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Separation of Metabolites and Macromolecules
for Short-TE 1H-MRSI Using Learned
Component-Specific Representations
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Abstract— Short-echo-time (TE) proton magnetic reso-
nance spectroscopic imaging (MRSI) allows for simultane-
ously mapping a number of molecules in the brain, and has
been recognized as an important tool for studying in vivo
biochemistry in various neuroscience and disease appli-
cations. However, separation of the metabolite and macro-
molecule (MM) signals present in the short-TE data with
significant spectral overlaps remains a major technical chal-
lenge. This work introduces a new approach to solve this
problem by integrating imaging physics and representation
learning. Specifically,a mixed unsupervisedand supervised
learning-based strategy was developed to learn the metabo-
lite and MM-specific low-dimensional representations using
deep autoencoders. A constrained reconstruction formu-
lation is proposed to integrate the MRSI spatiospectral
encoding model and the learned representations as effec-
tive constraints for signal separation. An efficient algorithm
was developed to solve the resulting optimization problem
with provable convergence. Simulation and experimental
results have been obtained to demonstrate the component-
specific representation power of the learned models and the
capability of the proposed method in separating metabolite
and MM signals for practical short-TE 1H-MRSI data.

Index Terms— Proton (1H) magnetic resonance spectro-
scopic imaging, short TE, signal separation, deep learning,
deep autoencoder, low-dimensional models.

I. INTRODUCTION

PROTON MRSI (1H-MRSI) is a unique molecular imaging
modality that can noninvasively map various endogenous

metabolites in the brain. This molecular-level information
has been demonstrated useful in different neuroscience and
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clinical applications, including brain tumors [1], [2], metabolic
disorders [3], and neurodegenerative diseases [4], [5]. Short-
echo-time (TE) 1H-MRSI, in particular, offers several unique
advantages compared to the more commonly used long-TE
acquisitions, such as higher signal-to-noise ratio (SNR) due
to less relaxation-induced signal loss and improved detec-
tion and quantification of molecules with short T2’s and/or
J -coupled spins, e.g., myo-inositol (mI), glutamate (Glu)
and glutamine (Gln) [6]–[10]. However, the applications of
short-TE 1H-MRSI have been limited by several technical
challenges. One of these major challenges is the presence of
macromolecule (MM) signals that overlap with the metabolite
signals across the entire spectrum. This makes accurate and
reproducible metabolite quantification difficult. It has been
demonstrated that metabolite quantification can be substan-
tially improved with better characterization and separation
of MM signals from the short-TE data [11]–[14]. Moreover,
the separated MM components may also provide additional
biomarkers for various disease applications [13], [15]–[17].

A number of methods have been proposed to separate the
metabolite and MM signals in short-TE MRSI data. One
approach is to suppress the metabolite or MM signals during
the data acquisition stage by exploiting their longitudinal
relaxation (T1) or diffusion property differences [18]. Exam-
ples include the most commonly used inversion recovery (IR)
based excitation strategies, which are designed to null either
the metabolite (with longer T1’s) or MM (with shorter T1’s)
signals to measure the other [11], [19]–[22]. Methods that use
two acquisitions to obtain both metabolites and MMs have
also been proposed [13], [23]. Due to the variable ranges of
T1 values for different molecules in vivo, complete nulling of
metabolites or MMs is impossible and additional processing
are usually needed to further remove the residual spectral
components. If both metabolites and MMs are desired, two
acquisitions are needed which will inherently increase the
imaging time.

An alternative signal processing based approach is to model
the overall short-TE data using parametric models of metabo-
lites and MMs individually. The separation is then achieved
by estimating the model parameters for each component from
the data, e.g., solving a constrained nonlinear least-square
problem [11], [24]–[29]. Improved fitting strategies have been
proposed to take advantage of the fast decaying nature of
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the MM signals for better separation. Specifically, one can
fit and back-extrapolate the metabolites using a truncated
FID with negligible MM contributions and estimate the MM
component by subtracting the extrapolated metabolite fits from
the original signal [27], [30], [31]. Iterative subtraction and
refitting can be done for improved separation performance.
However, these methods are sensitive to model mismatch and
noise, and often lead to substantial voxel-to-voxel estimation
variations for practical MRSI data. Nonetheless, inspired by
these parametric models, we recognized that the metabolites
and MMs have their distinct spectral patterns specified by
just a few spectral parameters, e.g., concentrations, resonance
frequencies, and lineshapes, thus should reside in their own
nonlinear low-dimensional manifolds embedded in the origi-
nal high-dimensional space [32]. We hypothesized that these
manifolds could be learned from specially designed training
data and used as effective constraints for metabolite and MM
separation.

While learning nonlinear low-dimensional models from
high-dimensional heterogeneous data has been a major
challenge in machine learning, recent breakthroughs in
deep learning have enabled excellent solutions to such
problems [33]–[35]. Leveraging this progress, deep neural
networks have been successfully adapted to process and
quantify short-TE MRSI data with MM separation/removal
capability [36]–[39]. The initial attempts have been focused
on training an end-to-end network that learns the inverse
function to directly map the noisy and artifact containing data
to the desired spectral parameters [36], [39], spectra with MM
components removed [37], or even a group of networks to
extract individual metabolites [38]. These methods require the
complicated networks to simultaneously capture the physical
model, metabolite and MM spectral variations, and all other
nuances related to noise, artifacts, and acquisition designs.
Recently, an alternative approach has been proposed to use
deep networks to learn a low-dimensional representation of
general MR spectra and use this as a prior in a constrained
reconstruction formalism instead of a direct inverse mapping.
This approach not only simplifies the learning problem but
also allows for more flexible integration with the physical
forward models for different acquisition designs. And it has
been successfully applied to 31P-MRSI reconstruction [40].

