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Abstract

Detecting malignant pulmonary nodules at an early stage can allow medical
interventions which may increase the survival rate of lung cancer patients. Using
computer vision techniques to detect nodules can improve the sensitivity and the
speed of interpreting chest CT for lung cancer screening. Many studies have used
CNNs to detect nodule candidates. Though such approaches have been shown
to outperform the conventional image processing based methods regarding the
detection accuracy, CNNs are also known to be limited to generalize on under-
represented samples in the training set and prone to imperceptible noise pertur-
bations. Such limitations can not be easily addressed by scaling up the dataset
or the models. In this work, we propose to add adversarial synthetic nodules and
adversarial attack samples to the training data to improve the generalization and
the robustness of the lung nodule detection systems. To generate hard examples
of nodules from a differentiable nodule synthesizer, we use projected gradient de-
scent (PGD) to search the latent code within a bounded neighbourhood that would
generate nodules to decrease the detector response. To make the network more
robust to unanticipated noise perturbations, we use PGD to search for noise pat-
terns that can trigger the network to give over-confident mistakes. By evaluating
on two different benchmark datasets containing consensus annotations from three
radiologists, we show that the proposed techniques can improve the detection per-
formance on real CT data. To understand the limitations of both the conventional
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Figure 1: A conceptual illustration of the proposed training scheme. Pulmonary nod-
ules in chest CTs follow a long-tail distribution with rare and hard nodules under-
represented. ReLU networks tend to form open decision boundaries which leave the
risk for the network to be activated by arbitrary noise [5]. We propose adversarial aug-
mentation methods to efficiently search for both hard synthetic nodules and adversarial
samples that can improve the robustness of the network.

networks and the proposed augmented networks, we also perform stress-tests on
the false positive reduction networks by feeding different types of artificially pro-
duced patches. We show that the augmented networks are more robust to both
under-represented nodules as well as resistant to noise perturbations.

1 Introduction
Lung cancer is the leading cause of all cancer deaths [1]. Detecting malignant pul-
monary nodules at an early stage can allow medical interventions which may increase
the survival rate of lung cancer patients. Early-stage cancer generally manifests in the
form of pulmonary nodules which are defined as rounded opacity, well or poorly de-
fined, measuring up to 30mm in diameter [2]. Based on the findings of the National
Lung Screening Trial (NLST), the U.S. Centers for Medicare and Medicaid Services
(CMS) approved screening for lung cancer of high-risk subjects to be fully reimbursed
by insurance companies. In NLST the low-dose screening test involved an approx-
imate dose of 2 mSv, whereas full-chest CT scanning that was the major diagnostic
study used to follow up nodules, involved a dose of about 8 mSv [3]. The NELSON
trial also reported reduced 10 year lung-cancer mortality with CT screening with a
randomized trial involving 15789 patients [4]. However, given the sizeable eligible
screening population (8.6 million in the US) and the time cost of interpreting 3D chest
CT, it substantially increases the efforts for radiologists.

Motivated by the LUNA16 challenge [6], many studies have attempted to automate
the detection of pulmonary nodules using machine learning, in particular, deep convo-
lutional neural networks (CNN) in order to assist the radiologists in the lung screening
workflow [7, 8, 9, 10, 11, 12]. Following the coarse-to-fine strategy, the majority of the
deep learning-based nodule detection methods are implemented as a two-stage system:
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(1) a candidate generation network with a large field of view is first trained to output
initial detection results with high sensitivity at the cost of low specificity; (2) a false
positive reduction (FPR) network is then trained to re-evaluate the confidence of each
candidate.

Though many show CNNs can improve both the sensitivity and the specificity com-
paring to the previous image processing based CAD systems, CNNs can suffer from
a few challenges, which we argue cannot be addressed by simply adding more train-
ing data or hyper-parameter tuning. First, the observer variability among radiologists
is known to be high. For example, only 928 out of 2669 suspected findings from the
LIDC-IDRI study are agreed as nodules (≥ 3mm) by all the four radiologists [13].
Such variability can be caused by factors such as the vague definition of pulmonary
nodules, the imbalanced level of expertise among radiologists or the insufficient infor-
mation provided by chest CT, etc. Second, the detection networks tend to miss nodules
that are under-represented in the training set, such as the small ground-glass nodules,
irregularly shaped nodules or nodules appearing in under-represented contexts. Be-
cause only 3.6% of the screening population have biopsy-proven malignant nodules
[14], such malignant nodules can also be under-represented in the training data. Third,
neural networks are known to be prone to unexpected image distortions [15]. Such dis-
tortions can happen in the real-world low-dose CT imaging though they are rare in both
the training and the benchmark datasets. As we show later in this paper, even simple
noise patterns can determine an under-augmented nodule detector to giving positive
responses. Under- or over-detecting nodules caused by such unanticipated distortions
can pose the potential risk of distracting and biasing the radiologists. Therefore, be-
sides achieving overall high sensitivity and a low number of false positives on clean
benchmark datasets, a nodule detection system is also expected to (1) be capable of
detecting under-represented nodules that are rare in both the training and benchmark
datasets (2) be robust to unanticipated noise and distortions in the real-world images.

