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Abstract—Ultrasound Localization Microscopy can resolve 
the microvascular bed down to a few micrometers. To 
achieve such performance microbubble contrast agents 
must perfuse the entire microvascular network. 
Microbubbles are then located individually and tracked 
over time to sample individual vessels, typically over 
hundreds of thousands of images. To overcome the 
fundamental limit of diffraction and achieve a dense 
reconstruction of the network, low microbubble 
concentrations must be used, which lead to acquisitions 
lasting several minutes. Conventional processing pipelines 
are currently unable to deal with interference from multiple 
nearby microbubbles, further reducing achievable 
concentrations. This work overcomes this problem by 
proposing a Deep Learning approach to recover dense 
vascular networks from ultrasound acquisitions with high 
microbubble concentrations. A realistic mouse brain 
microvascular network, segmented from 2-photon 
microscopy, was used to train a three-dimensional 
convolutional neural network based on a V-net architecture. 
Ultrasound data sets from multiple microbubbles flowing 
through the microvascular network were simulated and 
used as ground truth to train the 3D CNN to track 
microbubbles. The 3D-CNN approach was validated in 
silico using a subset of the data and in vivo on a rat brain 
acquisition. In silico, the CNN reconstructed vascular 
networks with higher precision (81%) than a conventional 
ULM framework (70%). In vivo, the CNN could resolve micro 
vessels as small as 10 𝝁𝒎 with an increase in resolution 
when compared against a conventional approach. 
 

Index Terms—Deep Learning, Ultrasound Localization 
Microscopy.  

I. INTRODUCTION 

ltrasound Localization Microscopy (ULM) bypasses 

the intrinsic spatial resolution of conventional contrast-

enhanced ultrasound imaging via the localization of 
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sparse microbubbles (MB) populations across ultrasound 

images [1], [2], [3]. As of today, ULM appears to be the only 

cost-effective, non-invasive, and non-ionizing method for the 

imaging of the microvasculature in large fields of view in vivo 

and in several organs such as the brain [4]. Adding tracking 

algorithms to the detection of MB enabled to map blood flow 

velocity maps [5]. The study of the microvascular 

angioarchitecture and its function at-depth and in vivo could 

become a powerful tool in the development of novel biomarkers 

for neurodegenerative diseases, cardiac diseases and cancer [6]. 

Nevertheless, the clinical application of ULM is limited 

essentially by its required long, motion-free acquisition time (a 

few minutes) to output a single highly resolved image. 

This issue can be addressed in part by increasing MB 

density [7]. However, higher densities increase the difficulty of 

precisely localizing MB. Indeed, as they flow throughout the 

vascular network, MB that are close to one-another lead to US 

signal interference, preventing their accurate localization with 

a peak detection algorithm. Several processing techniques have 

been proposed to tackle this multi-object localization in 

ultrasound images. In [8] and [9], efficient filtering methods 

have been introduced based respectively on background 

removal, spatio-temporal-interframe-correlation based data 

acquisition, and separating spatially overlapping MB events 

into sub-populations. Some also use advance pairing techniques 

that discard unrealistic MB trajectories [10] or graph-based MB 

tracking on denoised images [11]. In [12], authors exposed the 

encouraging capacity of neural networks to spatio-temporally 

filter single MB in in vivo ULM images by training CNN to 

perform conventional signal processing methods. Others 

investigated the application of deep learning-based algorithms 

to enhance the localization of individual MB when higher 

concentrations are used. Those were either based on 

radiofrequency (RF) data [13] or envelope-detected images 

[14], [15], [16], [17] and all relied on a per-frame localization. U 
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More recently, authors proposed spatio-temporal filtering based 

on CNNs methods to localize multiple MB in in vitro data [18] 

or in small patches containing single MB to perform in vivo 

ULM [19]. Ideally, multi-object localization would include 

modelling complexities such as MB interferences, 

hemodynamic considerations, and blood vessels shape a priori. 

In this study, rather than addressing the problem of sub-

wavelength localization of individual MB in ultrasound images, 

we propose to resolve multiple MB trajectories from densely 

populated ultrasound cine loops. We hypothesized that the 

space-time ULM datasets carry richer information about the 

underlying microvascular network than individual ultrasound 

frames taken independently. Thus, we proposed a data-based 

approach as a substitute to the current localization task. 