Inspired by this approach, we proposed here a novel method
to separate metabolite and MM signals for short-TE 1H-MRSI
by learning their distinct nonlinear low-dimensional models
and incorporating the learned models into a constrained recon-
struction formulation. Specifically, we proposed a new strategy
that combines supervised and unsupervised learning to train
two special deep autoencoders (DAEs) to learn efficient low-
dimensional representations that are specific to metabolites
and MMs, respectively. We devised a formulation to integrate
the learned representations as effective constraints with a
spatiospectral encoding model for joint reconstruction as well
as signal separation. An efficient algorithm was developed to
solve the resulting optimization problem. We demonstrated the
efficient and component-specific low-dimensional representa-
tions learned by our DAEs for metabolites and MMs, respec-
tively. Numerical simulations and in vivo experiments were

performed to illustrate the superior separation performance
achieved by the proposed method over the standard paramet-
ric fitting method. Theoretical convergence analysis for the
proposed algorithm was also provided. The following sections
describe the proposed model learning strategy, reconstruction
formulation, and numerical algorithm in details.

II. BACKGROUND

A. Metabolite and Macromolecule Signal Separation

In a short-TE 1H-MRSI acquisition, the data will contain
non-negligible contributions from both a metabolite compo-
nent ρmet (r, t) and a macromolecule component ρM M (r, t).
The goal of separating these two signal components can be
mathematically defined as estimating ρmet (r, t) and ρM M (r, t)
from their summation:

ρ(r, t) = ρmet (r, t)+ ρM M (r, t), (1)

which is an ill-posed problem. Solving this problem requires
effective constraints. One of the most common approaches
is to impose parametric models on each component, i.e.,
ρmet (r, t) = fmet (t; α(r)) and ρM M (r, t) = fM M (t; β(r))
where α(r) and β(r) contain spectral parameters for the
metabolites and MMs, respectively. While fmet (t; α(r))
usually incorporates resonance structures/metabolite basis gen-
erated by quantum mechanical simulations or phantom mea-
surements, models for fM M (t; β(r)) are generally considered
to be less molecule-specific (some MM peaks can be attributed
to specific amino-acid residues in various proteins which may
help to generate potentially stronger spectral priors [19]). As
a result, different models including polynomials [27], [41],
splines [24], [28], wavelets [26], and Gaussian lineshapes
[13], [21], [22], [29] have been considered for fM M . Gaussian
lineshape based models with a priori determined chemical shift
frequencies (from extensive in vivo and in vitro experiments)
have shown a great balance between model complexity and
fitting accuracy.

Specifically, a widely used model for both metabolites and
MMs for an individual FID in short-TE 1H-MRSI data can be
written as follows [14], [37], [42]

ρ(t) =
M∑

m=1

cmei(φ0+φm )vm(t)e
−t/T ∗

2,m+i2πδ fm t

+
L∑

l=1

ble
i(φ0+ψl )e−t2 π

2W2
l

4 ln(2)+i2πδ fl t
, (2)

where the first summation represents the metabolite sig-
nals with cm , T ∗

2,m , and δ fm denoting the concentrations
coefficients, physiology/experiment-dependent lineshapes and
frequency shifts for individual molecules, respectively, and
{vm(t)} corresponds to the metabolite basis. The second term
captures the MM signals where Wl and δ fl denote the Gaussian
linewidths and resonance frequencies for each MM group.
The variables φ0, φm , and ψl are a global zeroth-order phase
and molecule-dependent phases. While directly estimating
all these parameters from a single FID or spectrum can be
rather challenging and lead to large estimation variances, these
models imply that the metabolite and MM signals may reside
in their own nonlinear low-dimensional manifolds, which we
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Fig. 1. Illustration of the proposed model learning strategy with a mixture of supervised and unsupervised learning. Specifically, two DAEs are
designed to capture the metabolite and MM-specific low-dimensional representations. For metabolite DAE (metabolite-specific NN), the unsupervised
part enforces the network to extract a set of low-dimensional features that can approximate the metabolite signals accurately while the supervised
part uses zeros as labels for the corresponding MM inputs. This enforces the network to learn to minimize its representation power of the MM signals,
which will be useful for signal separation. A similar training strategy is applied to MM-specific DAE (macromolecule-specific NN) with the roles of
metabolites and MMs exchanged. The mathematical formulations of this training strategy are provided in Eqs. (3) and (4).

believe can be learned and then used as effective constraints
for metabolite and MM separation.

III. PROPOSED METHOD

A. Learning Component-Specific Low-Dimensional
Models

Learning a single low-dimensional model for MR spec-
tra by treating the entire spectrum as a point in a high-
dimensional space has been investigated in [40], [43], [44].
While these learned models are powerful for spatiospectral
reconstruction or denoising, they are not suited to address the
signal separation problem, which requires component-specific
constraints. The metabolite and MM signals have their own
unique signal characteristics (e.g., distinct spectral features
and parameter distributions); thus, separate models can be
learned to capture the low-dimensional manifolds where they
reside on or close to. However, a straightforward application of
the previously described DAE [40] trained using metabolites
and MMs individually may not be effective since they are
not optimized to differentiate the two spectrally overlapping
signal components. Therefore, we proposed here a mixed
supervised and unsupervised learning strategy to address this
issue. Specifically, we seek to train a DAE that can extract
an accurate and efficient low-dimensional representation of
the metabolite (or MM) signals with simultaneously minimal
representation capability of the other component. Figure 1
provides a graphical illustration of this special model learning
strategy. Mathematically, the learning problems are formulated
as follows, for metabolites:

{θ̂met } = arg min
θmet

1

N

[
N∑

n=1

ε(xn
met − Nmet (xn

met ; θmet ))

+ ‖Nmet (xn
mm; θmet )‖2

2

]
, (3)

and for macromolecules:

{θ̂mm} = arg min
θmm

1

N

[
N∑

n=1

ε(xn
mm − Nmm(xn

mm; θmm))

+ ‖Nmm(xn
met ; θmm)‖2

2

]
(4)

{xn
met }N

n=1 and {xn
mm}N

n=1 are training sets (FIDs) for the
metabolites and MMs, respectively, with each xn ∈ R2T

being a sample with real and imaginary parts concatenated.
N is the number of training samples and T is the length of
the FID. Nmet (., .) and Nmm(., .) denote the metabolite and
MM component-specific neural networks (NNs) parameterized
by θmet and θmm , respectively. Here in the first term of
Eq. (3), ε represents the loss for training that measures the
error between the original metabolite input and the network
approximation. This term enforces the NN to learn an accurate
low-dimensional representation of the metabolite signals. The
second term of Eq. (3), appearing as a regularization, is
designed to minimize the output of the metabolite NN that
corresponds to the MM data (xn

mm). This can also be viewed
as using zeros as the labels for the MM input. As a result, the
metabolite NN is trained to learn a representation specific to
metabolite signal features with minimal representation power
for MMs. Likewise, the two terms of Eq. (4) serve a similar
purpose (to capture MM-specific low-dimensional features
while minimizing metabolite representation). We hypothesized
that DAEs trained separately in this fashion would have not
only the ability to extract accurate nonlinear low-dimensional
representations of metabolites and MMs individually but
also the desired property that inaccurately models the other
component. The specific network has an embedded “bot-
tleneck” encoding-decoding structure that encodes the high-
dimensional data into a set of L-dimensional features that can
recover the original data, where L is referred to as the model
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order below.More details on the network are provided in the
supplementary materials (Fig. S4).

B. Signal Separation Using the Learned Models

With the trained DAEs Nmet (., .) and Nmm(., .) capturing
learned metabolite and MM-specific models, one remaining
challenge is to effectively utilize the learned models for signal
separation from practical 1H-MRSI data. To this end, we pro-
posed a regularized reconstruction formulation that integrates
the forward spatiospectral encoding model with B0 inhomo-
geneity correction capability and the two learned models for
metabolite and MM separated reconstruction. Specifically, we
formulated the separation problem as:

min
Xmet∈X1,Xmm∈X2

‖d −�{FB � (Xmet + Xmm)}‖2
2

+ λ1

N∑
n=1

‖Nmet (Xn
met )− Xn

met‖2
2

+ λ2

N∑
n=1

‖Nmm(Xn
mm)− Xn

mm‖2
2

+ λ3‖Dw(Xmet + Xmm)‖2
F , (5)

where Xmet ∈ CN×T and Xmm ∈ CN×T are matrix rep-
resentations of the spatiotemporal functions of interest for
the metabolite and MM components, with each row being a
T -point FID and N the number of voxels. The feasible sets
X1,X2 are balls with large enough radius that contain ground-
truth representations.1 B models the linear phases induced by
B0 inhomogeneity, � represents a point-wise multiplication,
F denotes the Fourier transform, � is a (k, t)-space sampling
operator (allows for flexible sampling designs), and d is a
vector containing the noisy measured data. The first term
enforces the imaging model and data consistency. The next two
terms impose the priors that FID signals of metabolites and
MMs belong to their own low-dimensional manifolds captured
by the learned DAEs. The last term is a spatial smoothness
constraint with Dw being a weighted finite-difference operator
[45], and ‖·‖F denoting the Frobenius norm. Eq. (5) results in
a high-dimensional optimization problem, which is challeng-
ing to solve due to the presence of both nonlinear functions
related to the DAEs and quadratic functions of Xmet and Xmm .

C. Optimization Algorithm

We developed an efficient algorithm to address the com-
putational challenges associated with the problem in Eq. (5).
Specifically, we introduced an auxiliary variable

S = B � (Xmet + Xmm) (6)

and reformulated the problem as:

{X̂met , X̂mm , Ŝ} = arg min
Xmet ,Xmm ,S

‖d −�{FS}‖2
2

+ λ1

N∑
n=1

‖Nmet (Xn
met )− Xn

met‖2
2

1For the empirical computation, we often set X1,X2 to be CN×T ; but
due to technical consideration, in the convergence results, we set them to be
bounded sets.

+ λ2

N∑
n=1

‖Nmm(Xn
mm)− Xn

mm‖2
2

+ λ3‖DwB̄ � S‖2
F

s.t . B � (Xmet + Xmm) = S,

Xmet ∈ X1, Xmm ∈ X2, (7)

where B̄ denotes element-wise conjugate of B. Then, the
alternating direction method of multipliers (ADMM) was
adapted to solve this equivalent problem [46], in which it was
decomposed into simpler linear least-squares problems and
nonlinear problems that can be solved in a parallel fashion.
More specifically, the following subproblems were solved
iteratively:

(I) Update Xmet with fixed X(i)
mm and S(i) as follows (i is

the iteration index)

X(i+1)
met = arg min

Xmet∈X1

λ1

N∑
n=1

‖Nmet (Xn
met )− Xn

met‖2
2

+ ρ

2

∥∥∥∥∥B � (Xmet + X(i)
mm)− S(i) + Y(i)

ρ

∥∥∥∥∥
2

F

(8)

where Y(i) is the Lagrangian multiplier and ρ is the penalty
parameter.

