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Abstract— We consider the problem of abnormality lo-
calization for clinical applications. While deep learning has
driven much recent progress in medical imaging, many clin-
ical challenges are not fully addressed, limiting its broader
usage. While recent methods report high diagnostic accu-
racies, physicians have concerns trusting these algorithm
results for diagnostic decision-making purposes because
of a general lack of algorithm decision reasoning and inter-
pretability. One potential way to address this problem is to
further train these models to localize abnormalities in addi-
tion to just classifying them. However, doing this accurately
will require a large amount of disease localization annota-
tions by clinical experts, a task that is prohibitively expen-
sive to accomplish for most applications. In this work, we
take a step towards addressing these issues by means of a
new attention-driven weakly supervised algorithm compris-
ing a hierarchical attention mining framework that unifies
activation- and gradient-based visual attention in a holistic
manner. Our key algorithmic innovations include the design
of explicit ordinal attention constraints, enabling principled
model training in a weakly-supervised fashion, while also
facilitating the generation of visual-attention-driven model
explanations by means of localization cues. On two large-
scale chest X-ray datasets (NIH ChestX-ray14 and CheX-
pert), we demonstrate significant localization performance
improvements over the current state of the art while also
achieving competitive classification performance. Our code
is available on https://github.com/oyxhust/HAM.

Index Terms— Weakly Supervised, Abnormality Localiza-
tion, Explainability, Hierarchical Attention.
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THE chest X-ray (CXR) is one of the most commonly per-
formed medical imaging examinations in clinical prac-

tice. Diagnosis with CXR greatly depends on the radiologist’s
experience [1] since anatomical structures may overlap due
to the 2D projection effect. Another challenge with CXR
is the high diversity of possible abnormalities and diseases.
Consequently, many detection [2], diagnosis [3], [4], [5],
and triage [6], [7] methods have been proposed to support
computer-aided CXR diagnosis.

The public release of the large-scale NIH Chest X-ray14
[8] and CheXpert [9] datasets, both including more than
100,000 images, has further fostered research in this field, with
many prominent techniques [3], [4], [5], [10], [11] formulating
CXR image diagnosis as a multi-label classification problem.
Despite their high classification accuracies, physicians find it
difficult to interpret these “black-box” models. Furthermore,
as these models are trained with image-level annotations, they
are unable to capture the large intra-class diversity in shapes,
appearances, and sizes of different abnormalities. On the other
hand, one may expect to mitigate these issues given sufficient
abnormality localization annotations for training; however
obtaining them is prohibitively expensive, particularly in med-
ical applications. Consequently, low accuracies in abnormality
localization as well as limited model interpretability have
become key bottlenecks in wide adoption of these algorithms
in clinical practice.

Existing methods in the literature propose ways to address
these issues. For instance, in Li et al. [12], a weakly supervised
approach (using a small number of box annotations) was
employed for abnormality localization. Despite good progress
in a few cases, the performance in most abnormalities (e.g.,
“Nodule”, “Mass”, “Atelectasis”, etc.) still largely remains
quite low. In addition to a general lack of decision reasoning
(or model explanations), the performance improvements with
this line of work have come at the cost of reduced image-
level abnormality diagnosis performance [12]. This is because
of a severe data imbalance between the small number (of the
order of a few hundreds) of box-level localization annotations
versus a much larger number (of the order of several hundreds
of thousands) of images with image-level class labels. Thus, in
this work, our key considerations are - (a) can we provide an
efficient means for explaining model decisions? and (b) how
do we improve localization performance while also ensuring
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Fig. 1. Hierarchical attention mining framework. It contains three levels
of attention mechanism: foreground attention, positive attention, and
abnormality attention. The foreground attention is from the activation-
based foreground attention block (FAB). The positive attention and ab-
normality attention are the gradient-based attentions generated from two
online-CAM modules of the two-way (positive/negative) classification
task and D-way (D abnormality types) classification task, respectively.

little/no classification performance reduction?
Recent progress in convolutional neural network (CNN)

attention modeling and learning [13], [14] has led to increased
adoption of visual attention for model interpretability and
explainability. Such extensions [15], [16], while generating
attention priors and demonstrating applicability for classifi-
cation tasks, are not directly applicable in our context due to
the hierarchical nature of localizing a particular abnormality
in a larger anomalous region in the image. To address this
problem, we design an attention-driven learning framework
that addresses two key drawbacks of existing methods- (a)
precisely localizing abnormalities, especially for subtle classes
like “Nodule”, and (b) addressing the imbalance problem
of box-level and image-level label annotations in a holistic
manner. Our intuition is that CNN visual attention, by being
a weakly-supervised source of localization cues, provides a
strong prior for learning generalizable models even with small
quantities of box-level annotations. Such a framework will not
only help improve localization performance but also, by means
of attention, provide a way to visually explain model decisions,
both of which are important to clinical deployment of deep
learning models.

Our proposed method learns hierarchical attention at three
levels: foreground, positive, and abnormality attention (Fig. 1).
To model foreground attention, we present an activation-based
foreground attention block (FAB) that captures foreground
dependencies to give an initial, coarse estimation of the fore-
ground region of interest. Our FAB considers both channel-
and position-wise attention, and is realized with a cascade
design to guide the learning process to discover informative
features that are useful for the later search/recognition of
abnormalities. Next, a two-way (positive/negative) classifi-
cation scheme uses gradient-based diagnostic-level attention
to specifically narrow down regions that may, again fairly
coarsely, enclose the abnormalities (positive attention). Fi-
nally, abnormality attention from the D-way (D abnormality
types) classification task is responsible for computing the
abnormality locations. To ensure learning of attention regions
hierarchically, we enforce two explicit attention ordinality
constraints. Specifically, we propose a novel attention-bound
learning objective that enforces the output of abnormality
attention to be located completely within the coarse positive

attention region. Furthermore, we propose a novel attention-
union objective to enforce positive attention to lie within the
union region of abnormality attention maps. Finally, by design,
our framework enables principled incorporation of the limited
box-level annotations by regularizing the abnormality attention
maps to directly conform to the ground-truth distribution.

To summarize, the key contributions of our work are:
• We present a new visual attention-driven weakly-

supervised learning framework that simultaneously ad-
dresses abnormality localization and classification with
very limited box-level annotations.

• To address the hierarchical nature of abnormality lo-
calization, our proposed visual attention mechanism is
explicitly hierarchical and comprised of three levels (fore-
ground, positive, and abnormality) that enables progres-
sive weakly-supervised discovery of the specific abnor-
mality location of interest.

• We demonstrate improved abnormality localization per-
formance, establishing state-of-the-art results on the NIH
ChestX-ray14 dataset.

• We invite an experienced radiologist to provide box
annotations in the CheXpert [9] dataset to help evaluate
our method’s localization performance. In total, 2345
images in the CheXpert dataset have been annotated with
6099 bounding boxes for 9 abnormality types.

II. RELATED WORK

A. CXR Image Analysis

Deep learning has enabled much recent progress in the
field of medical image analysis [17]. For CXR image anal-
ysis, the release of the NIH dataset [8], which provided an
official patient-level data split, has motivated many recently
studies [3], [4], [5], [18], [10], [11] for the diagnosis of 14
abnormalities. Most of these techniques utilized either the
DenseNet [18], [5], [4], [3] or ResNet [4], [11] architecture as
the backbone with several add-ons like squeeze-and-excitation
[5], global-local feature branch combination [4], two paral-
lel branches [10], integration of multi-resolution cues [18],
knowledge fusion from other datasets [3] and so on. The
current state-of-the-art performance among methods that use
the official data split [3], [5], [18], [10], [11] is around 0.81
measured in terms of average AUC. Chen et al. [19] explored
the hierarchical structure of the 14 abnormality labels from
the PLCO dataset [20].