Motivated by the reasons above, we propose to augment the training set of lung
nodule detection by adversarially attacking a pre-trained false positive reduction net-
work with both hard synthetic nodules as well as noise image perturbations. The con-
cept is illustrated in Fig. 1. First, we use projected gradient descent (PGD) [16] to
search for the adversarial samples that can determine a trained false positive reduc-
tion network into outputting over-confident wrong predictions. These searched patches
are then added to the training patches to augment the detector to be more robust to
both under-represented nodules and unanticipated image distortions. PGD is used for
searching for three types of adversarial augmentation patches: (1) latent codes to sam-
ple hard synthetic nodules that the detector fails to detect; (2) perturbation noise that
can make the nodule detector fail to detect; (3) noise patterns that can easily deter-
mine the nodule detector to giving false-positive findings; To evaluate the proposed
methods, we train a baseline nodule detector following the general 2-stage framework
using a large-scale training dataset. The adversarial patches are then generated by at-
tacking the baseline false positive reduction (FPR) network and are used for augment-
ing the FPR network. By evaluating on two different benchmark datasets, we show
the proposed techniques can improve the detection performance on clean benchmark
data. Using the same techniques, we also generate adversarial samples to stress-test the
trained false positive reduction networks. We show that the augmented networks are
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more robust to both hard nodules and noise perturbations.

2 Related Work

2.1 Deep learning based nodule detection
As one of the most popular applications of computer-aided diagnosis systems, many
studies have been dedicated to using image processing and machine learning algo-
rithms to detect lung nodules [17]. The majority of the nodule detection framework
generate candidates first either with an image processing pipeline or a fully convolu-
tional neural network. Then a separate classifier is trained to reduce false positives
based on the input 3D CT patches centered at the candidate locations. Most of the
recent works were developed based on the LUNA challenge [6] which acquired its
data from the LIDC-IDRI dataset [13]. Though the annotation process of the LIDC-
IDRI dataset has been well documented and is considered reliable, the quantity and
diversity of the LIDC-IDRI dataset are highly limited. Besides the LUNA challenge,
there have been no benchmarks reported with known statistics. Though the metrics
computed from the FROC curves are suitable for reporting the detection performance
on a given benchmark dataset, it is not often thoroughly investigated that how robust
such detection systems would perform on the rare cases as well as noise perturbations.
Our work shows that the conventional CNNs trained without adversarial augmentation
would generally fail to recognize rare nodules as well as prone to image noise. For a
more comprehensive review of the deep learning based lung nodule detection systems,
we would refer our readers to [18, 17].

2.2 Data synthesis based augmentation in medical image analysis
Inspired by the recent advances in generative models, there have been increasing in-
terests in synthesizing objects in medical images to augment the existing training set
for better diversity [19]. Many recent studies proposed to use generative networks to
synthesize lung nodules to improve the performance of diverse lung nodule related
applications [20, 21, 22, 23, 24, 25, 26, 27]. Most learning based nodule synthesis
methods start with training a generative network to map low dimensional latent codes
to realistic lung nodules in chest CT using either variational auto-encoder (VAE) or
Generative adversarial networks (GAN). Latent codes are sampled from a predefined
prior distribution randomly to synthesize nodules resembling the real ones. These syn-
thetic nodules are blended into the original image contexts by either formulating the
training task as either image inpainting [22] or using an extra context-blending net-
work [21]. In [21], authors use both the discriminator error and the classification error
to select only the hard synthetic cases to be added to the augmented dataset. We show
that such sampling strategies can be inefficient. The majority of the synthetic sam-
ples would add little values since they can be successfully recognized by a network
that is trained on a large-scale dataset. However, hard samples can be drawn from a
synthesizer without exhaustive search if the latent codes are optimized to increase the
training loss of a trained network. In [28], authors showed adversarial sampling can
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help network generalize better on multi-class classification problems.

2.3 Over-confident neural networks and adversarial training
To build robust computer-aided diagnosis systems that are robust to out of distribution
(OOD) samples, one can train the network to estimate the decision uncertainty and re-
ject the samples when the estimated uncertainty is high [29, 30]. Though we also use
the beta distribution in our work for uncertainty estimation [29], we show that the un-
certainty estimation techniques alone would be insufficient to make the network robust
to avoid over-confident decisions on OOD samples. In [16], it is argued that ReLU
activated neural networks would always have open decision boundaries which leave
the risk of high responses for unseen OOD samples. In another paper, it is argued that
batch normalization is also a cause of the adversarial vulnerability [31]. Such network
vulnerability is hard to be reflected by the clean medical image benchmark datasets. In
[32, 5], it is proposed to use PGD [16] to search for the adversarial augmentation cases
from uniform noise or permuted input patches to augment the clean training dataset.
We use similar techniques to adversarially sample both hard positive and hard negative
nodule samples to enhance the adversarial robustness of the nodule detection networks.
Though it was suggested that the adversarially trained networks can generalize slightly
worse on clean data [33, 34, 35, 36], we believe such robustness is still vital for real-
world medical AI applications.

2.4 Adversarial robustness of medical image analysis systems
The vulnerability of CNN against adversarial noise also poses potential risks for de-
ploying the computer-aided diagnosis systems in real clinics as investigated by some
recent studies [37, 38, 39]. Some early studies also attempted to defend the networks
from adversarial noise using different types of data augmentation, such as using geo-
metric transformation [40] or adding Poisson noise [41]. Authors of [42] also propose
to use the model ensemble to improve the model robustness of nodule malignancy
prediction network. Given the fact that defending against adversarial samples is a chal-
lenging task, [43, 44] also proposed to analyze the neural network feature distributions
to detect adversarial samples.