(II) Update Xmm with fixed X(i+1)
met and S(i) as

X(i+1)
mm = arg min

Xmm∈X2

λ2

N∑
n=1

‖Nmm(Xn
mm)− Xn

mm‖2
2

+ ρ

2

∥∥∥∥∥B � (X(i+1)
met + Xmm)− S(i) + Y(i)

ρ

∥∥∥∥∥
2

F

(9)

(III) Update S with X(i+1) = X(i+1)
met + X(i+1)

mm by solving

S(i+1) = arg min
S

‖d −�{FS}‖2
2 + λ3‖DwB̄ � S‖2

F

+ ρ

2

∥∥∥∥∥B � X(i+1) − S + Y(i)

ρ

∥∥∥∥∥
2

F

(10)

(IV) Update Y as

Y(i+1) = Y(i) + ρ(B � X(i+1) − S(i+1)) (11)

Subproblems (I) and (II) contain both terms associated
with the nonlinear networks, Nmet (., .) and Nmm(., .), and
can be solved using a generic nonlinear optimization solver.
Subproblem (III) is a typical linear least-squares problem with
a quadratic regularization. Note that although directly mini-
mizing Eq. (8) and Eq. (9) are very high-dimensional problems
for which computing the gradient is very demanding, it can be
solved in a voxel-by-voxel fashion since the Frobenius norm
term is separable for all the voxels (i.e., individual rows in X).
Based on the autoencoder design, the gradients for individual
voxels can be efficiently calculated through backpropagation.
More specifically, denote

fn(Xn
met ,Xn

mm) = λ1‖Nmet (Xn
met )− Xn

met‖2
2

+ λ2‖Nmm(Xn
mm)− Xn

mm‖2
2

+ ρ

2

∥∥∥∥∥
[

B � X − S(i) + Y(i)

ρ

]
n

∥∥∥∥∥
2

2

(12)
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as the cost function for the nth voxel, the then gradients for
the metabolite component can be written as:

∇ fn(Xn
met ) = 2λ1(JNmet − I)T (Nmet (Xn

met )− Xn
met )

+ ρBH
(n)

(
B(n)Xn − S(i)n + Y(i)

n

ρ

)
(13)

where JNmet ∈ RT ×T is the Jacobian of the metabolite
network, I is a T × T identity matrix, and B(n) represents
a diagonal matrix formed by the nth row of B. The gradients
for MM component can be derived similarly (omitted due to
space constraint). And the Jacobians JNmet and JNmm can be
calculated through backpropagation described in [40].

Subproblem (III) is equivalent to solving a system of
linear equations with a spatial regularization on the overall
spatiotemporal function (due to the way the auxiliary variable
is introduced). The iteration is terminated until a specified
iteration number is reached (e.g., 20) or the relative change
between X(i)

met and X(i+1)
met is below a threshold (e.g., 10−4).

D. Training Data Generation

One common issue of training deep neural networks is
the requirement of a large number of high-quality training
data. Strategies that combine spectral fitting models, quantum
mechanical (QM) simulations and experimental data have been
described in several literature to address this issue for spectral
model learning [37], [40], [47]. Utilizing a similar strategy
here, we generated metabolite and MM training data separately
using the model in Eq. (2). For metabolites, the basis vm(t)
were generated from QM simulations using the NMRScopeB
software [48], for both the FID (pulse and acquire) and semi-
LASER excitation schemes with different TEs [7]. These
molecule specific resonance structures can be assumed to be
invariant with respect to different subjects. Meanwhile, the
empirical distributions of the spectral parameters, i.e., cm ,
T ∗

2,m , and δ fm were estimated from literature values as well as
fitting experimental high-SNR, low-resolution MRSI data from
healthy volunteers [37], [43], [47]. The empirical distributions
were fitted to parametric Gaussian distributions to allow for
generating more randomly distributed parameters. The global
zeroth-order phase was generated from a Gaussian distribution
with mean zero and standard deviation of 25 degrees, and
Gaussian distributed molecule dependent phases were also
introduced to simulate more realistic signal variations (with
mean zero and standard deviation of 10 degrees). Finally,
the metabolite basis and parameters randomly sampled from
these distributions were combined using the model in Eq. (2)
to generate 300,000 1H MR spectra. Metabolites commonly
observed and quantified in 1H-MRSI experiments are con-
sidered, i.e., N-acetylaspartate (NAA), creatine (Cr), choline
(Cho), glutamate (Glu), glutamine (Gln), myo-inositol (mI),
gamma-Aminobutyric acid (GABA), glutathione (GSH) and
lactate (Lac). For MMs, another 300,000 training samples were
generated using a similar procedure and the model in Eq. (2).
13 commonly reported MM resonances with mean δ fl ’s equal
to 0.9, 1.21, 1.38, 1.63, 2.01, 2.09, 2.25, 2.61, 2.96, 3.11,
3.67, 3.8, and 3.96 ppm were included. The parameters bl

(concentration coefficients) and Wl (linewidths) for different
peak groups were assumed to follow Gaussian distributions.
The mean values were acquired from [37] with standard
deviations specified as 20% of the means to introduce relative
peak variations. A global scaling factor was introduced to the
MM coefficients to reflect experimentally observed metabolite-
to-MM signal ratios. Finally, all data were normalized to the
range of −1 to 1 for training.