As noted earlier, abnormality regions highlighted by models
trained with image-level annotations may not always actually
relate to the true abnormalities and may possibly also be non-
pathological or outside the cardio-thoracic parts. To address
these problems, some methods [12], [21] used a small number
of available box-level annotations to facilitate more plau-
sible abnormality localization. Specifically, multiple-instance
learning (MIL) was employed in [12], [21], [22] by treating
the various spatial sliced blocks as instances. While good
localization was demonstrated in [12], the image diagnosis
AUC was still around 0.75 with the official split (see Table 4 in
the appendix of Li et al.’s [12] arXiv v6 version). Based on the
MIL framework, Liu et al. [21] developed the contrast-induced
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Fig. 2. Framework of our method. “1 × 1 Conv” denotes 1 × 1 convolutional kernel. “FC” denotes the fully-connected layer. “Conv1”, “Conv2”,
and “Conv3” are the convolutional layers with 3 × 3 kernel. “Conv1” reduces the number of channels of the feature maps from the backbone CNN
for computation efficiency of FAB. “Conv3” is used to concatenate the features of the backbone CNN and FAB, generating the encoded feature
maps with 512 channels. The positive and abnormality attention results are generated with these encoded feature maps and the weights of two
fully-connected layers from two-level classification tasks: the positive/negative classification and D-way abnormality classification task.

attention (CIA) network for localization improvement. CIA
required pairs of positive and negative input images (images
with and without abnormalities, respectively) to obtain contrast
attention maps as the abnormality localization priors for the
MIL framework. For the purpose of good quality contrast
attention, CIA further required an alignment network to ensure
that positive and negative images are in the same canonical
form. While these techniques [12], [21] demonstrated better
localization when compared to the NIH baseline [8], the
performance on abnormalities like “Nodule” and “Mass” is
still not satisfactory. Meanwhile, the performance of CXR
diagnosis with the official split was not elaborated in [21].
Our method, on the other hand, does not require either
paired positive/negative images or the block slicing step as in
these methods. Furthermore, our method improves abnormal-
ity localization performance without requiring an additional
alignment step.

B. Attention Mechanism

Self-attention mechanism is an effective feature learning
technique shown to be helpful in various image analysis tasks,
e.g., video classification [23], image classification [24], and
semantic segmentation [25]. This can be seen as a type of
activation-based attention [26] since a variety of activation
functions, e.g., Sigmoid, Softmax, etc., are used to compute
attentive spatial parts or channels from feature maps. This is
generally realized using two types of core modules: channel-
wise attention [24] and spatial-wise attention [23], with both
these types typically employed in a parallel fashion to address
image analysis problems like semantic segmentation [25].

Gradient-based attention is another line of of work in this
direction that was shown to be helpful for weakly supervised
learning. Class-activation map (CAM) [13] and gradient-
weighted class activation map (Grad-CAM) [14], [27] are
some examples of techniques that can be categorized under
gradient-based attention, with CAM technically a special case
of Grad-CAM for a specific type of CNN architecture (i.e.,
performing pooling over convolutional maps immediately prior

to prediction).
Some extensions [28], [15], [16] further used these tech-

nique as online trainable modules for improve the performance
of models on downstream tasks, e.g., image classification or
segmentation. There were some applications in the medical
field as well, with Lian et al. [29], [30] utilizing gradient-
based attention to boost the diagnostic performance of models
for the Alzheimer’s disease (AD) in a two-stage framework.
Specifically, the disease attention map derived in the first stage
is employed to guide the training of the disease classification
networks in the second stage. Since only AD-related diseases
were considered in these methods [29], [30], the aspect of
label hierarchy, e.g., the image-level label of positive/negative
vs. the abnormality-level labels was not fully explored.

Our proposed method is, to the best of our knowledge, the
first hierarchical visual attention framework that unifies both
activation- and gradient-based attention in a holistic manner.
To discover informative features that are useful for the later
search/recognition of abnormalities, we propose the activation-
based foreground attention block by cascading channel- and
position-wise attention. Specifically, channel-wise attention
module is used first to re-calibrate useful channels for the re-
computation of feature maps. The recomputed feature maps
may carry more informative features to support the learning
of spatial attention features. With such a cascade design,
effective attention features can be better learned. The resulting
foreground attention map serves as a spatial prior for abnormal
regions and thus helps the abnormality localization task.
Furthermore, we develop two online CAM modules to produce
gradient-based attention for positive and abnormality attention,
given hierarchically organized image labels. Finally, we also
propose novel ways to bound the learned attention by means
of ordinal learning objectives to explicitly model the latent
correlation between attention maps.

III. METHODOLOGY

Our framework is illustrated in Fig. 2. It learns a three-
level hierarchical representation of attention. The first level
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corresponds to a coarse delineation of the foreground region
of interest, produced by our proposed foreground attention
block (FAB). The FAB is realized by means of a differen-
tiable activation-based attention mechanism that is infused into
the model training process to highlight the features of the
foreground region of interest. The second level corresponds
to a coarse demarcation of the positive region of interest,
realized by means of gradient-based attention with a two-
way (positive/negative) classification scheme (called positive
attention). Finally, the third level corresponds to delineating
the particular abnormality of interest, realized using gradient-
based attention with a D-way (D abnormality types) clas-
sification scheme (called abnormality attention). To enforce
explicit learning of such a hierarchical attention representation,
we propose new ordinal attention constraints, implemented
by means of learning objectives we call attention bound and
attention union losses. Our learning mechanism is flexible to
enable the use of a small number of box annotations, which
helps improve localization performance without a reduction in
the classification performance. In the subsequent sections, we
discuss each component of our proposed framework in details.

A. Foreground Attention Block (FAB)
The foreground attention block (see Fig. 3) implements

perceptual-level attention with a self-attention mechanism
[23], [24], [31] to learn and highlight foreground features.
The FAB is comprised of both channel and position attention
modules, which we propose to use in a sequential manner.
Unlike Fu et al. [25] that combined these two attention
types into a parallel data flow, we cascade the channel-
and position-wise attention to learn a foreground attention
map. Specifically, the channel-wise attention is performed first
to calibrate useful channels for the position-wise attention
component. Fu et al. [25] on the other hand exercised the
self-attention mechanism in a parallel manner to recalibrate
the channel and spatial cues simultaneously. Accordingly, the
parallel self-attention mechanism with two non-local-based
matrix operations may consume more GPU memory. Our
cascading FAB only requires one matrix operation and can
attain the desirable results in an efficient and faster way.

Our channel-wise attention module is architecturally similar
to the squeeze-and-excitation (SE) block [24], where we
replace the average pooling operation with spatial attention
pooling. Specifically, as shown in Fig. 3, we employ spatial
attention [23], [31] to assign similar weights to pixels having
similar scores using softmax, which are then used to perform
weighted spatial average pooling of the input feature maps,
producing a channel-weighted C×1 vector. The channel-
weighted (by the C×1 vector above) C × H × W feature
maps are then processed by the position-wise attention module,
producing an attention-weighted 1 × H × W map. It is the
foreground attention to give an initial, coarse estimation of the
foreground region of interest. Then, it is element-wise added to
each channel of the input C×H×W feature maps, producing
the final features that are then input to the subsequent parts of
our model.
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Fig. 3. Foreground Attention Block (FAB). “BN” denotes batch normal-
ization layer. We use the cascaded structure of channel- and position-
wise attention to produce the foreground attention (shown in Fig. 2),
which is element-wise added to each channel of the input C ×H ×W
feature maps.