3 Methods

3.1 Baseline Detection Architectures
Similar to many new deep learning based nodule detection frameworks, our baseline
framework consists of a candidate generation (CG) module and a false positive reduc-
tion (FPR) module as shown in Fig. 3. The candidate generation module is trained to
achieve high sensitivity via over-detecting nodule candidates. We use three identical
3D ResUNets [45] as the CG backbone networks without weight sharing. The first CG
network is first trained to output 3D heatmaps with the nodule centers represented by
3D Gaussian blobs with the same sizes (3D Blob All Nodules). We then fine-tune the
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first CG with only the ground glass candidates and part-solid candidates since they are
under-represented in the training set (3D Blob Ground Glass Nodules). The candidates
are derived with non-maximum suppression (NMS) on the fusion heatmap obtained by
taking the element-wise maxima of the two network output heatmaps. We also fine-
tune the first CG network by adding a 3D region proposal network (RPN) head [46] to
outputting 3D bounding boxes (3D RPN Head). We observed that even though it was
hard to improve the sensitivity of the standalone 3D RPN based CG alone (72.00%
and 73.07% sensitivity in both reported benchmarks), some of the true positive find-
ings are complementary to the blob based CG. By merging the 3D RPN and blob CG
candidates, we improved the blob CG sensitivities from 98.00% and 93.07% to 100%
and 97.69% when having 100 candidates per scan. The final candidates of the system
are obtained by taking the union of the blob candidates and the 3D RPN bounding box
candidates.

The false-positive reduction module is then trained to re-evaluate the candidates and
prune the false-positive findings based on the classification confidence. It is built with
a DenseUNet network pre-trained with nodule segmentation. We add shallow classifier
layers on top of it to derive the FPR confidence scores. The network is trained using
643 patches with a resolution of 0.6253mm. We train all the CG and FPR networks
using the Adam optimizer [47] with the initial learning rate 0.001.

We trained the CG framework first and froze it before performing the analysis
presented in this work. For the brevity of this paper, we demonstrate the proposed
techniques only to improve the FPR while assuming the CG networks are trained and
frozen. However, the same techniques can also be used for improving CG networks.

3.2 Hard-Sample Synthesis with PGD Sampling
We train a nodule synthesizer fgenerator that can be controlled by the latent code sam-
pled from a prior distribution. We implement the fgenerator with a 3D convolutional
variational encoder. We extract the nodules out of the CT context with the manually
annotated nodule segmentation. The boundary of the nodule segmentation is blurred
with a distance transform. As shown in Fig. 4, we firstly map the cropped 3D nod-
ules to an encoding space using the encoder network fencoder, then the variational
encoding is reconstructed back to the nodules in chest CT. We jointly train a WGAN-
GP discriminator [48] with spectral normalization [49] to enforce the generator to add
high-frequency details to mimic the real nodules in CT. The data flow can be summa-
rized as

µi, σi = fencoder(x
nodule
i ) (1)

znodulei ∼ N (µi, σ
2
i ) (2)

x̃nodulei = fgenerator(z
nodule
i ) (3)

dfakei , dreali = fdiscriminator(x̃
nodule
i , xnodulei ) (4)

Here dfakei and dreali the discriminator output for the fake and real samples. The train-
ing objective of the nodule synthesizer can be summarized as

Ldiscriminator = LWGAN−GP (d
fake
i , dreali ) (5)
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Figure 2: The data-flow illustration of the proposed adversarial augmentation frame-
work for enhancing the false positive reduction (FPR) network in a nodule detection
pipeline.

Lencoder + Lgenerator = |x̃nodulei − xnodulei |+
λ1DKL(N (µi, σ

2
i )||N (0, 1))−

λ2LWGAN−GP (d
fake
i , dreali )

(6)

where DKL(N (µi, σ
2
i )||N (0, 1)) optimizes the probability distribution parameters µ

and θ to closely resemble that ofN (0, 1). λ2LWGAN−GP (d
fake
i , dreali ) is the wasser-

stein GAN discriminator loss regularized by the gradient penalty defined in [48]. In
our experiments, we set λ1 = 10−5 and λ2 = 0.1.

Once the synthesizer is trained, we discard both the encoder network and the dis-
criminator. Only the generator network is kept for sampling synthetic nodules. Random
nodules can be sampled by feeding a code to the trained generator fgenerator(znodulei ∼
N (µi, σ

2
i )). The synthesized nodule can be fused to a random background chest

CT patch xi and then fed to a trained FPR classifier fFPR. For the rest of the pa-
per, we define the differentiable fusion of synthetic nodule and the background as
x̃nodulei ⊕ xi = x̃nodulei ∗mi + xi ∗ (1−mi) where mi is a binary mask obtained by
thresholding x̃nodulei . Though it is feasible to add another training stage as described in
[21] to further blend the generated nodule into its context, we found it non-critical for
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Figure 3: The baseline two stage nodule detection framework used in this work.

the sake of improving the nodule detection in practice. It is inefficient to draw hard-
cases directly by randomly sampling from the prior because most of the cases close
to the mean have already been learned by the nodule false positive reduction network
fFPR. So instead of randomly sampling the encoding of nodules, we use the projected
gradient descent (PGD) as originally used for generating adversarial attacks [16] to
sample hard nodules. For each sampling, we initialize the encoding from the standard
normal distribution znodulei ∼ N (0, 1) and randomly initialize a perturbation vector
δnodulei to explore the neighbourhood S of znodulei within a bounded radius. δnodulei is
updated by PGD to maximize the LFPR as

ei = fFPR(fgenerator(z
nodule
i + δnodulei )⊕ xi) (7)

arg max
‖δ‖≤ε

LFPR(ei, 1) (8)