E. Other Implementation Details

Among the 300,000 training data, 200, 000 were used for
training and 100, 000 for testing. All the model parameters
were upper and lower bounded based on our own and other
published 1H-MRSI data [37], [38]. Specifically, the T ∗

2,m
values were lower bounded by 5 ms and upper bounded by
200 ms, and the cm values were bounded between 0 and 2 with
the mean NAA concentration being 1. The linewidth Wl values
were bounded within the range of 5 to 70 Hz, and bl ’s were
lower bounded by 0. The parameters were first generated, and
the values outside these ranges were excluded. The spectral
bandwidth (BW) was fixed at 2000 Hz. Similar to the DAE
used in [40], the metabolite and MM networks have a fully-
connected structure of 2T − 1000 − 250 − 100 − L − 100 −
250 − 1000 − 2T . Both Tanh and ReLu units can be used
in the nonlinear hidden layers except the middle linear layer
(with similar performances). The results shown below were
from ReLu. The learned network models were first evaluated
with a range of L’s. The exact L for phantom and in vivo data
processing was chosen, such that the NNs for metabolites and
MMs have similar approximation errors (around 5%). Note
that the training only needs to be performed once for a fixed
excitation scheme (with specific choices of RF pulses, TE,
and field strength). All the networks were implemented in
PyTorch and trained using an NVIDIA RTX Titan graphics
processing unit on Windows 10 using the Adam optimizer
[49] with a batch size of 500, an initial learning rate of
0.001, and 300 epochs while the other parameters remained
as default. The Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm was used to solve the optimization problem for
individual voxels in Eqs. (8) and (9), and the linear conjugate
gradient was used to solve Eq. (10) [50].

IV. SIMULATION AND EXPERIMENTAL SETTINGS

A. Numerical Simulations

The component-specific representation power of our learned
models was first evaluated. Specifically, we validated the
approximation accuracy of the trained DAE-based metabolite
and MM-specific low-dimensional models with comparison
to linear subspace models (estimated from the same training
data) [43], at different model orders. Testing metabolite and
MM data were generated and passed through the trained
metabolite and MM-specific networks, respectively. The errors
of the same test data projected onto the metabolite and MM
subspaces were also calculated. More specifically, two Casorati
matrices were first constructed by stacking all the training data
for metabolites or MMs, respectively. Then the component-
specific subspace was obtained by SVD with a rank truncation
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(L, the model order). Finally, the testing data were projected
onto the two subspaces separately to evaluate approximation
accuracy [40], [43]. The approximation performance was
evaluated quantitatively using a relative 
2 error defined as:

err = ‖Xtrue − X̂‖F

‖Xtrue‖F
(14)

where Xtrue denotes the original data (each column being an
FID), and X̂ represents the model approximation or recon-
structed data (see below).

A numerical phantom was constructed to evaluate the
signal separation performance using the learned DAE-based
nonlinear models (details of the phantom generation process
can be found in the supplementary materials). In short, brain
tissue fraction maps for gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) were first obtained from
an in vivo anatomical T1-weighted image. Then regional
spectral parameters for different 1H metabolites and MM
components described in the Training Data Generation section
were assigned based on literature values [14], [37], [51].
The constant parameters in each region were subsequently
combined using tissue fraction maps as weightings to simulate
continuously varying parameters across the brain. Finally, the
parameters at different voxels along with metabolite basis {vm}
were fed into Eq. (2) to synthesize spatially localized FIDs.
To simulate a more realistic scenario, voxel-dependent random
frequency shifts (mean zero and standard deviation of 5 Hz)
for different molecules, as well as B0 inhomogeneity (mean
zero and standard deviation of 10 Hz), were also introduced. A
lesion-like feature with significantly altered metabolite ratios
(e.g., a factor of three higher Cho and lower concentrations
for other metabolites) and a higher MM level was included.
Noisy data were generated by adding complex white Gaussian
noise with different SNRs to the simulated (x, t)-space data.
The SNR is defined with respect to the maximum NAA peak
amplitude within the FOV. After the proposed reconstruction,
the separated metabolite and MM components were fitted
individually using a metabolite-only and a MM-only para-
metric model from Eq. (2) in a voxel-by-voxel fashion to
produce molecular maps. In comparison, a direct parametric
fitting was also performed to the original data without the
proposed separation. An FID truncation was performed to fit
the metabolites first which were then back-extrapolated for
subtraction to fit the MMs. A metabolite refitting was done
after subtracting the fitted MMs from the original data. All
fittings were done using in-house implementations which have
been validated against the time-domain fitting using the jMRUI
package [27], [48] (The customized implementations provided
more flexibility for further optimizations).