B. Diagnostic Attention

After identifying the foreground regions of interest, our
model computes diagnostic attention at the remaining two
levels of the hierarchy, which is realized with different but
coupled classification objectives. First, we perform a two-way
classification and generate the positive attention map. This
step essentially attempts to tell apart CXR images with and
without any abnormalities, thereby helping learn features that
are important for positive/negative prediction. Next, the same
feature maps are used in conjunction with a D-way classi-
fier, where the goal is to identify the particular abnormality
type among the D possibilities, to generate the abnormality
attention maps. To exhaustively learn all features important
for these classification tasks, and to produce the corresponding
attention maps, we use a gradient-based attention mechanism,
e.g., online CAM [13], [28]. The key idea of CAM is to
generate the attention maps for different classes by weighting
the convolutional feature maps with the weights from the fully-
connected layer. Let f denote the feature maps before the log-
sum-exp (LSE) pooling [32] operation and w denote the weight
matrix of the fully-connected layer. To make our attention
generation procedure trainable, we use w as the kernel of a
1× 1 convolution layer such that:

M = ReLU (conv (f, w)) , (1)

where M has the shape D × T × S, and D is the number
of classes in the D-way (D abnormality types) classification
task. D is set to 1 for the the two-way (positive/negative)
classification task. Given the attention map M , we normalize
the values to the range between 0 and 1 and perform sigmoid
for soft masking [15], which is defined as:

T (M) =
1

1 + exp(−α(M − β))
, (2)

where values of α and β are set to 100 and 0.4 respectively.
Based on Equations 1 and 2, we use the encoded feature

maps from the backbone CNN and the weights of fully-
connected layer of the 2-way (positive/negative) classification
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task to generate the positive attention map MP . The abnormal-
ity attention maps Mak (k = 1, 2, . . . , D indicates the specific
abnormality) are similarly computed with the encoded feature
maps, which are further weighted with the weightings of fully-
connected layer in the D-way classification task, see Fig. 2.
The synergy between the two classification tasks is achieved
by means of our new ordinal constraints on the attention
maps. Our intuition is that each abnormality attention map
(obtained from the D-way classifier) should be completely
contained within the positive attention map obtained from the
2-way (positive/negative) classification task. Furthermore, the
positive attention map itself should be constrained to cover all
the possible regions that may be attended to by the individual
abnormality attention maps. To this end, we next formulate our
new attention bound and attention union objective functions,
which will be detailed later. Finally, we can exploit the
small number of box-level annotations to further improve the
localization performance in the weakly supervised setting.

1) The attention bound loss: As noted above, we generate
two diagnostic attention maps in attention hierarchy: the
positive attention map Mp with shape 1 × H × W and
D-way abnormality attention maps Mak with shape D ×
H ×W (where D is the number of abnormality classes and
k = 1, 2, . . . , D indicates the specific abnormality). Given
the hierarchical relationship between these two attention maps
discussed above, we seek a learning objective that enables the
model to learn to produce attention that respects this hierarchy.
Specifically, given a CXR image, all abnormality attention
maps Mak shall be contained within the region bounded by the
positive attention map Mp as shown in Fig. 4. Accordingly,
our proposed attention bound objective, Lbound, attempts to
spatially constrain the region covered by each Mak with
respect to Mp, and is realized for input CXR image as:

Lbound =

1

N

∑
yk=1

(
1−

∑
ij (min(Mp

ij ,M
ak
ij ) · T (Mak

ij ))∑
ij M

ak
ij

)
, (3)

where the image’s ground-truth label yk ∈ {0, 1} (0/1 indi-
cates absence/presence of abnormality k), N is the number
of positive classes in the image label set {yk}, i and j
represent the (i, j)th pixel in the corresponding attention
map, and T (Mak

ij ) is the soft masking operation defined in
Equation 2 which masks out the impact of background noise
in the attention maps. In summary, the Lbound can ensure
abnormality attentions Ma to lie within the positive attention
Mp.

2) The attention union loss: While our proposed Lbound

helps enforce explicit spatial constraints on the spatial bounds
of the abnormality attention Mak , it does not, however,
provide any direct supervision on the spatial extent of the
positive attention Mp. To ensure the positive attention only
encompasses all the possible abnormality attention regions,
and no more than that, we enforce explicit union constraint
on the spatial extent of positive attention map Mp and the
union of all the abnormality attention maps Mak . Specifically,
as shown in Fig. 4, we seek the spatial extent of the positive
attention map Mp to be no more than the spatial extent of the
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Attention
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Fig. 4. (a) Relation of positive attention map Mp and abnormality
attention maps Ma. (b) Real case illustration. Different abnormality
attention maps Mak are represented in different colors.

union of all the abnormality attention maps Mak . To this end,
we first compute the union of all abnormality attention maps,
denoted Mu, as:

Mu = max(Ma1
ij · y1,M

a2
ij · y2, . . . ,M

aD
ij · yD), (4)

where similar to Lbound, we only consider the positive abnor-
malities. Then, our proposed attention union loss, Lunion, is
realized by calculating the region overlap between Mp and
Mu as:

Lunion = 1−
∑

ij (min(Mp
ij ,M

u
ij) · T (M

p
ij))∑

ij M
p
ij

, (5)

where T (Mp
ij) refers to the same soft-masking operation of

Equation 2.

C. Weakly-supervised Learning from Extra Box-level
Annotations

Although we have proposed the attention bound and union
loss to better locate the abnormality regions, it is still a
challenging task under only image-level labels. Given a small
number of extra annotations (e.g., bounding-box annotations
for abnormal localizations), we can in fact provide weak yet
direct supervision to our model. To this end, we apply an
attention-adaptive mean square error (AMSE) loss, Lamse.
Given our abnormality attention map T (Mak) (bilinearly
interpolated to input size after soft masking) and the corre-
sponding ground-truth abnormality annotation Gk, our Lamse

is formulated as:

Lamse =
1

N

∑
yk=1

( ∑
ij (T (M

ak
ij )−Gk

ij)
2∑

ij T (M
ak
ij ) +

∑
ij G

k
ij

)
, (6)

where N is the number of positive abnormalities in the image
label set {yk}. One can note that the proposed Lamse is a
slightly modified version of the traditional MSE loss using the
sum of regions of location map Mak and Gk as an adaptive
normalization factor. We show later that our Lamse improves
localization performance even with a small number of box
annotations. In the datasets used in this work, only box-level
annotations are available. To get the ground-truth masks, for
the kth abnormality class, given the box annotation, we first
generate a pixel-level binary mask Gk where all pixels outside
the current bounding box location are set to 0.

In real cases, although box annotations are helpful for the
localization of abnormalities, the annotated boxes tend to be
too large and enclose too much background cues. To address
this issue, we further introduce a self-refinement (SR) method
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Fig. 5. Illustration of the self-refinement method. We take the intersec-
tion of the box masks and attention results as the new refined ground-
truth for the follow training.

for the box annotations with extra pass of training. Specifically,
we train an additional instance of our network with box
annotations. Then, this additional network is used to generate
attention maps for training images with box annotations for
the potential refinement of boxes. If the IoU value of the
attention region and the corresponding box is lower than
0.3, we keep the original box. Otherwise, we get the refined
mask annotations via the overlap of the box masks and the
corresponding attention maps. We show some examples in
Fig. 5. It is worth noting that the additional SR and main
networks are distinct. The additional SR network is used for
box refinement, whereas the main network is employed for
the tasks of abnormality localization and diagnosis. The self-
refinement method is not carried out on the testing data in the
experiments.

D. Overall Objective Loss Function

Our overall learning objective is comprised of the abnormal-
ity and positive/negative classification, the attention bound and
union, and the attention-adaptive MSE losses, and is expressed
as:

Ltotal = Lab+z ·Lamse+λ1Lpn+λ2Lbound+λ3Lunion, (7)

where Lpn and Lab are binary cross entropy (BCE) terms
for the positive/negative and abnormality classifications, and
z, λ1, λ2, and λ3 are weighting factors (in our experiments
we determine them with a search on 20% of the training and
validation set). Note that when box annotations are not used,
we set z = 0.