Here, ⊕ is the fusion operator that blends the synthetic nodule into the CT context
patch xi. As an alternative to the combination of the sigmoid activation and the binary
cross-entropy loss, We also use the beta distribution as in [29] to measure the clas-
sification uncertainty in our experiments. With the beta distribution output, the FPR
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Figure 4: The illustration of the nodule synthesis framework.

network fFPR outputs the classification evidence ei for positive and negative labels.
LFPR(ei, 1) is the classification loss defined with the beta distribution distance. For
the symbolic brevity, we refer to [29] for the detailed definition of the beta distribution
network output and the loss function. It was shown in [29] that the beta distribution
networks are less likely to be activated by out-of-distribution (OOD) patches and can
produce comparable classification accuracy as cross-entropy. However, in our exper-
iments, we also show that uncertainty estimation alone does not suffice to make the
network robust to all OOD samples especially when such samples are searched by
PGD. The perturbation vector δ can be updated as

δ := P(δ + α∇δLFPR(.)) (9)

where P denotes the projection onto the ball of interest defined by ε; α is the step size.
In our experiments, we set ε = 0.15, α = 0.05. δ is updated with 20 iterations for
each search. In Fig. 5, we show initial synthetic nodules together with the synthetic
nodules searched with PGD. Though visually similar, the tiny differences in the nodule
appearance can result in a large difference in the FFPR responses.
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Figure 5: The demonstrations of the synthetic nodules before and after PGD searching.
With slight perturbation in the nodule appearance, the nodule detector trained with
conventional strategy would output significantly lower confidence score.

3.3 Over-confident Perturbation with PGD Sampling
Besides searching the latent codes for the nodule synthesizer, PGD can also be used
for perturbing the real patches xi as

ei = fFPR(xi + δpatchi ) (10)

arg max
‖δpatch

i ‖≤ε
LFPR(ei, gi) (11)

where gi is the groundtruth label for patch xi. As shown in the first row of Fig. 6,
we found for most of the positive nodules patches, it is easy to find a δpatchi with a
small magnitude to perturb xi so that fFPR no longer recognizes the nodule resides
in it. Such perturbations can disturb the model from recognizing the nodules when the
images contain unexpected abnormalities, strong imaging artefacts or malicious noise
injections.

We also found that even for noise patches xuniformi drawn from a uniform distribu-
tion, PGD can search for a neighbouring patch and excites the FPR network to output a
positive decision, though the searched patch does not contain any interpretable patterns
as shown in the second row of Fig. 6. The intersection between the chest CT distribu-
tion and the uniform distribution is expected to have close to zero probability mass. As
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Figure 6: The upper row demonstrates the noise perturbation on nodule patches. Ar-
bitrary noise can determine a trained nodule detector to ignore a well-defined nodule.
The middle and bottom row demonstrates that specific noise patterns can activate a
trained nodule detector to output high confidence scores from either pure adversarial
noise or the negative CT patches distorted by adversarial noise. The difference patches
are shown with the window [0, 0.3] to make the perturbation visible while the image
patches are shown with the window [0, 1].

explained in [5], ReLU networks decompose the observation space into a finite set of
polytopes in which outer polytopes extend to infinity. Adding the adversarial patches
searched by Eq.(11) to augment the FPR network can make it robust to such image
perturbations by closing the decision boundary.

In practice, we train a baseline FPR network first by randomly sampling real posi-
tive and negative candidate patches with 50% chance each until reaching convergence.
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Then we finetune the baseline model by also sampling from the augmentation patches
generated by attacking the baseline model. For positive sampling, we draw 50% from
the real positive patches, and 25% from synthetic nodules and 25% the adversarial pos-
itive patches. For negative sampling, we draw 50% from both real negative patches and
50% from the adversarial negative patches.

4 Data and Experiment Settings
6488 3D chest CT scans were collected for training. The training images were col-
lected from multiple sources, including the LUNA challenge [6], the NLST cohort [14]
and an in-house data collection. Each training image contains at least one radiologist
confirmed nodule. We annotated the nodule locations and diameters in the training im-
ages from our in-house dataset and the NLST subset. Our annotators firstly detected all
the potential nodule candidates. Then two radiologists went through all the candidates
to confirm the presence of a nodule. 10% of the training images were randomly sam-
pled as the validation set for parameter searching and early stopping. To evaluate the
performance, we constructed two benchmark datasets, as summarized in Table 1. The
In-house Benchmark was built based on a private data collection with 174 challenging
CT scans. Besides lung nodules, many patients in the In-house Benchmark also had
other types of pulmonary abnormalities which constitute a significant source of false
positives for both human readers and the networks. The NLST Benchmark consists of
randomly sampled 272 baseline CT scans from the NLST cohort. The patients were
sampled following the real-world screening distribution [14] (1% with cancer, 25.8%
with cancer negative nodules and 73.2% healthy) while ensuring (1) the slice thick-
nesses are lower than 1.5mm (2) there is no gap in the DICOM series (3) each image
contains the entire lung. We had three on-board radiologists read the images in both
benchmark datasets independently. In the first round, each radiologist marked the nod-
ule candidates individually. All the candidate nodules spotted in the first round were
merged and presented to each radiologist to confirm in case there were under-attended
nodule candidates. We took the nodules that are the consensus among all three radi-
ologists as the positive locations while the rest as irrelevant findings which were not
involved in the metrics computing. We only considered the nodules with the diameters
larger than 6mm for benchmarking. However, we do not claim this is a critical choice
since the size threshold can be adjusted according to the different application scenarios.