Specifically, we demonstrated the capability of a 3D 

Convolutional Neural Network (CNN) to perform accurate MB 

tracking through ultrasound frames, which, when anchored in 

the ULM pipeline, enables efficient super-resolution 

microvascular imaging. To recover the microvascular network, 

we trained a 3D, V-net like CNN using ULM in-silico datasets 

based on a realistic microvasculature of a mouse brain extracted 

from ex-vivo 2-photon microscopy. The proposed framework 

was validated in-silico in independent data subsets and in vivo 

in a rat brain. 

II. METHODS 

In this section, we first describe the conventional ULM pipeline 

used in this study and similar to other approaches described in 

the literature [7]. We then introduce the proposed novel Deep-

stULM framework as a surrogate to the conventional 

localization and tracking step to recover dense tracks from 

ULM ultrasound image sequences. 

A. Ultrasound Localization Microscopy Pipeline  

Following an injection of MB contrast agents, a programmable 

ultrasound scanner was used to acquire several hundred blocks 

of hundreds of compounded plane wave images acquired at 

thousand frames per second and repeated every second for 

minutes-long acquisitions. After in-phase-quadrature complex 

(IQ) image formation (i.e., beamforming) [20], tissue was 

removed using a singular value decomposition (SVD) clutter 

filter [21], [22], to recover signals from underlying flowing 

MB. The SVD threshold was heuristically set from what we use 

in our standard ULM process. Individual MB were then 

identified as bright local maxima, within correlation maps 

resulting from the correlation of the beamformed IQ images 

with the spatial impulse response (PSF) of the imaging system. 

MB were then precisely located through subpixel gaussian 

fitting. MB subpixel positions were accumulated over time on 

a finer grid corresponding to approximately one tenth of the 

wavelength, to recover the micro vessel density maps (see 

Fig. 1.A) & B)).  

The precise identification and localization of MB may be 

altered by MB ultrasound signal interferences. Indeed, two or 

more MB interfering with one another may generate a MB-like  

 

 
Figure 1 – Ultrasound Localization Microscopy (ULM) conventional and 

Deep-stULM framework: A) Ultrafast ultrasound in vivo acquisition and data 

normalization, B) Conventional sub-pixel localization and tracking procedure, 

C) ULM simulation framework and D) Proposed Deep Learning based MBs 

tracking procedure.  

signal, at a ghost location, that may be mistaken for a real MB. 

Such artefacts are usually addressed by lowering MB 

concentration, but at the expense of acquisition time, or using 

pairing algorithms that eliminate inconsistent MB 

trajectories [7]. 

In this study, rather than locating individual MB in independent 

frames, and pairing them along the cine-loop to generate tracks, 

we designed a 3D-CNN that directly generates binary tracks out 

of the correlation maps cine-loops. 

B. Neural Network tracking model 

The proposed tracking operation took Nt successive frames of 

Nz×Nx correlation maps as input, i.e., 𝜒 ∈   𝐂 𝑁𝑡×𝑁𝑧×𝑁𝑥  with 

|𝜒𝑖𝑗𝑘| < 1 ∀(𝑖, 𝑗, 𝑘) ∈ ⟦1: 𝑁𝑡⟧ ×  ⟦1: 𝑁𝑧⟧ × ⟦1: 𝑁𝑥⟧ – depicting 

the flowing MB – , and produced one high-resolution binary 

tracking, i.e., ℎ(𝜒;  𝜃) ∈  {0,1}𝑟∗𝑁𝑧×𝑟∗𝑁𝑥 – depicting the 2D 

projection of the MB trajectories –, where 𝑟 is the resolution 

factor and 𝜃 ∈ Θ is the set of parameters of the CNN 

architecture. We adopted a supervised learning setting and 

searched for the optimal tracking operation parameters 𝜃 ̂using 

a limited set of mappings ℎ(∙; 𝜃) and input/output pairs 

(𝜒, 𝜓) ∈  𝐷, the data set and by minimizing the empirical loss 

as follows: 

�̂� =  argmin
𝜃∈Θ

∑ 𝐿𝑜𝑠𝑠(ℎ(𝜒; 𝜃), 𝜓) 
(𝜒,𝜓)∈𝐷

 (1) 

The fundamental idea behind our design was to attempt to 

detect microbubbles trajectories in spacetime rather than single 

points in space (e.g., the simplest case would be a 2D+t line 

representing a microbubble moving at a constant speed).   The 

V-net part consisted of an encoder network which captured 

frames and temporal information into latent feature layers, and 

an expanding decoder network, which mapped this latent 

representation to detect MBs trajectories. A part of the model 

had to be destined to obtain high spatially sampled images. 