IV. EXPERIMENTS

A. Datasets and Settings

1) Experimental settings: We conduct experiments on the
NIH Chest-Xray14 dataset [8] and CheXpert dataset [9], two
large-scale CXR datasets. In our experiments, we use dilated
ResNet50 [33] as the backbone. The size of the abstracted
feature map to generate the various attention maps is 1

8 of
the input images. We use the Adam [34] optimizer with
momentum set to 0.9, a weight decay of 0.0001, and a learning
rate of 0.00002 that is reduced by a factor of 10 after every
10 epochs. We train our model with a batch size of 24 and
empirically set r = 6 for the LSE pooling, as defined in [32].
During training, we perform random translation and horizontal

TABLE I
COMPARISON OF AUC SCORES WITH EXISTING STATE-OF-THE-ART

METHODS ON THE OFFICIAL SPLIT OF NIH CHEST X-RAY14. WE

REPORT THE AUC WITH 95% CONFIDENCE INTERVAL (CI) OF OUR

METHOD.

Abnormality Wang et al.
[8]

Li et al.
[12]

DNetLoc
[3]

CAN
[10] Ours

Atelectasis 0.70 0.73 0.77 0.78 0.77 (0.77, 0.78)
Cardiomegaly 0.81 0.84 0.88 0.89 0.87 (0.86, 0.88)

Effusion 0.76 0.79 0.83 0.83 0.83 (0.83, 0.84)
Infiltration 0.66 0.67 0.71 0.70 0.71 (0.71, 0.72)

Mass 0.69 0.78 0.82 0.84 0.83 (0.82, 0.84)
Nodule 0.67 0.70 0.76 0.77 0.79 (0.78, 0.81)

Pneumonia 0.66 0.65 0.73 0.72 0.72 (0.70, 0.75)
Pneumothorax 0.80 0.81 0.85 0.86 0.88 (0.87, 0.88)
Consolidation 0.70 0.71 0.75 0.75 0.74 (0.73, 0.75)

Edema 0.81 0.81 0.84 0.85 0.84 (0.83, 0.85)
Emphysema 0.83 0.88 0.90 0.91 0.94 (0.93, 0.95)

Fibrosis 0.79 0.77 0.82 0.83 0.83 (0.81, 0.85)
Pleural Thickening 0.68 0.73 0.76 0.79 0.79 (0.78, 0.80)

Hernia 0.87 0.69 0.90 0.93 0.91 (0.87, 0.94)
Mean AUC 0.745 0.755 0.807 0.817 0.819 (0.815, 0.823)

TABLE II
COMPARISON OF AUC SCORES IN 5-FOLD CV SCHEME OF NIH CHEST

X-RAY14. WE SHOW THE STANDARD DEVIATION OF LI et al. [12] AND

OURS.

Abnormality Li et al. [12] Liu et al. [21] Ours
Atelectasis 0.80 ± 0.00 0.79 0.82 ± 0.01

Cardiomegaly 0.87 ± 0.01 0.87 0.90 ± 0.02
Effusion 0.87 ± 0.00 0.88 0.88 ± 0.01

Infiltration 0.70 ± 0.01 0.69 0.72 ± 0.01
Mass 0.83 ± 0.01 0.81 0.85 ± 0.02

Nodule 0.75 ± 0.01 0.73 0.79 ± 0.01
Pneumonia 0.67 ± 0.01 0.75 0.73 ± 0.01

Pneumothorax 0.87 ± 0.01 0.89 0.90 ± 0.01
Consolidation 0.80 ± 0.01 0.79 0.80 ± 0.01

Edema 0.88 ± 0.01 0.91 0.90 ± 0.01
Emphysema 0.91 ± 0.01 0.93 0.94 ± 0.01

Fibrosis 0.78 ± 0.02 0.80 0.81 ± 0.01
Pleural Thickening 0.79 ± 0.01 0.80 0.79 ± 0.01

Hernia 0.77 ± 0.03 0.92 0.86 ± 0.03
Mean AUC 0.806 0.826 0.835 ± 0.007

flipping for augmentation. We resize the original 3-channel
images to 512 × 512 as the input. The loss weight factors z,
λ1, λ2, and λ3 are set to 0.5, 0.01, 0.001, 0.001, respectively.

2) Evaluation metrics: We use the area under the ROC curve
(AUC) to measure classification performance, and intersection
over union ratio (IoU) and the intersection over the detected
region (IoR) to quantify localization results. To calculate
IoU and IoR, we use bounding boxes of localized attentive
regions. Following prior work [8], [12], we report the ratio
of the number of cases with correct localization against the
total number of cases in each class. A localization result is
considered correct if the criterion of either IoU > T (IoU) or
IoR > T (IoR), where T (∗) is the threshold, is met.

B. NIH Chest-Xray14 Dataset

NIH Chest-Xray14 dataset provides 112,120 X-ray images
with abnormality labels from 30,805 patients. Images are
labeled with 14 abnormality classes, with 984 bounding boxes
of 8 abnormalities for 880 images labeled by board-certified
radiologists.

1) Abnormality classification: We conduct two experiments
to evaluate the performance on the abnormality classification
task and compare to the state-of-the-art (SOTA) methods. The
first experiment is based on the official split [8] and prepared
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TABLE III
COMPARISON OF LOCALIZATION RESULTS TRAINED USING 100% UNANNOTATED IMAGES OF NIH CHEST X-RAY14.

T (IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1
Li et al. [12] 0.59 0.81 0.73 0.85 0.69 0.29 0.23 0.38 0.57
Liu et al. [21] 0.39 0.90 0.65 0.85 0.69 0.38 0.30 0.39 0.60

Ours 0.78 0.97 0.82 0.85 0.78 0.56 0.76 0.48 0.75

0.3 Liu et al. [21] 0.34 0.71 0.39 0.65 0.48 0.09 0.16 0.20 0.38
Ours 0.34 0.40 0.27 0.55 0.51 0.14 0.42 0.22 0.36
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Fig. 6. Comparison of qualitative results between Liu et al. [21] and
ours. All results are from the model trained with 100% images without
any box annotations. For the second column, Liu et al. [21] zoom in
images for closer observation.

at the patient-level. All images with box annotations are in
the testing set and not used during model training. Results
are shown in Table I, where our method outperforms state-of-
the-art methods in terms of AUC. In particular, our method
outperforms DNetLoc [3] and CAN [10] methods that employ
deeper models (DenseNet121) as their backbones.

In the second experiment, we use the 5-fold cross-validation
(CV) scheme following [12], [21]. For the convenience of
comparison, we use the same notations with [12], [21] by
referring to unannotated CXR images as those with only
image-level labels and annotated CXR images as those with
both image- and box-level labels. In each fold, we use 70% of
the annotated and 70% of unannotated images for training, and
10% of the annotated and unannotated images for validation.
Then, the rest 20% of the annotated and unannotated images
are used for testing. We summarize AUC scores of the
compared methods w.r.t. the 14 abnormalities of testing set
in Table II, where our method obtains the best mean AUC

score of 0.835.

2) Abnormality localization: Two experiments for assessing
localization performance are conducted. In the first experi-
ment, we show localization performance by considering only
image-level annotations, i.e., abnormality labels. Following
[12], [21], we train our model with 100% images (111,240)
without any box annotations and test with the 880 images with
box annotations. We summarize our results in Table III, where
we compare to SOTA methods at T (IoU) = 0.1 and 0.3. Our
method significantly improves localization performance for all
abnormalities at T (IoU) = 0.1, with a mean score of 0.75.
In particular, we achieve more than 150% improvement in
localization for “Pneumonia” compared to the results of the
most recent SOTA method [21]. We also observe remarkable
localization improvements for the “Atelectasis”, “Mass” and
“Nodule” abnormalities. In T (IoU) = 0.3, our method also
yields competitive localization performance and outperforms
[21] for “Mass”, “Nodule” and “Pneumonia”. We further
show qualitative comparison of the attention maps with SOTA
method [21] in Fig. 6, where the exactness of our attention
map can be corroborated.