All the augmentation patches, including the synthetic nodules, perturbed positive
nodule patches and the perturbation noises, were pre-computed and randomly sam-
pled during the FPR model training by attacking the baseline network (baseline-beta-
finetune). Therefore, the large pool of randomly generated patches was kept consistent
across different experiments to guarantee the reproducibility of all the experiment re-
sults. We generated synthetic nodule patches on 10 random background patches from
each training image. The locations of the background patches were constrained within
the lungs using the lung segmentation masks predicted by a previously trained network.
We also ensured that the background patches do not contain a real nodule inside. For
each background patch, we sampled the synthesizer six times with random sampling
and the PGD sampling, respectively. It resulted in 389,280 synthetic nodule patches
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Table 1: The summary of the chest CT benchmark datasets.

In-house Benchmark NLST Benchmark

CT scans 174 272
CT scans w/ Nodules 97 83

Solid Nodules 94 103
Fully Calcified Nodules 7 19
Part-Solid Nodules 13 3
Ground Glass Nodules 36 6
Total Nodules (>=6mm) 150 131

for both sampling strategies. We generated one adversarially perturbed patch for each
positive nodule candidate in our training data (22,169 relevant nodules) similarly to the
upper row of Fig. 6. We also generated 100,000 pure adversarial noise patches sim-
ilarly to the lower row of Fig. 6. To stress-test the robustness of network at random
pulmonary locations, we sampled 10 random patches centered in the lungs as the neg-
ative stress-test samples from each benchmark CT volume, while avoiding annotated
nodules. We add adversarial noise to these negative samples by attacking the base-
line network (baseline-beta-finetune). For all the experiments involving Poisson noise,
we used the same ratio to sample the Poisson noise injected patches as used for the
adversarial noise patches.

5 Results

5.1 Toy Example
In Fig. 7, we firstly show a toy experiment built with the simple two-moon dataset to
demonstrate the presented concept. 500 spots are sampled from both the positive and
the negative cluster by adding the Gaussian noise with the standard deviation of 0.15.
In our context, they represent the positive and negative candidates used for training
the FPR classifier. We train a ReLU activated multi-layer perceptron to mimic the
FPR classifier based on the sampled spots to plot the decision boundary. We then
sub-sample only 20 positive candidates following a long tail distribution to simulate
the real-world training set distribution as Fig. 7b. We trained a small VAE on the
20 positive spots and generated synthetic samples by drawing the latent code from a
standard normal distribution. The added synthetic spots help filling the hole in the
decision boundary as in Fig. 7c. However, a sizeable out-of-distribution area is also
predicted as confident positive as anticipated in [5]. We then sampled another 20 spots
that are randomly drawn from a uniform distribution and added them to the negative
cluster. In Fig. 7d, it is shown that such noise samples can bound the decision boundary
tightly to the positive cluster. Though there is a small chance that the noise spots can
also reside in the positive cluster, such cases are extremely rare in the real world 3D
inputs. Though we use uniform sampling in this toy example, it is notable that in a
high-dimensional input space, the random sampling can be highly in-efficient for both
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(a) Fully sampled points (b) Under sampled points

(c) Add synthetic points (d) Add uniform noise points

(e) Add PGD synthetic points (f) Add PGD noise points

Figure 7: A toy experiment to depict the concept of the proposed augmentation meth-
ods.

synthesizing real nodules and generating adversarial noise samples. We use PGD to
search for the latent code from the trained VAE. As in Fig. 7e, the PGD searched
synthetic spots only reside in the under-sampled region. In addition to the uniform
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Table 2: The table summarizes the complexities of the nodule detection models.

Network #Param Mac (G) Input Size

DeepLung [10] 5.36M 168.43 128×128×128
Blob Solid / GGO ResUNet 143,92k 67.15 128×128×128
RPN 276.93k 113.91 129×128×128
FPR 455.98k 17.24 64×64×64

Table 3: The table summarizes the FROC metrics on the clean benchmark datasets. The
CPM score averages the sensitivities sampled at 7 log-scale operating points indicating
different numbers of false positives (0.125, 0.25, 0.5, 1, 2, 4, 8).

In-house Benchmark

PERTURB SYN LOSS CPM FP=0.125 FP=0.25 FP=0.5 FP=1 FP=2 FP=4 FP=8

baseline-DeepLung [10] 7 7 N/A 55.15% (46.56% - 63.92%) 31.59% 38.81% 51.84% 58.64% 62.98% 68.59% 73.58%

baseline-ce 7 7 CE 88.46% (83.18% - 93.76%) 73.09% 82.24% 89.84% 92.02% 92.28% 94.65% 96.64%
baseline-beta 7 7 BETA 89.11% (82.91% - 93.87%) 75.43% 83.93% 88.78% 90.80% 91.77% 94.26% 96.64%
baseline-beta-finetune 7 7 BETA 88.90% (83.62% - 94.22%) 75.58% 84.29% 90.79% 91.37% 92.11% 94.24% 96.70%

beta+syn (random) 7 3 BETA 90.76% (85.95% - 95.49%) 79.89% 87.43% 92.05% 93.34% 93.35% 94.26% 96.67%
beta+syn 7 3 BETA 91.22% (86.13% - 95.69%) 81.09% 87.66% 92.66% 93.33% 93.33% 94.17% 96.99%
beta+poisson 7 7 BETA 91.98% (86.74% - 96.30%) 81.50% 87.24% 90.62% 93.40% 95.87% 97.29% 97.96%
beta+poisson+syn 7 3 BETA 92.26% (87.52% - 96.30%) 81.96% 88.16% 92.65% 94.00% 95.10% 96.04% 98.00%
beta+perturb 3 7 BETA 90.07% (85.19% - 95.02%) 76.35% 85.83% 89.91% 93.42% 93.61% 95.40% 97.92%
beta+perturb+syn 3 3 BETA 90.47% (85.22 - 95.12) 77.52% 86.29% 89.95% 92.75% 93.97% 94.98% 97.45%