Thus, we designed a 3D CNN architecture as the concatenation 

of first, a fully-convolutional V-net-style architecture [23]  
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Figure 2 - Neural network architecture of the 3D CNN. In the first part, a V-net like autoencoder is used to detect MBs from a 2D+t ultrasound dataset and map 

tracks. In a second part, 𝒍𝒐𝒈𝟐(𝒓) deconvolution layers were used to increase the spatial sampling of those tracks.

followed by 𝑙𝑜𝑔2(𝑟)-deconvolution layers [24]. The original V-

net architecture was modified. The number of down and up 

blocks was reduced from four to two in respect to our different 

input dimension and in order not to extremely reduce the spatial 

dimension in the feature space. Max pooling kernels value has 

been increased from two to four due to the high and unbalanced 

temporal dimension compared to spatial dimensions. 

Furthermore we did not reconstruct the temporal dimension in 

the decoder part (see Fig. 2) – as we aim to output a 2D image 

– but at the same time by not collapsing the temporal dimension 

to 1 too early to fully benefit from the 3D convolutions [25]. 

The second part of the network was aimed at increasing the 

spatial resolution. The 𝑙𝑜𝑔2(𝑟) deconvolution layers were 

implemented through nearest neighbour resizing with a scale 

factor equal to 2 – so that output images size equal 𝑟 times input 

frames size – followed by a standard convolutional layer. The 

choice of using simple transposed convolutions instead has 

been evaluated and dissmissed, as it was producing 

checkerboards artifacts in generalization [26]. 

Input correlation maps are complex images and since complex 

networks [27] are only at early stages of development, they 

were handled by feeding their real and imaginary parts as 

channels. The model was implemented using the PyTorch 

library and trained via the Adam optimizer [28] on a Nvidia 

GPU (GeForce RTX 2080 Ti). As the problem can be seen as 

an unbalanced pixel-wise classification task (tracking pixels 

represent a low percentage of the output image), we used the 

dice loss [29] after testing convergence speed over a few epochs 

against other binary classification oriented losses (negative log-

likelihood, weighted negative log-likelihood and focal loss 

[30]).  

To ensure and accelerate convergence, training was performed 

in two phases. The ground-truth binary tracks were dilated 

using a morphological dilation with a disk of radius 2 and were 

used as targets in the training of the 3D-CNN in the first phase. 

In the second phase, the primary ground-truth binary tracks 

were used as targets and the weights of the 3D-CNN were 

initialized as the weights obtained at the end of training in phase 

1. The learning in two phases highly simplifies the optimization 

task and enabled a smaller final loss. In both phases, we used a 

multi-step learning rate scheduler which decays the learning 

rate of each parameter group by gamma once the number of 

epochs reaches one of the milestones. In phase 1, start learning 

rate was set to 10-1 with milestones=[15,45,75,100], 

gamma=0.1 and in phase 2, starting at 10-3 with 

milestones=[10,50,100], gamma=0.1. In both training, the total 

number of epochs was set to 150, which corresponds 

approximately to 48 hours per phase. 

III. TRAINING & EXPERIMENTS 

To train the proposed CNN model, we designed an ULM 

simulation framework based on the microvascular network of a 

mouse brain [31] and ultrasound simulations [32]. 

A. Microvascular network model 

A graph-based model of a mouse brain microvasculature was 

first generated using two-photon microscopy as described 

previously [31]. Briefly, a fluorescent dye (i.e., dextran-FITC, 

50 mg/ml in saline, Sigma) was injected through the tail vein of 

mice. 3D optical angiograms, with a 

1.2 ×  1.2 ×  2 𝜇𝑚 resolution, were then acquired using a two-

photon microscope. Micro vessel segmentation was then 

achieved using a dedicated and retrained version of the FC-

DenseNets semantic segmentation [33]. A surface mesh of the 

microvasculature was then computed using the marching cube 

algorithm. Finally, a reduced version of the generated surface 

model was contracted toward a 1D medial axis of the enclosed 

vasculature. The contracted mesh was then post-processed to 

generate a single-connected nodes graph with corresponding 

vessel radii [34]. To emulate realistic MB propagation 

throughout the microvascular network, Poiseuille flow 

conditions were simulated according to the vessel radii R on the 

graph and average blood flow: 𝑣𝑚𝑒𝑎𝑛(𝑅) as measured in rodent 

brain [35]: 

𝑣𝑀𝐵(𝑟, 𝑅) = 𝑣𝑚𝑒𝑎𝑛(𝑅). (1 −
𝑟2

𝑅2
) (2) 
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Table I: In-silico & In-vivo acquisition parameters. 