Also, we notice that our proposed method does not per-
form well for “Cardiomegaly”, “Effusion” and “Infiltration” at
T (IoU) = 0.3 compared with Liu et al. [21]. The underlying
reasons may be twofold: 1) the threshold setting for the
attention maps; 2) the coverage range of bounding boxes.
For the first reason, we set a very high threshold (0.999)
on attention maps to get the final binary localization masks
for the computation of evaluation scores in Tables III. This
threshold is very rigorous and may generate relatively small
object masks, which may not be favorable for large class like
“Cardiomegaly”, for localization. For comparison, we further
explore a smaller attention threshold of 0.1. The resulting
correct ratio score at T (IoU) = 0.3 with the attention
threshold of 0.1 for “Cardiomegaly” is 0.72, which is slightly
higher than result of Liu et al. [21]. The second reason is the
issue of box definition that may lead to lower performance
of our method at T (IoU) = 0.3, particularly for “Effusion”
and “Infiltration”. We have invited an experienced radiologist
to carefully review the original annotated boxes and suggest
that the variety of the annotation coverage for some classes
(e.g., “Effusion”, “Infiltration” and “Pneumonia”) is very large
(see figures and detailed analysis for better illustration in
the supplementary material). Larger boxes with more non-
related regions may favor localization results with relatively
larger masks for higher scores. Specifically, the results of
Liu et al. [21] for the “Infiltration” and “Effusion” cases
in the Fig. 6 are fuzzy and cover more non-related regions
(even the abdominal region), while our localization results are
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TABLE IV
RESULTS OF MODELS TRAINED WITH 50% UNANNOTATED AND 80% ANNOTATED IMAGES OF NIH CHEST X-RAY14 AT VARIOUS T (IoU)

THRESHOLDS.

T (IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1
Wang et al. [8] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57
Li et al. [12] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.73

Ours 0.71 1.00 0.89 0.88 0.76 0.65 0.91 0.78 0.82

0.2
Wang et al. [8] 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.37
Li et al. [12] 0.53 0.97 0.76 0.83 0.59 0.29 0.50 0.51 0.62

Ours 0.54 1.00 0.75 0.79 0.67 0.53 0.86 0.60 0.72

0.3
Wang et al. [8] 0.24 0.46 0.30 0.28 0.15 0.04 0.16 0.13 0.22
Li et al. [12] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.49
Liu et al. [21] 0.53 0.88 0.57 0.73 0.48 0.10 0.49 0.40 0.53

Ours 0.40 1.00 0.52 0.68 0.58 0.46 0.69 0.43 0.60

0.4
Wang et al. [8] 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.12
Li et al. [12] 0.25 0.88 0.37 0.50 0.33 0.11 0.26 0.29 0.42

Ours 0.26 1.00 0.29 0.56 0.40 0.35 0.50 0.32 0.46

0.5
Wang et al. [8] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06
Li et al. [12] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27
Liu et al. [21] 0.32 0.78 0.40 0.61 0.33 0.05 0.37 0.23 0.39

Ours 0.15 0.99 0.14 0.33 0.27 0.22 0.35 0.22 0.33

0.6
Wang et al. [8] 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.03
Li et al. [12] 0.07 0.73 0.15 0.18 0.16 0.03 0.10 0.12 0.19

Ours 0.08 0.97 0.05 0.18 0.14 0.15 0.27 0.11 0.24

0.7
Wang et al. [8] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01
Li et al. [12] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
Liu et al. [21] 0.18 0.70 0.28 0.41 0.27 0.04 0.25 0.18 0.29

Ours 0.02 0.77 0.01 0.12 0.08 0.10 0.06 0.03 0.15

TABLE V
RESULTS OF MODELS TRAINED WITH 50% UNANNOTATED AND 80% ANNOTATED IMAGES OF NIH CHEST X-RAY14 AT VARIOUS T (IoR)

THRESHOLDS. LIU et al. [21] DOES NOT LIST ANY T (IoR) RESULTS IN THEIR PAPER. “SR" INDICATES THE PROPOSED SELF-REFINEMENT

METHOD TO REDUCE THE NOISE OF BOX ANNOTATIONS.

T (IoR) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1
Wang et al. [8] 0.62 1.00 0.80 0.91 0.59 0.15 0.86 0.52 0.68
Li et al. [12] 0.77 0.99 0.91 0.95 0.75 0.40 0.69 0.68 0.77

Ours 0.74 1.00 0.92 0.88 0.81 0.67 0.94 0.80 0.85
Ours + SR 0.69 1.00 0.93 0.91 0.84 0.71 0.94 0.79 0.85

0.25
Wang et al. [8] 0.39 0.99 0.63 0.80 0.46 0.05 0.71 0.34 0.55
Li et al. [12] 0.57 0.99 0.79 0.88 0.57 0.25 0.62 0.61 0.66

Ours 0.61 1.00 0.76 0.82 0.74 0.54 0.89 0.62 0.75
Ours + SR 0.60 1.00 0.84 0.87 0.76 0.59 0.88 0.72 0.78

0.5
Wang et al. [8] 0.19 0.95 0.42 0.65 0.31 0.00 0.48 0.27 0.41
Li et al. [12] 0.35 0.98 0.52 0.62 0.40 0.11 0.49 0.43 0.49

Ours 0.40 1.00 0.50 0.59 0.60 0.35 0.63 0.43 0.56
Ours + SR 0.46 1.00 0.61 0.72 0.61 0.38 0.72 0.57 0.63

0.75
Wang et al. [8] 0.09 0.82 0.23 0.44 0.16 0.00 0.29 0.17 0.28
Li et al. [12] 0.20 0.87 0.34 0.46 0.29 0.07 0.43 0.30 0.37

Ours 0.21 0.88 0.28 0.38 0.36 0.25 0.43 0.27 0.38
Ours + SR 0.25 0.97 0.41 0.49 0.51 0.25 0.45 0.37 0.46

0.9
Wang et al. [8] 0.07 0.65 0.14 0.36 0.09 0.00 0.23 0.12 0.21
Li et al. [12] 0.15 0.59 0.23 0.32 0.22 0.06 0.34 0.22 0.27

Ours 0.10 0.58 0.11 0.20 0.18 0.16 0.23 0.13 0.21
Ours + SR 0.12 0.75 0.25 0.27 0.28 0.20 0.28 0.28 0.30

closer to the abnormal regions of “Effusion” and “Infiltration”.
Therefore, the results of Liu et al. [21] for “Effusion” and
“Infiltration” may be higher.

In the second experiment, we use the 5-fold CV scheme
following [12], [21]. In each fold, we train our model with
50% of the unannotated images and 80% of the annotated
images, and tested with the remaining 20% of the annotated
images. As shown in Table IV, our method outperforms
SOTA methods in most cases. In particular, for the difficult
classes of “Mass” and “Nodule”, our localization performance
is remarkably better. Similar with results in Table IV, our
method does not perform well for some abnormalities (e.g.,
“Effusion” and “Infiltration”). Like previous observation, it
may be due to large box annotations for these abnormalities.
For “Pneumonia”, we notice that our method achieves much

better performance than baselines at T (IoU) < 0.5 but much
worse at T (IoU) >= 0.5. Although most boxes provided by
NIH for “Pneumonia” are reasonable, some box annotations
also enclose many non-related regions. Meanwhile, it is worth
noting that there are some missing boxes in NIH Chest X-
ray14. The figures and more details can be found in the
supplementary material. Thus, we suggest the results with IoU
scores in the range of 0.3 to 0.7 are acceptable (see Fig. 9 and
Fig. 10 in the supplementary material). It can be observed that
nearly 63% (0.69 − 0.06) of our results have IoU scores of
“Pneumonia” in the range of 0.3 to 0.7, compared to 24%
(0.49− 0.25) of results in Liu et al. [21].

To better illustrate the localization performance, we also
show the T (IoR) results in Table V. It calculates the in-
tersection over the detected region, reducing the effect from
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TABLE VI
ABLATION STUDY OF ALL COMPONENT IN OUR METHOD (RN50 = RESNET50, PA = POSITIVE ATTENTION, ABU = ATTENTION BOUND AND UNION

LOSS). ALL MODELS ARE TRAINED WITH THE OFFICIAL SPLIT OF NIH CHEST X-RAY14.