NLST Benchmark

PERTURB SYN LOSS CPM FP=0.125 FP=0.25 FP=0.5 FP=1 FP=2 FP=4 FP=8

baseline-DeepLung [10] 7 7 N/A 75.71% (67.16% - 84.32%) 32.77% 45.05% 52.14% 57.07% 67.21% 74.09% 75.71%

baseline-ce 7 7 CE 82.56% (73.26% - 91.03%) 52.18% 71.50% 84.99% 89.68% 91.68% 93.14% 95.63%
baseline-beta 7 7 BETA 80.62% (69.49% - 89.78%) 44.74% 68.39% 83.35% 88.56% 91.38% 93.18% 94.40%
baseline-beta-finetune 7 7 BETA 83.60% (74.19% - 91.91%) 53.69% 73.44% 85.30% 91.35% 93.01% 93.99% 95.71%

beta+syn (random) 7 3 BETA 85.81% (77.40% - 93.43%) 66.04% 80.10% 86.55% 90.17% 92.05% 93.15% 95.06%
beta+syn 7 3 BETA 87.89% (81.20% - 93.93%) 74.44% 81.04% 87.61% 90.55% 93.30% 93.80% 94.77%
beta+poisson 7 7 BETA 86.33% (76.71% - 93.46%) 64.95% 78.22% 87.41% 90.25% 93.85% 94.18% 95.44%
beta+poisson+syn 7 3 BETA 86.55% (78.16% - 93.52%) 68.25% 78.33% 86.96% 90.46% 93.14% 93.84% 94.89%
beta+perturb 3 7 BETA 85.63% (76.91% - 93.43%) 64.92% 79.83% 86.50% 89.23% 92.63% 93.85% 94.67%
beta+perturb+syn 3 3 BETA 86.71% (76.44% - 93.74%) 64.47% 80.16% 88.00% 89.96% 92.62% 93.77% 94.52%

spots, we show the PGD searched negative spots which are closer to the positive cluster
in Fig. 7f. Such supporting negative spots can be more efficient for refining the decision
boundary when the input dimension is higher as in 3D chest CT patches.

5.2 Benchmark on clean data
Before we analyze the FPR networks, the frozen CG framework achieved 100% sen-
sitivity on the In-house Benchmark and 97.71% sensitivity on the NLST Benchmark
when having 100 average candidates per scan. We summarize the FROC curves for
benchmarking the nodule detection FPR models trained with different strategies in Ta-
ble 3. Similar LUNA16 [6], the final CPM score is defined as the average sensitivity at
7 log-scaled false positive rates: 0.125, 0.25, 0.5, 1, 2, 4, and 8 FPs per scan. The per-
formance obtained by training the DeepLung1 [10] (55.15% CPM and 75.71% CPM)
is used as a reference standard for the detection performance for the baseline detection
frameworks on our benchmark datasets. Notably, our In-house benchmark has larger

1https://github.com/wentaozhu/DeepLung
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variances in nodule types, sizes and contexts than the LIDC dataset [13]. The classifica-
tion head with beta distribution (baseline-beta) produced similar CPM scores as the sig-
moid head trained with binary cross-entropy (baseline-ce). However, we also show that
the classifier would generate slightly higher CPM scores if the network is firstly trained
with cross-entropy and then finetuned with the beta-distribution loss (baseline-beta-
finetune). In the experiments beta-syn (random) and beta+syn, we respectively added
synthetic nodules randomly sampled from the standard normal, and the ones searched
using the proposed PGD sampling. Though both types of synthetic nodules can im-
prove the overall network generalization, the nodules searched with PGD consistently
outperforms its counterpart, especially at the region of the lower number of false posi-
tives. We show that adding the noise perturbation augmentation patches (beta+perturb
and beta+perturb+syn) can also slightly improve the overall CPM scores comparing to
the conventional training baseline (baseline-beta-finetune). However, they do not show
better performance than only using only PGD searched nodules (beta+syn). We show
such perturbation augmented networks are more robust to both uniform and adversarial
noise in the next section. The data augmentation by adding random Poisson noise [41]
into the training patches (beta+poisson and beta+poisson+syn) achieved slightly higher
detection performance than adding the adversarial noise in both clean benchmarks. The
complexities of the detection models are summarized in Table 2.

(a) Real nodules (b) PGD synthetic nodules

Figure 8: The mosaic view to compare the real nodule patches and the synthetic nodules
in patches of size 643 and 0.6253mm resolution. Besides being generally smaller, the
PGD searched synthetic nodules tend to have round glass component with or without a
solid core. Such non-solid or part-solid nodules are relatively rare in the real datasets.