B. In Vivo Experiments

We have evaluated the performance of the proposed method
using practical in vivo data acquired from five healthy vol-
unteers with approval from the local Institutional Review
Board. Experimental brain MRSI data were acquired on a 3T
Prisma scanner equipped with a 20-channel head coil using
both an FID-MRSI (pulse and acquire) sequence and a semi-
LASER MRSI short-TE sequence (sLASER). We chose these

Fig. 2. Representation capability of the learned nonlinear models:
a) Approximation errors (relative �2) of the trained metabolite DAE
(orange curve) compared to a linear subspace model (blue curve) for
the metabolite data at different L’s; b) Approximation errors of the MM
DAE (orange curve) with comparison to a linear subspace model (blue
curve); c) and e) Representative metabolite and MM spectra (black), and
the approximations of each signal by the metabolite DAE (orange) and
metabolite linear subspace (blue) both with L = 24; d) and f) Repre-
sentative MM and metabolite spectra (black), and the approximations by
the MM DAE (orange) and subspace (blue) with L = 8. It is evident
that the learned DAEs have more accurate and component-specific
representation than the linear subspaces.

two sequences because they are among the most commonly
used short-TE data acquisition schemes and require rather
different metabolite basis sets which serves to demonstrate that
the proposed method can be flexibly adapted to work with
any sequences. The parameters for the FID-MRSI sequence
were as follows: TR/TE = 800/4 ms, field-of-view (FOV) =
230 × 230 mm2, slice thickness = 10 mm, matrix size =
36 × 36, spectral bandwidth (BW) = 2000 Hz and 512 FID
samples. The total acquisition time was about 13.5 minutes
with elliptical sampling. The parameters for the sLASER
sequence were: TR/TE = 1600/40 ms, FOV = 180×190 mm2,
slice thickness = 15 mm, matrix size = 24×24, 2000 Hz BW
and 1024 FID samples. The total acquisition time was about
16 minutes. A 60 Hz weak water suppression and carefully
placed outer volume suppression bands were used for all the
scans. Before reconstruction, the nuisance water and lipid
signals were first removed using the method in [52] followed
by coil combination of the water/lipid-removed data.

V. RESULTS

A. Simulation Results

Figure 2 compares the representation powers of our learned
component-specific nonlinear low-dimensional models and the
linear subspace models. As shown, the learned metabolite
(Fig. 2a) and MM (Fig. 2b) DAE-based models achieved
higher accuracy with lower relative 
2 errors than the subspace
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Fig. 3. Simulation results: a) Spatial variations of the overall metabolite and MM signals in the phantom (�2 integral along the FID dimension); b) A
sampled voxel spectrum and its noisy counterpart (SNR = 30); c)-e) Separation results from the proposed method (orange curves) and the direct
parametric fitting (blue curves, without the proposed separation) for three different voxels (in GM, WM, and Lesion). The voxel locations are indicated
by different shapes in (a). Similar overall spectra (c) were produced by both methods. But the proposed method yielded more accurate separated
metabolite (d) and MM (e) components. The black arrows identify some spectral features better recovered by the proposed method.

models for their respective components. With the same model
order (L), the MM DAE has higher accuracy than the metabo-
lite DAE. The approximations for two representative testing
metabolite and MM spectra are also shown in Fig. 2c-f to
further demonstrate the accuracy and specificity of the learned
models. With a fixed model order L = 24 for metabolite and
L = 8 for MM, the metabolite DAE can accurately capture
the metabolite spectral features (Fig. 2c), exhibiting a higher
accuracy than the subspace model with the same dimension.
Similar results can be observed for the MM test spectrum
(Fig. 2d). More importantly, the metabolite DAE offers a
poor approximation of the MM spectrum as we designed it
to, while the linear metabolite subspace can still capture a
decent amount of MM spectral energy (Fig. 2e), implying
a weaker capability for signal separation. This component-
specific representation can also be observed for the MM
DAE (Fig. 2f), which does not capture the metabolite spec-
tral features, while the MM subspace can again capture a
large portion of metabolite signal energy. These validate the
desirable component-specific representation capability of the
learned models and imply their unique potential for improved
metabolite and MM separation.

A set of metabolite and MM signal separation results
from the numerical phantom (SNR = 30) are shown in
Figs. 3 and 4. Here the resulting spectra were shown in mag-
nitude for visualization purpose (the real parts of reconstructed
spectra can be found in the supplementary materials Fig. S1).
The model order (L) was chosen as 24 for the metabolite
DAE and 16 for the MM DAE with similar approximation
errors (∼5% error), which achieved a good balance between
model complexity and approximation accuracy. The regu-
larization parameters λ1 and λ2 were chosen based on a
single voxel separation performance, and λ3 was chosen using
the discrepancy principle and then fine-tuned by minimizing
the 
2 errors of the final spatiospectral reconstructions. A
time-domain direct parametric model-based fitting with back-
extrapolation was also performed as described above, and
the results were compared. The separated metabolite and
MM spatiotemporal distributions from the proposed method
were subject to parametric fitting (using the metabolite-only

Fig. 4. Simulation results: molecular maps of NAA, Cr, Cho, and MM
from the ground truth (Gold Standard, column 1), the direct parametric
fitting method (column 2) and the proposed method (column 3) are
compared. For the proposed method, the maps were obtained by fitting
the separated metabolite and MM components individually. The first MM
peak group (located at ∼0.9 ppm) is shown [37]. Note that the MM maps
were normalized separately, thus having a different scaling compared to
the metabolite maps. Relative �2 errors for the separated metabolite and
MM signals are also calculated (shown in the images). The improved
signal separation offered by the proposed method lead to significantly
improved molecular quantification.

and MM-only parametric models, respectively). As can be
seen, both the parametric fitting and the proposed method
achieved similar estimates of the overall spectra (Fig. 3c),
but the proposed method produced significantly more accurate
separated metabolite and MM components (Figs. 3d and e).
The metabolite maps obtained by direct parametric fitting of
the overall data (Parametric Fitting) and the proposed method
(separate fitting) are compared in Fig. 4. The results demon-
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Fig. 5. Experimental results from the in vivo FID-MRSI data: a) and b) Maps of NAA, Cr, Cho, Glu and MM estimated from the separated signals
produced by the proposed method (a) and from the direct parametric fitting method (b). The molecular maps are overlaid on an anatomical image
for the matched slice; c) Spatially-resolved spectra from the voxel marked by the blue symbol, with the first and second rows showing the results
from the proposed method (orange curves) and parametric fitting (blue curves), respectively. The original spectra are shown in black. The overall
reconstruction, as well as the separated metabolite and MM spectra, are compared. The white arrows indicate some artifact-like features generated
by the direct parametric fitting which are not present in the maps produced by the proposed method.

strate the benefits of the proposed signal separation. More
specifically, the metabolite maps from fitting the separated
signals exhibit significantly less spatially dependent estimation
variances and higher accuracy than those produced by a direct
parametric fitting of the combined signals. An additional set
of results from less noisy data (SNR = 60) are shown in the
supplementary materials (Fig. S3).