Model Mean
AUC

T (IoU) = 0.1
Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

RN50-32-GAP 0.816 0.36 0.65 0.60 0.53 0.38 0.04 0.01 0.38 0.37
RN50-8-GAP 0.815 0.33 0.61 0.61 0.35 0.48 0.19 0.13 0.43 0.39
RN50-8-LSE 0.816 0.38 0.58 0.42 0.24 0.55 0.48 0.32 0.55 0.44
RN50-8-LSE+FAB-C 0.817 0.58 0.53 0.56 0.55 0.59 0.59 0.41 0.30 0.51
RN50-8-LSE+FAB-P 0.815 0.61 0.55 0.62 0.67 0.60 0.54 0.50 0.50 0.57
RN50-8-LSE+FAB 0.818 0.64 0.92 0.69 0.69 0.64 0.54 0.44 0.35 0.61
RN50-8-LSE+FAB+PA 0.815 0.61 0.91 0.70 0.76 0.67 0.51 0.58 0.31 0.63
RN50-8-LSE+PA+ABU 0.817 0.37 0.88 0.50 0.82 0.60 0.15 0.68 0.43 0.55
RN50-8-LSE+FAB+PA+Bound 0.816 0.68 0.78 0.69 0.78 0.68 0.52 0.61 0.46 0.65
RN50-8-LSE+FAB+PA+ABU 0.819 0.70 0.87 0.75 0.89 0.69 0.59 0.68 0.40 0.70

TABLE VII
EFFECTIVENESS OF AMSE LOSS. ALL MODELS ARE TRAINED USING 50% UNANNOTATED AND 80% ANNOTATED IMAGES OF NIH CHEST X-RAY14.

T (IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1 Ours 0.71 1.00 0.89 0.88 0.76 0.65 0.91 0.78 0.82
Ours-MSE 0.59 1.00 0.83 0.92 0.75 0.54 0.78 0.65 0.76

0.3 Ours 0.40 1.00 0.52 0.68 0.58 0.46 0.69 0.43 0.60
Ours-MSE 0.33 1.00 0.41 0.58 0.52 0.34 0.58 0.39 0.52
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Fig. 7. Comparison of qualitative results using the self-refinement
method. The images in the first row are input CXR images. The second
row and third row show abnormality attention maps from the model
trained with box annotations or the refined masks, respectively.

non-related regions in the box annotations in evaluation. As
shown in Table V, our method gives the best performance in
most items of T (IoR) values. At the same time, we show
the performance of the self-refinement method which can
reduce the noise of the foreground in the box annotations
during training. It proves that the self-refinement method can
make the attention results more concentrated within the box
annotations. We show qualitative results of the self-refinement
method in Fig. 7.

In summary, our proposed hierarchical attention framework
can result in more precise and pathological plausible local-
ization of abnormalities and achieves state-of-the-art results at

several T (IoU) and T (IoR) settings in our experiments. It is
worth noting that our method localizes the relatively small
abnormalities like “Nodule” much better. The detection of
pulmonary “Nodule” in CXR images is also a very challenging
task with low sensitivity in the range of 0.69 to 0.82 for
radiologists [35].

3) Ablation Study: Table VI shows results of the ablation
studies with the AUC metrics and localization results of
T (IoU) = 0.1, using the official split for training and testing.
Abnormality attention is applied in all the models to generate
the abnormality localization prediction, which is the same as
CAM [13] when not using our attention bound and union loss.

First, ResNet50 without the positive/negative classification
branch is implemented with down-sampled input images (fac-
tor of 32). The second backbone is the dilated ResNet50
with images down-sampled by a factor of 8. The global
average pooling (GAP) is utilized for the two backbones.
The corresponding results are shown in the first two rows
of “RN50-32-GAP” and “RN50-8-GAP”, respectively, in the
Table VI. We can see that higher resolution, i.e., smaller down-
sampling factor, is helpful for the localization of classes like
“Mass” and “Nodule”. Second, we propose to use the LSE
pooling instead of GAP. To illustrate the effectiveness, we
compare the network of “RN50-8-LSE” to “RN50-8-GAP”.
As shown in Table VI, the average localization score is higher
with LSE.

Third, we perform an ablation study for different versions of
FAB. Specifically, we compare three attention configurations:
FAB-C (channel-wise only), FAB-P (position-wise only), and
FAB (both channel-wise and position-wise). The combination
of both attention modules achieves the best average localiza-
tion performance (0.61).

Fourth, we add the positive/negative classification branch
to generate the positive attention (“RN50-8-LSE+FAB+PA”),
with which the average localization score (0.63) is slightly
higher than “RN50-8-LSE+FAB”. However, with the addition
of our attention bound and union loss in the last row, the
average localization performance increases to 0.70. The results
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TABLE VIII
COMPARISON OF AUC SCORES WITH DIFFERENT MODELS ((RN50 =
RESNET50, RN152 = RESNET152) ON CHEXPERT VALIDATION SET.

Model Atelectasis Cardiomegaly Consolidation Edema Pleural
Effusion

Mean
AUC

U-Ignore
[9] 0.818 0.828 0.938 0.934 0.928 0.8892

U-Zeros
[9] 0.811 0.840 0.932 0.929 0.931 0.8886

U-Ones
[9] 0.858 0.832 0.899 0.941 0.934 0.8927

U-Ones+CT
+LSR [36] 0.825 0.855 0.937 0.930 0.923 0.8940

Ours-RN50 0.897 0.838 0.893 0.932 0.938 0.8996
Ours-RN152 0.920 0.886 0.907 0.937 0.933 0.9166

suggest that the proposed attention losses are important for the
hierarchical attention representation in guiding the learning
of abnormality attention from positive attention. Results of
our method without FAB (“RN50-8-LSE+PA+ABU”) suggest
that the FAB module is efficient for refining the feature
encoding from the backbone network. Comparing the results
of “RN50-8-LSE+FAB” and the last row, we can see that
the localization results of the “Infiltration” and “Pneumonia”
are significantly boosted by our hierarchical attention mining
method. In particular, the “Pneumonia” class has the smallest
number of samples (876 images) in the training set (86,524
images) of the official split. It is evident that our HAM method
can alleviate the data-imbalance problem even in such an
extreme situation.

At the same time, we show the results of our
method with only attention bound constraint (“RN50-8-
LSE+FAB+PA+Bound”). It performs worse in both classifica-
tion and localization tasks than the model with attention bound
and union losses. Because there is no constraint for positive
attention without the incorporation of attention union loss, the
incorrect prediction of positive attention may misdirect the
abnormality attention. In such a case, the final classification
and localization performances are compromised. Accordingly,
by comparing the ablation of attention bound and attention
union losses, the effectiveness of the synergy of two attention
losses is corroborated.

To better illustrate the statistical significance of our method,
we also calculate the p-value between the baseline “RN50-8-
LSE” and our model “RN50-8-LSE+FAB+PA+ABU” in Table
VI. The p-value for the classification predictions of these two
models is 4.31 × 10−5, implying that the proposed methods
have significant improvements compared with “RN50-8-LSE”.

Finally, the effectiveness of the proposed AMSE loss is
shown by comparing the performance to the original MSE
loss. We conduct the same 5-fold CV experiment as the second
experiment in section IV-B.2. As shown in Table VII, the
AMSE loss is especially effective for the smaller abnormalities
(e.g., “Nodule”).