5.3 Stress test
5.3.1 Synthetic nodules

The central slices of the randomly selected real nodules and the hard nodules sampled
by PGD are shown in Fig. 8. Besides being generally smaller, the PGD searched syn-
thetic nodules tend to have round glass component with or without a solid core. Such
non-solid or part-solid nodules are relatively rare in the real datasets. Though one can
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Table 4: False positive reduction confidence means and standard deviations obtained on
the synthetic nodule generated by using randomly sampled coding (Randomly sampled
nodules) and the PGD sampled coding (Randomly sampled nodules).

Method Randomly sampled nodules PGD sampled nodules

baseline-beta-finetune 0.82± 0.17 0.53± 0.15
beta+syn 0.92 ± 0.09 0.88 ± 0.16

Uniform 0.3Original Uniform 0.6 Uniform 0.9 Adv.

baseline-beta:
86.07%
beta+pgd+syn:
92.08%

baseline-beta:
82.26%
beta+pgd+syn:
92.11%

baseline-beta:
81.68%
beta+pgd+syn:
92.11%

baseline-beta:
80.11%
beta+pgd+syn:
92.09%

baseline-beta:
2.75%
beta+pgd+syn:
91.40%

baseline-beta:
90.18%
beta+pgd+syn:
92.25%

baseline-beta: 
89.97%
beta+pgd+syn:
92.22%

baseline-beta:
89.70%
beta+pgd+syn:
92.19%

baseline-beta:
50.00%
beta+pgd+syn:
92.23%

baseline-beta:
88.93%
beta+pgd+syn:
91.27%

baseline-beta:
87.87%
beta+pgd+syn:
92.03%

baseline-beta:
59.74%
beta+pgd+syn:
91.90%

⨉50 Poisson ⨉5 Poisson

baseline-beta:
90.20%
beta+pgd+syn:
92.24%

baseline-beta:
83.41%
beta+pgd+syn:
90.33%

Figure 9: Examples to show different levels of uniform noise and adversarial noise on
two nodules randomly drawn from the stress-test.

still visually distinguish a subset of the synthetic nodules from the real nodules, they
can be a valuable source to stress-test the FPR network as most of such cases reside
at the original decision boundaries. We synthesized 10000 nodules with both random
Gaussian sampling and PGD searching respectively. They were fed to the FPR net-
works trained with (beta+syn) and without (baseline-beta-finetune) synthetic nodules.
We ensured that all the synthetic nodules in this test have diameters at least 6mm. The
mean and standard deviations of the network responses are shown in Table. 4. Though
the conventional network achieved 88.90% CPM, it failed to recognize many nod-
ules generated with only random sampling synthesis. The baseline network predicts
the majority of the PGD searched nodules around 0.53, which are defined as out-of-
distribution (OOD) samples. The network augmented with PGD synthetic nodules can
successfully recognize most of the PGD synthetic nodules with high-confidence with
mean confidence 0.87.

5.3.2 Noise

To stress-test the network resistance to different levels of noise, we first add uniform
noise with different magnitudes to the nodule patches as depicted by Fig. 9. The uni-
form noise can reduce the baseline network response from 0.86 to 0.81 as shown in Ta-
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Table 5: Stress-test by perturbing the positive patches with different levels of uniform,
Poisson noise and PGD noise perturbation.

Method 0.0 uniform noise 0.3 uniform noise 0.6 uniform noise 0.9 uniform noise ×50 Poisson noise ×5 Poisson noise Adv.

baseline-beta-finetune 0.86± 0.12 0.86± 0.11 0.83± 0.14 0.81± 0.16 0.86± 0.11 0.78± 0.18 0.25± 0.25
beta+syn 0.91± 0.10 0.91± 0.10 0.89± 0.11 0.87± 0.16 0.91± 0.09 0.84± 0.19 0.37± 0.39
beta+perturb 0.91± 0.06 0.91± 0.05 0.91 ± 0.05 0.89 ± 0.12 0.91± 0.05 0.91 ± 0.07 0.91 ± 0.07
beta+perturb+syn 0.92 ± 0.04 0.91 ± 0.04 0.90± 0.07 0.87± 0.13 0.92 ± 0.04 0.90± 0.07 0.90± 0.08
beta+poisson 0.86± 0.07 0.86± 0.07 0.84± 0.09 0.83± 0.11 0.86± 0.07 0.80± 0.14 0.78± 0.18
beta+poisson+syn 0.90± 0.07 0.89± 0.09 0.88± 0.11 0.86± 0.14 0.89± 0.07 0.79± 0.21 0.82± 0.17

Table 6: Stress test by feeding noise patches and the negative patches to the network.

Method Uniform noise PGD noise Negative patches PGD negative patches

baseline-beta-finetune 0.11± 0.05 0.87± 0.17 0.14± 0.09 0.82± 0.21
beta+syn 0.22± 0.16 0.90± 0.10 0.10 ± 0.11 0.63± 0.32
beta+perturb 0.04 ± 0.00 0.08 ± 0.13 0.19± 0.14 0.26± 0.20
beta+perturb+syn 0.05± 0.01 0.09± 0.09 0.21± 0.15 0.32± 0.23
beta+poisson 0.13± 0.06 0.23± 0.21 0.13± 0.12 0.18± 0.18
beta+poisson+syn 0.08± 0.02 0.34± 0.25 0.11± 0.10 0.17 ± 0.17