B. In Vivo Results

A set of spatially-resolved spectral reconstruction obtained
by the proposed method from the in vivo FID-MRSI data are
shown in Fig. 5. As can be seen, the proposed method was
able to separate the metabolite and MM spectral components
with a similar overall spectrum to the direct parametric fitting
method. Furthermore, the metabolite and MM maps from the
proposed method exhibited a higher quality with less spatial
estimation variances. More specifically, the molecule maps
produced by the direct parametric fitting had apparent arti-
facts, e.g., locally dark/bright areas and sudden discontinuities
(indicated by the white arrows in Fig. 5b). These artifacts were
effectively reduced in the maps from the proposed method. The
relative peak intensities may not appear the same as those
from standard IR-based MM measurements due to different
T1 weightings (effects of no IR and the shorter TR used),
e. g., a strong 0.9 ppm MM peak even before separation.
Hence, results from another dataset acquired with a longer
TR (1500 ms) are included in the supplementary materials
(Fig. S2) to further illustrate the TR effects. We have also
performed a reconstruction of the same FID-MRSI data with
the first 36 time points truncated (i.e., 18 ms) to evaluate
the robustness of the proposed method. As shown in Fig. 6,
significantly reduced MM signals were obtained, indicating
that the learned model is not overfitting.

Figure 7 shows the spatially-resolved spectral reconstruction
from the sLASER data to further demonstrate the utility of
the proposed method. Signals can only be observed from
the central region of the brain due to the volume selective
excitation. The proposed method again produced visually
better separation, which can be observed in the metabolite
and MM maps (e.g., better gray/white matter contrast and

fewer artifacts) as well as the selective voxel spectra. The
proposed method effectively reduced the over and under-
estimation of some metabolite and MM spectral components
in the parametric fitting method (Figs. 7b and d). Additional
metabolite maps can be found in the supplementary materials
(Fig. S5). Our approach should work for any excitation as
long as the corresponding metabolite basis can be obtained
for training data generation.

C. Convergence Analysis

We have also performed convergence analysis of the pro-
posed algorithm. Figure 8 shows the relative changes between
iterates (‖X(i+1) − X(i)‖/‖X(i)‖) and relative 
2 errors for
the metabolite and MM estimates w.r.t. the iteration number.
Empirical convergence can be observed. Furthermore, our
problem formulation and the ADMM-based algorithm allow
us to theoretically characterize its convergence.

Theorem 1: There exists a constant ρ0 such that if ρ ≥ ρ0,
every limit point of the sequence (X(i),S(i)) generated by the
algorithm described in (8), (9), (10), and (11) is a stationary
solution of the optimization problem (7) (i.e. a solution that
satisfies the KKT condition).

This theorem states that for a proper choice of penalty
parameter ρ, the sequence generated by our algorithm is
guaranteed to converge to stationary points. For non-convex
problems, convergence to the global minimum is often very
difficult. Thus, we follow the common practice to prove a
result of convergence to stationary points. We remark that
even the convergence to a stationary solution is a non-trivial
property because a general convergence result of ADMM for
non-convex problems is still an open question. This theoretical
characterization is enabled by the unique structure of our
problem formulation: we show that it is a special case of the
non-convex sharing problem [53], for which the convergence
results have been established.

Proof Sketch: If we denote X1 = vec(Xmet ), X2 =
vec(Xmm), X0 = vec(S), then λ1

∑N
n=1 ‖Nmet (Xn

met )−Xn
met‖2

2
is a function of X1, which we denote as g1(X1). Similarly,
λ2

∑N
n=1 ‖Nmm(Xn

mm) − Xn
mm‖2

2, is a function of X2, which
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Fig. 6. Results from the same data in Fig. 5 but with the first 36 FID
points truncated (∼18 ms) and zero-padded to the original length. Two
representative spatially-resolved spectra from the locations marked by
the corresponding symbols are shown, including the original spectra
(black), the overall reconstruction, and the separated metabolite and
MM spectra (orange). Significantly reduced MM signals were observed,
indicating that the proposed method is not overfitting.

we denote as g2(X2). The remaining terms, ‖d−�{FX0}‖2
2 +

λ3‖DwB̄�X0‖2
F , can be written as a function of the vectorized

variable X0, which we denote as 
(X0). The constraint B �
(Xmet + Xmm) = S can be rewritten as AX1 + AX2 = X0 for
a certain matrix A. Then our optimization problem in Eq. (7)
can be written in the general form of

min
X1∈X1,X2∈X2,X0

g1(X1)+ g2(X2)+ 
(X0)

s.t . AX1 + AX2 = X0. (15)

Recognizing that this is a special case of the sharing problem
in [53], we apply the convergence result provided in this work.
The detailed proof is provided in the supplementary materials.