C. CheXpert Dataset
CheXpert is another prominent CXR dataset containing

224,316 chest radiographs of 65,240 patients. However, the
images in CheXpert are annotated with labels only at image
level. To further illustrate the localization performance on this
dataset, we invite a senior radiologist with 10+ years of experi-
ence to label the bounding boxes for 9 abnormalities, e.g., “At-

electasis”, “Cardiomegaly”, “Consolidation”, “Edema”, “En-
larged Cardiomediastinum”, “Pneumonia”, “Pneumothorax”,
“Pleural Effusion”, and “Fracture”. In the end, 2345 images
were annotated with 6099 bounding boxes for the 9 abnormal-
ities. It is worth noting that the number of our box annotations
is significantly larger than the number of annotated boxes in
the NIH dataset. These new box annotations on the CheXpert
dataset will be released soon.

1) Abnormality classification: The authors of CheXpert [9]
propose an evaluation protocol over 5 categories: “Atelectasis”,
“Cardiomegaly”, “Consolidation”, “Edema”, and “Pleural Ef-
fusion”, which were selected based on the clinical importance
and prevalence from the validation set. In this experiment,
we use the official set to train all the models, and show the
AUC scores of these 5 abnormalities on official validation
set. CheXpert captures uncertainties inherent in radiograph
interpretation with an effective labeling strategy (0 for neg-
ative, −1 for uncertain, and 1 for positive). There are a
few significant differences between the performance of the
uncertainty approaches. U-Ignore [9] ignores the uncertainty
labels during training, while U-Zeros [9] and U-Ones [9] treat
them as 0 or 1. Since the U-Ones model achieves the best
AUC performance in this dataset, we treat all uncertainty
labels as 1 in our experiments. At the same, we show the
results of our methods with two backbone networks (ResNet50
and ResNet152). AUC scores are shown in Table VIII. Our
method outperforms the three models in the official paper
[9], indicating that our method can maintain competitive
classification performance.

In Table VIII, we also compare the performance of
DenseNet-121 with the conditional training and label smooth-
ing regularization (U-Ones+CT+LSR) strategies in [36]. Pham
et al. [36] obtained mean AUC score of 0.930 on the of-
ficial CheXpert testing set with the ensemble approach that
combined six deep models of DenseNet-121, DenseNet-169,
DenseNet-201, Inception-ResNet-v2, Xception, and NASNet-
Large. In [36], the DenseNet-121 with the strategies of U-
Ones+CT+LSR is the single model that achieves the best
performance in the official CheXpert validation set. In com-
parison, our method can outperform DenseNet-121 with the
strategies of U-Ones+CT+LSR even with smaller backbone of
ResNet50 on the same validation set. The mean AUC scores
on the official test set of our method with the backbone of
ResNet50 and ResNet152 are 0.888 and 0.895 respectively
without the implementation of an ensemble strategy.

2) Abnormality localization: In this experiment, we split
221,674 images from the official training set to train the
models, which including 457 images with 1435 bounding
boxes. Then, we split 1888 images with 4664 bounding boxes
as the validation set to evaluate the localization performance
of 9 abnormalities. Table IX and Table X show the localization
results in the validation set. Here, we compare with two
baseline models, ResNet50 and Dilated ResNet50. Dilated
ResNet50 encodes the size of feature map to 1

8 of the input
images and uses LSE pooling. We use CAM [13] to generate
the attention maps as the localization results for two baseline
methods. We can see from these tables that our method
outperforms both these baseline methods. Moreover, with the
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TABLE IX
RESULTS AT VARIOUS T (IoU) FROM DIFFERENT MODELS IN THE VALIDATION SET OF CHEXPERT. “OURS" DENOTES THE MODELS TRAINED

WITHOUT ANY BOX ANNOTATIONS. “OURSextra" DENOTES THE MODELS TRAINED WITH EXTRA BOX ANNOTATIONS FROM 457 IMAGES.

T (IoU) Model Atelectasis Cardiomegaly Consolidation Edema Enlarged
Cardiomediastinum Pneumonia Pneumothorax Pleural

Effusion Fracture Mean

0.1

RN50 0.57 0.93 0.70 0.91 0.86 0.85 0.46 0.81 0.12 0.69
DRN50 0.58 0.66 0.69 0.73 0.50 0.88 0.26 0.78 0.19 0.59

Ours 0.71 0.91 0.81 0.92 0.98 0.92 0.54 0.80 0.11 0.74
Oursextra 0.79 0.99 0.85 0.99 1.00 0.95 0.74 0.95 0.22 0.83

Oursextra + SR 0.71 0.99 0.82 0.99 0.99 0.93 0.71 0.94 0.26 0.82

0.3

RN50 0.16 0.49 0.31 0.53 0.34 0.43 0.25 0.43 0.02 0.33
DRN50 0.13 0.02 0.25 0.07 0.02 0.35 0.06 0.33 0.02 0.14

Ours 0.21 0.35 0.43 0.52 0.37 0.62 0.16 0.35 0.02 0.34
Oursextra 0.36 0.99 0.48 0.85 0.98 0.63 0.40 0.70 0.04 0.60

Oursextra + SR 0.26 0.99 0.38 0.71 0.98 0.56 0.32 0.51 0.05 0.53

0.5

RN50 0.02 0.10 0.08 0.08 0.02 0.11 0.09 0.11 0.00 0.07
DRN50 0.02 0.00 0.02 0.00 0.00 0.06 0.00 0.05 0.00 0.02

Ours 0.04 0.03 0.11 0.07 0.05 0.13 0.05 0.06 0.00 0.06
Oursextra 0.07 0.93 0.16 0.44 0.81 0.17 0.10 0.20 0.00 0.32

Oursextra + SR 0.03 0.88 0.06 0.27 0.79 0.11 0.08 0.10 0.00 0.26

TABLE X
RESULTS AT VARIOUS T (IoR) FROM DIFFERENT MODELS IN THE VALIDATION SET OF CHEXPERT.

T (IoR) Model Atelectasis Cardiomegaly Consolidation Edema Enlarged
Cardiomediastinum Pneumonia Pneumothorax Pleural

Effusion Fracture Mean

0.1

RN50 0.59 0.98 0.75 0.95 0.98 0.90 0.55 0.83 0.15 0.74
DRN50 0.62 0.95 0.78 0.90 0.92 0.94 0.56 0.84 0.22 0.75

Ours 0.73 0.98 0.87 0.97 0.99 0.96 0.64 0.84 0.12 0.79
Oursextra 0.83 0.99 0.88 1.00 1.00 0.97 0.85 0.97 0.26 0.86

Oursextra + SR 0.82 0.99 0.90 1.00 1.00 0.97 0.85 0.97 0.32 0.87

0.5

RN50 0.06 0.93 0.27 0.73 0.90 0.47 0.36 0.29 0.00 0.45
DRN50 0.07 0.89 0.48 0.67 0.73 0.58 0.39 0.40 0.02 0.47

Ours 0.12 0.94 0.49 0.71 0.91 0.65 0.37 0.35 0.02 0.51
Oursextra 0.40 0.99 0.56 0.88 1.00 0.74 0.54 0.73 0.03 0.66

Oursextra + SR 0.50 0.99 0.65 0.92 1.00 0.85 0.63 0.85 0.08 0.72

0.75

RN50 0.01 0.83 0.06 0.48 0.79 0.26 0.20 0.08 0.00 0.30
DRN50 0.01 0.83 0.27 0.48 0.60 0.36 0.31 0.17 0.01 0.34

Ours 0.02 0.82 0.30 0.46 0.70 0.48 0.23 0.15 0.00 0.35
Oursextra 0.17 0.89 0.35 0.65 0.95 0.59 0.35 0.43 0.01 0.54

Oursextra + SR 0.30 0.94 0.46 0.78 0.98 0.61 0.48 0.61 0.04 0.58
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Fig. 8. Qualitative comparison of results between different models. We
compare the attention results of four cases from the two baseline models
and our methods.

addition of very few extra annotations (457 images), our
method (“Oursextra”) can gain a significant improvements
with respect to localization scores. We also show the results
of self-refinement method (“Oursextra + SR”), which can
improve the T (IoR) results.

