eqaul to, greater than 1
mm. We find consistent performance improvement brought by the DCD loss
irrespective of different slice thicknesses.

we find consistent performance improvement brought by that
DCD loss with different slice thicknesses. Besides, the range
(from 0.69 to 5 in mm) of slice thickness in LiTS is large
enough to cover most cases in clinical practice. Future works
should consider the effectiveness of such a regularizer in other
segmentation tasks.

Considering that the problem of data variations in resolution
is prevalent in medical imaging and we believe that the
proposed SAMBD can generalize well to other segmentation
tasks, we also evaluated SAMBD on SegTHOR to verify this
in Section IV-B. It is noteworthy that, here, we re-trained all
over again on the SegTHOR dataset; it should be a potential
direction to explore the transfer learning techniques [40] (for
example, fine-tuning with pre-trained weights) to speed up the
training process. Besides, to further verify the effectiveness
of our proposed method in conquering data variations in
resolution, we plan to test our method on more organs/tumors
in other body parts and imaging modalities.

VI. CONCLUSION

In this paper, we rethought the debates over 2D versus 3D
networks from a data viewpoint, where we identified the wide
variation in the ratio between intra- and inter-slice resolutions
as an important obstacle to the performance. To circumvent
this, we proposed a slice-aware multi-input multi-output struc-
ture to emphasize the importance of feature learning for each
slice. A multi-branch decoder with a slice-centric attention
block was proposed to gradually and explicitly re-establish
discriminative features for each slice by fully-exploiting intra-
and inter-slice information learned by the encoder with the
widely adopted attention mechanism. To further enhance the
correlation between slices and enable coherent segmentation,
we proposed a densely connected Dice loss as a regularization
term. Quantitative evaluations on the LiTS and SegTHOR
datasets demonstrated that our approach could significantly
improve segmentation accuracy for anisotropic data.
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