Probe parameters  Imaging parameters  

Center frequency 15.625 MHz Transmit frequency  15 MHz 

Number of elements 128 Waveform 3 cycles 

Linear Array pitch 0.1 mm PRF 3 kHz 

Element width 0.08 mm Compounding angles -1˚,0˚,1˚ 

Elevation Focus 8 mm Effective Frame rate 1 kHz 

Initial MB position were randomly distributed within the graph 

network, with a relative distance r from the medial axis, and 

dynamically updated, with time, according to their relative 

velocity and position along the graph. Since vessels in our 

network ranged from 2 to 57.2 micrometers in diameter, 

maximum velocities ranged from 0.0093 mm.s-1 to 5.4 mm.s-1. 

MB concentration was varied, depending on the application, by 

randomly subsampling a single dense scatterer distribution. 

B. Ultrasound simulation model  

To emulate the acoustic response of the MBs, we used an in-

house GPU implementation of the SIMUS simulation software 

described in [32]. Specifically, SIMUS simulates the 

broadband acoustic pressure, recorded by every individual 

piezoelectric element, of an ultrasound linear array transducer, 

after plane wave excitation.  

In this study, we simulated a 128-element, 15-MHz linear array 

transducer corresponding to the parameters of the probe (L22-

14s Vermon, Tours, France) used in experiments. Simulation 

parameters are reported in Table I. Compounding angles were 

set to (-1°, 0°, 1°) according to our experimental setup and 

essentially limited by the data transfer rate of the acquisition 

system. The received pressure (corresponding to the 

radiofrequency (RF) data experimentally) was then subsampled 

into 100% bandwidth IQ channel data, in order to replicate the 

Verasonics Vantage system processing, and beamformed using 

an in-house GPU-implementation of the delay-&-sum 

beamformer [20]. For all experiments, IQ channel data were 

beamformed on a regular cartesian grid with 𝜆 4⁄  (i.e., 25 𝜇𝑚) 

pixel size to prevent spatial aliasing. 

C. Training & evaluation dataset  

We had access to six different anatomical sub volumes of 

500 × 500 × 500 𝜇𝑚 in size: five were used to generate the 

training and validation set. To match the vessel size and density 

of a rat brain, as used for our in vivo experiments, anatomical 

sub-volumes were dilated by a factor of 2, resulting in 1-mm3 

sub-volumes [36],[37],[38]. IQ-data blocks of 32 × 32 pixels 

× 512 frames (corresponding to 800 × 800 𝜇𝑚 × 512 𝑚𝑠) 

were generated with a MB density at 5 MB.mm-3. 500 such data 

blocks were generated for each volume, which lead to 

2500 data blocks from which 90% were used for training and 

10% for validation during the training process. The 6th sub 

volume, used neither for training nor validation, was used to 

generate the test sets composed of 800 data blocks 

(corresponding to a 14-min acquisition).  

In the ULM method, the MB density parameter defines a trade-

off between image quality (high densities hamper the precise 

localization of MB) and acquisition time (higher concentrations 

could lead to a reduced acquisition time, assuming all MB can 

be detected and are not obfuscated by interferences between 

MB). We wanted to evaluate the network capacity to perform 

tracking on different MB densities. We generated four test 

data sets simulating low MB density (1 MB.mm-3), medium 

MB density (5 MB.mm-3), high MB density (10 MB.mm-3) and 

very high MB density (20 MB.mm-3). In comparison, the 

recently proposed 2-D deep learning frameworks for ULM 

worked with a maximum of 3 MB.mm-2 densities [13],[14].  

According to [39], the theoretical resolution achievable with 

ULM with our current experimental setup is approximately 

5 µm. Simulated IQ data-blocks with a spatial sampling 
𝜆

4
×

𝜆

4
 

and the scaling factor 𝑟 = 8 of our model led to output images 

at 
𝜆

4𝑟
×

𝜆

4𝑟
≈ 3µ𝑚 × 3µ𝑚 pixel size. 