Qualitative results are shown in Fig. 8, where we observe
that our method can generate more accurate localization
results. We can see the baseline ResNet50 model usually
produces rough and large attention maps, while our method
can produce more accurate results. The gridding effect can be
observed in Fig. 8 from the results of the Dilated ResNet50
model, which is caused by dilated convolution [37]. We can
see that our method can eliminate this effect when using
dilated convolution to increase the resolution of attention
maps. With the addition of very few extra annotations, we
can see that attention results of our method can be further
improved. We can also see that the attention results using
the self-refinement method are concentrated within the box
annotations and look anatomically plausible and appear close
to the image segmentation effect.

V. DISCUSSION AND CONCLUSION

We presented a novel hierarchical attention framework
comprised of activation- and gradient-based attention mecha-
nisms to address the CXR image diagnosis and corresponding
abnormality localization problems. We evaluated our method
on two public datasets and compared with recent state-of-
the-art methods. Extensive experimental results show that our
method can achieve state-of-the-art results on both image-level
classification and abnormality localization tasks. Our method
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can be easily generalized to other weakly-supervised problems
with limited box- or pixel-level annotations. Furthermore, our
localization results can be used by radiologists for verifying
diagnosis conclusions, thereby providing direct relevance in a
clinical environment. These visual cues can also be used in an
active learning framework where the radiologist can guide the
model towards improved predictions, thereby helping infuse
human domain knowledge in building continually-learning
algorithms.

We next briefly discuss the limitations of our proposed
method. First, the extension to 3D medical images may not be
directly feasible. Because 3D medical images contain richer
details of anatomical and pathological cues, 3D generalization
from the 2D design of our attention modules may not be
trivial. The implementation of 3D self-attention modules and
3D CAM/Grad-CAM may also need to consider the efficiency
of GPU usage. Meanwhile, since some of 3D medical im-
ages, e.g., Computer Tomography (CT), may have the lower
resolution in the z-direction, the design of 3D self-attention
and 3D Grad-CAM/CAM may need to consider the factor of
anisotropic resolution. Further, the definition of label hierarchy
for 3D images may also be very distinctive to the label
hierarchy of 2D images.

Second, most abnormalities involved in this work are related
to soft tissues. As can be found in Tables IX and X, the
performances for bone tissue abnormality of fracture from
all methods are not very promising. Bone-tissue abnormalities
like fractures are relatively subtle and can appear in a thin
elongated shape. Accordingly, the detection of these kinds
of abnormalities may need to incorporate the constraint of
anatomical structures for reducing the search space. Since only
two levels of label hierarchy is exploited in this study without
the explicit consideration of broader anatomical labels of rib,
scapula, spine, etc., our current model may not be sufficient to
address the localization of the difficult abnormality of fracture.

Third, there also exist fine-grained hierarchies of abnor-
mality labels in the NIH Chest-Xray14 and CheXpert, which
may also be informative for improving performance. For
example, pneumonia is the most common cause of lung
consolidation, and has some related complications such as
abscesses, pleural effusion and infiltration. Such fine-grained
hierarchies could be helpful for learning sharable features or to
some degree mitigate the label/sample imbalance problem. As
part of future work, we will further explore the broader and
deeper hierarchies of abnormality and anatomy labels with
the specific design of ordinal constraints in the hierarchical
attention framework.

Finally, we notice there exist some questions for the box an-
notations of some abnormalities (e.g., “Effusion”, “Infiltration”
and “Pneumonia”) in NIH Chest Xray14. We have invited
an experienced radiologist to carefully review the original
annotated boxes for these abnormalities and give a detailed
analysis in the supplementary material. It can be observed that
some boxes tend to cover more non-related regions, or there
are still some missing boxes. In such cases, even though our
results deliver higher quality in terms of clinical findings, they
still cannot better match with the boxes of NIH Chest Xray14.
It leads to an inaccurate comparison with different methods in

high T (IoU) thresholds. To better solve this issue, we hope to
invite several senior radiologists to perform the task of mask-
level annotation for NIH and CheXpert dataset in the future.
These precise mask-level annotations can be used to conduct
a more meaningful localization comparison at high T (IoU)
thresholds.
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VI. SUPPLEMENTARY MATERIAL

A. Analysis of Box Annotations in NIH Chest X-ray14

Referring to Tables III, IV, and V in the paper, our results
are generally better than the compared methods of Li et
al. [12] and Liu et al. [21]. In particular, at the settings of
T (IoU) = 0.1 in Table III, T (IoU) < 0.5 in Table IV, and
T (IoR) <= 0.5 in Table V, our method can remarkably
improve the localization performance for most abnormality
classes, especially for “Nodule”. Accordingly, the efficacy of
our method can be corroborated. However, for some diffu-
sive and fuzzy abnormalities (e.g., “Effusion”, “Infiltration”,
“Pneumonia”), our method does not produce great scores
in high T (IoU) thresholds. We have invited an experienced
radiologist to carefully review the originally annotated boxes
in NIH Chest X-ray14 and suggest that the variety of the
annotation coverage for these classes is very large (see Fig.
S1 for illustration).
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Fig. S1. Cases of “Effusion”, “Infiltration”, and “Pneumonia” with rough
ground-truth boxes in NIH Chest-Xray14. We show the box annotations
of the NIH Chest-Xray14, our localization masks, and the corresponding
IoU scores. For these cases with “Effusion”, “Infiltration” and “Pneumo-
nia” in two lungs, the box annotations are drawn across two lungs even
with the mediastinum included, which may be problematic for evaluation.
Our localization results are closer to the abnormal regions, but cannot
better match with the boxes enclose many non-related regions.

As can be found in Fig. S1, the annotated boxes may
sometimes enclose many non-related regions. For such cases,
if the abnormalities are presented in both lungs, the boxes
may be drawn roughly to even include the mediastinum.
The inclusion of mediastinum may be problematic as lung
infiltration or pneumonia may not happen there. The relatively
large and rough boxes are not favor our results if the setting
of T (IoU) is higher. Since our results may be more exact to
localize the abnormalities, our results for these abnormalities
have less chance to be present at mediastinum, and therefore,
may not perfectly match with the rough box in high IoU
scores. It can be observed that the IoU scores of all the cases
in Fig. S1 are around from 0.1 to 0.5. This may explain the
lower scores at high T (IoU) thresholds in Table III and IV.

IoU: 0.46 IoU: 0.33

Fig. S2. Problems of annotations of two “Pneumonia” cases in NIH
Chest-Xray14. We present the boxes of NIH Chest-Xray14 in brown
boxes, and the boxes from our invited senior radiologist in cyan. The
localization results from our method are presented in brown masks. We
also show the IoU scores of our localization results and the boxes of NIH
Chest-Xray14.

Additionally, for “Pneumonia”, our invited senior radiol-
ogist also provide some relabeled bounding boxes and we
show them in Fig. S2. Although most boxes provided by NIH
Chest Xray14 for “Pneumonia” are reasonable, it is worth
noting that there are some missing boxes. As can be found
in the figure, our method can also identify the “Pneumonia”
regions where the boxes were missed by NIH annotators. In
such cases, our results may not hold high IoU scores, but
indeed deliver higher quality in terms of clinical findings.
Due to the above, we suggest the results with IoU scores
in the range of 0.3 to 0.7 are acceptable (see “Pneumonia”
in Fig. S1 and Fig. S2). The performances of our method
for the “Pneumonia” class are reported at the settings of
T (IoU) = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] in Table IV. As
can be found, more than 65% cases of our results have IoU
scores larger than 0.3, whereas there are approximate 34%
(0.69− 0.35) and 29% (0.35− 0.06) cases of our results with
IoU scores between 0.3 to 0.5, and 0.5 to 0.7, respectively.
And 6% of our results have more than 0.7 IoU scores with
the boxes. With such distribution, the major portions of our
results, nearly 63% (34%+29%) has IoU scores in the range
of 0.3 to 0.7, compared to 24% (0.49−0.25) of results in Liu
et al. [21] with the IoU score range of 0.3 to 0.7.
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