VI. DISCUSSION

We have successfully combined the physics-based data
acquisition model with learned low-dimensional models
for effective metabolite and macromolecule separation. Our
unique strategy of combining supervised and unsupervised
learning to discover component-specific low-dimensional man-
ifolds is a novel attempt motivated by the nature of spectro-
scopic data. The proposed reconstruction represents a rigorous
approach to leverage deep learning to solve this long-standing
challenge. In contrast to the existing methods that learn end-
to-end mappings, the proposed method allows the use of a
general (k, t)-space sampling operator with high flexibility in
the choices of sampling designs and SNR levels, and the ability
to account for B0 inhomogeneity. While significant noise
reduction can be observed in the separated metabolite and MM
spectra due to the inherent denoising capability of the low-
dimensional models used, it should be noted that the proposed
method is focused on addressing the signal separation problem
and not a substitute for spectral quantification. Our hypothesis
is that a better separation will lead to improved spectral
quantification of different components of interest, which has
been supported by both simulation and experimental results.
Meanwhile, we expect that the proposed method can be readily
integrated with other more sophisticated parametric models for
data generation and representation learning (both metabolites
and MMs) as well as advanced quantification strategies for the

Fig. 7. Experimental results from the in vivo sLASER data: a) Maps
of NAA, Cr and MM from the proposed method (overlaid on anatomical
images); b) Two representative spatially-resolved spectra (voxel locations
marked by the corresponding symbols) with the original spectra (black,
column 1), the overall reconstruction (column 1), and the separated
metabolite (column 2) and MM (column 3) spectra; c) and d) The
corresponding results from the parametric fitting method with the same
arrangement. The spectra from the two methods (b and d) are from
the same voxels. The arrows indicate some over and underestimation
of metabolite or MM components from the parametric fitting that were
mitigated by the proposed method.

separated signal components. This is beyond the scope of this
work but will be investigated in future research.

While in this work we have only considered nine metabo-
lites that are the common molecules of interest in most brain
MRSI studies, especially at 3T, the proposed model learn-
ing and reconstruction methodologies are not limited by the
number of metabolites considered. Adding more metabolites
into the model will increase the model order to achieve the
same approximation accuracy but will not cause substantially
higher computation burden. For the other 1H metabolites,
it will be very challenging to quantify them reliably given
the SNR level and ignoring them has a minimal bias (due
to their weak signals), hence we did not include them. But
more metabolites can be considered when we adapt our
method for data with higher SNRs from higher field strengths
(e.g., 7T). One additional thing to note is that the learned
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Fig. 8. Convergence analysis of the algorithm: (a) Relative changes (in
terms of �2 errors) between different iterates; (b) Relative �2 errors for the
metabolite (orange) and MM (blue) components w.r.t. different iterations.
As can be seen, the result changes minimally after 10 iterations.

MM-specific model should be able to capture potential residual
lipids spectrally overlapping with the MM peaks (if sufficient
lipid removal can be achieved), because of the lineshape
and frequency variations introduced when generating the MM
training data. Thus, small lipid residuals will not affect the
model’s representation capability or metabolite separation.

One important issue with the proposed method is the choice
of regularization parameters. In our current implementation for
practical data, we first performed a single voxel separation for
the selection of λ1 and λ2 using the parameter values from the
phantom studies. The third parameter λ3 was then initialized
based on the simulation studies and adjusted according to
the discrepancy principle. Some minor fine-tuning together
with λ1 and λ2 was performed using visual inspection of
the separation reconstruction to balance SNR improvement
and smoothing effects (the relative ratios between the three
parameters remained the same during this step). More sophis-
ticated parameter selection strategies can be explored in future
research. Moreover, the formulation can readily be extended
to incorporate other spatiospectral constraints for improved
reconstruction.

The current fully-connected network-based DAE structures
and the way of handling complex-valued data may be limited
in scalability. We have investigated convolutional structures
(with reduced numbers of training parameters) for both FID
and spectral data and found that they were not as effective
as our current DAEs in terms of dimensionality reduction.
Various combinations of fully-connected and convolutional
feature extraction layers, as well as choices of activation
functions, are currently being explored. The current training
data generation processes used relatively simplified spectral
parameter distributions. While producing strong performance,
this strategy does not fully exploit the information available
from experimental 1H spectroscopy data. Estimation of more
sophisticated distributions using such data will be studied in
future work, e.g., using kernel density estimation [54].

Although Cartesian k-space sampling has been used to
demonstrate the utility of the proposed method, other sam-
pling trajectories can be considered by generalizing the for-
ward encoding operator without having to retrain the models
(another unique advantage of our approach). The most com-
putationally expensive step in the current algorithm is solving
Eq. (8) and Eq. (9) that involves backpropagation. This is,
however, a highly parallelizable process that can significantly
benefit from translating the current implementation to parallel
computing platforms.

VII. CONCLUSION

We have presented a new method to reconstruct and sep-
arate metabolite and MM signals for short-TE 1H-MRSI by
learning the two signal components’ distinct nonlinear low-
dimensional models and using the learned models as pri-
ors for reconstruction. The models were learned using two
deep autoencoder based neural networks to accurately capture
metabolite and MM-specific low-dimensional manifolds of
their high-dimensional spectral variations. A constrained spa-
tiospectral reconstruction formulation that exploits the learned
models for signal separation was proposed and solved by
an efficient ADMM-based algorithm. Significantly improved
separation over the standard parametric fitting approach has
been demonstrated using both simulated and experimental
short-TE brain 1H-MRSI data. Theoretical analysis of the
proposed formulation and algorithm was also provided.
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