ble. 5. We found that the network augmented with either synthetic nodules (beta+syn)
or PGD noises (beta+perturb and beta+perturb+syn) can be more robust to uniform
noise. To simulate the Poisson noise in CT, we rescaled the CT patches to [0, 50] and
[0, 1] respectively and then sample from them following the Poisson process. Sim-
ilarly to the uniform noise, stronger (×5) Poisson noise can deactivate the baseline
FPR network (from 0.86 to 0.78) while affecting less on the augmented networks aug-
mented with PGD noise. Interestingly, the networks augmented with Poisson noise
(beta+poisson and beta+poisson+syn) did not show much better robustness towards
Poisson noise than the baseline network. The networks trained without adversarial
noise augmentation tend to be deactivated by the adversarial noise. At the same time,
the mean responses from the adversarial noise augmented networks remained around
0.9. We also tested the FPR network by feeding randomly generated noise patches and
PGD adversarial noise patches as shown in Table. 6. The conventional FPR network
would normally not be activated by random uniform noise, meaning most of the mean
responses are below 0.22. However, pure adversarial noise patches can easily activate
the baseline networks (0.87 and 0.90). The networks augmented with the Poisson noise
show stronger robustness than the baseline networks (0.23 and 0.34). The networks
augmented by the adversarial noise augmentation (beta+perturb and beta+perturb+syn)
are more robust to both types of noise patterns with below 0.1 mean responses. In Ta-
ble. 6 we also show that the networks augmented with either the adversarial noise and
Poisson noise are more robust to the adversarial noise added to the real negative CT
patches than the baseline network.

6 Discussions and Conclusions
In this paper, we propose adversarial augmentation methods to improve the robustness
of the nodule detection framework against two major sources of the out-of-distribution

18



samples (1) the nodules with under-represented properties in the training dataset (2) the
images with unexpected noise or contrast. We first use the beta-distribution to replace
the sigmoid output of the false positive reduction network to estimate the observation
uncertainty explicitly at the output layer. Then we add both adversarial synthetic nod-
ules and adversarial perturbation noise to the training set that is searched using the
project gradient descent (PGD). Some of the existing works as listed in S.II.B have
attempted to use synthetic images to improve the model performance since generative
models can provide samples under-represented in the training set which is not easily
simulated by the conventional data augmentation techniques. However, as shown in
Table II, the performance gain using randomly sampled synthetic images is limited
since the majority of the randomly sampled cases drawn from a prior distribution are
well represented by the training data distribution. Therefore, we propose to search
for the latent code associated with the hard-samples from the synthesizer using PGD to
maximize the training loss of the supervised model. This applies when (1) the data syn-
thesizer and the supervised learning model are both differentiable (2) the data synthe-
sizer is trained to well-represent the manifold of interests. We show that the proposed
techniques can improve the generalization of the nodule detector by learning patho-
logically relevant patterns, we tested it on two benchmark datasets with groundtruth
annotated by experienced radiologists. We also use the synthetic nodules and the gen-
erated perturbations to stress test the trained models and show the augmented networks
can be more robust to both hard nodules as well as different types of noise distortions.
By using the beta distribution based uncertainty estimation, we also showed that un-
certainty estimation alone might not be sufficient to make the network robust to the
out-of-distribution inputs, especially when the inputs are adversarially generated. The
proposed framework can be indeed applied to similar classification, segmentation or
detection models as long as the model and the data synthesizer are fully differentiable.

Some studies observed that adversarial samples can cause decreased testing perfor-
mance on clean testing data [33, 34, 35, 36]. However, bearing in mind that dropped
accuracy can be expected as a cost for robustness, in our experiments shown in Table. 3,
we did not notice obvious testing performance decreases on the clean data though the
best performance is indeed observed on the models with only adversarial hard-case
sampling without adversarial noise. This observation is also consistent between the
two benchmark datasets. Our assumptions are two-fold: (1) As hypothesized in [36],
the generalization performance drop might be because the clean data and the adver-
sarial data are drawn from different manifolds. Even though detecting rare nodules
automatically has been a challenging problem for decades, the underlying data mani-
folds of the nodules can be much simpler than the ones of natural image applications.
The neural networks can, therefore, be over-parameterized to fit both the clean and the
adversarial manifold without changing the normalization layers. (2) Other than adver-
sarial noise, the adversarial noise enhanced networks can be also more robust to other
noise or artifact sources that can appear in clean CT data. However, these assumptions
might need to be further validated by future work.

As one of the early attempts to enhance the robustness of the medical image anal-
ysis CNNs, this study has a few limitations that would be targeted in future works. We
use a relatively simple nodule synthesizer network and the standard PGD to sample the
lung nodules from the latent space. This synthesizer was not capable of synthesizing all
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types of different nodules, such as nodules with spiculation. It was also not constrained
to maintain the size of a synthetic nodule, therefore we had to filter out the synthetic
nodules that are smaller than the relevant threshold. We only investigated the network
robustness towards three types of image noise. The improved robustness towards other
types of image artefacts, such as metal artefacts and motion distortion, etc., remains un-
known. As a proof of concept study, the proposed techniques were only applied to the
false positive reduction (FPR) of the lung nodule detection pipeline for brevity. How-
ever, the same perturbations can also affect candidate generation networks. We also
found that in practice it is hard to generate adversarial noise by attacking the noise aug-
mented networks without showing visually detectable artefacts. However, it is possible
to attack augmented networks with the same techniques. Though we only evaluated
the proposed techniques in the context of nodule detection, we believe such techniques
can also be helpful for the other deep CNN based medical imaging applications with
minor technical adjustments.
Disclaimer: The concepts and information presented in this paper are based on re-
search results that are not commercially available
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