D. Model validation 

Validation of the CNN model on the tracking task was done by 

computing the average loss on the validation set, through 

training, and by calculating several classification scores on the 

validation set at the end of the training. Considering the tracking 

task as a pixel-wise binary classification problem, we based the 

validation on the confusion matrix: a table summarizing true 

positives, true negatives, false positives and false negatives (TP, 

TN, FP, and FN). 

To evaluate the performance of the model we evaluated the 

precision (i.e., positive predictive value): 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (7) 

that quantify the probability of detecting an actual vessel among 

all detected vessels. We also evaluated the recall (i.e., 

sensitivity):  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (8) 

that quantify the proportion of actual vessels that are correctly 

detected as vessels. 

Finally, to provide a single measurement to discriminate our 

models’ performance, we evaluated the Sørensen–Dice 

coefficient, that is the harmonic mean of the recall and 

precision. 

𝐷𝑖𝑐𝑒 =  
2

𝑟𝑒𝑐𝑎𝑙𝑙−1 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛−1
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (9) 

The Dice coefficient quantify the similarity between two sets of 

data and allows, when the angiogram generated from all 

simulated MBs is taken as reference, to quantify the ability of a 

given ULM process to fill the entire network with MB. In this 
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work, the Dice score is also referred as the network filling. In 

our preliminary studies, this first validation process enabled the 

selection of several model hyperparameters. 

E. From MB tracking to angioarchitecture images 

The relevance of the proposed per data block approach appears 

through its insertion in the ULM pipeline (see Fig. 1). Indeed, 

the accumulation of MB tracks, similarly to the accumulation 

of estimated MB positions, can be used to compute a density 

mapping of the blood vessels. The inference was performed on 

these buffers and the binary tracking outputs were accumulated 

to recover the angiogram: 

𝐴𝑛𝑔𝑖𝑜 = ∑ ℎ(𝜒𝑘 ; 𝜃)

𝑁𝑏𝑙𝑜𝑐𝑘

𝑘=0

 (10) 

In parallel, we applied the standard expert method previously 

described (see section II.A) on the same blocks for comparison. 

Because the proposed deep-stULM method generates binary 

tracks out of IQ-data-blocks while the standard method 

generates sub-wavelength positions, we generated pseudo 

tracks maps by accumulating these positions obtained through 

sub-pixel localization and without tracking on the predefined 

grid and binarized these density maps per data blocks. Such 

operation allows us to compare qualitatively the standard ULM 

process to the deep-stULM process, despite a partial loss of MB 

density information. Facing the difficulty to expose an accurate 

metric to compare angioarchitecture density maps, the 

quantitative results were measured through the evaluation of 

precision (5), recall (6) and dice (7) scores on the binarized 

density maps. Ground truth density maps were obtained from 

the accumulation of simulated MB positions on the latter 

predefined grid and then binarized to compute the proposed 

scores. The simulated vascular network was not directly used 

as ground truth as it could include vessels not perfused with MB 

and we do not intend our model to extrapolate the data and 

potentially generate spurious vessels. 

F. In-vivo acquisition 

For in vivo experiments, we used MB concentrations reported 

in the literature [35]. While a direct conversion of these 

concentrations to number of microbubbles per mm3 leads to 

very large values compared to our simulations (approximately 

1000 MB.mm-3), it has been shown that there is a two-order of 

magnitude reduction in MB concentration from in vitro to in 

vivo settings [40] which translates to ~10 MB.mm - 3 in our 

experiments. Furthermore, the tissue rejection process through 

Singular Value Decomposition and/or high-pass filtering is 

known to reject signals from slowly moving MBs [7]. It is thus 

difficult to determine the actual MB count flowing through the 

microvascular bed in vivo. To evaluate the impact of MB 

concentration in vivo, we designed a three-concentration 

experiments. Specifically, after craniotomy, increasingly 

concentrated MB solutions were injected in the tail vein 

(i.e., 12.5 𝜇𝐿, 25 𝜇𝐿 and 50 𝜇𝐿, boluses of Perflutren Lipid 

Microsphere, Definity, Lantheus Medical Imaging, Billerica, 

MA, USA) prior to 5-minute-long ULM acquisitions. Each 

acquisition consisted of 384 RF data blocks of 400 compound 

plane wave images acquired at 1000 frames per second and 

repeated every second. Raw data were acquired with a Vantage 

system (Verasonics Inc., Redmond, WA) with the same 

parameters used for simulation (see Table II) and beamformed 

with a delay-&-sum beamformer. To calculate the correlation 

map from beamformed data, the PSF was simulated from the 

probe parameters and the acquisition sequence. The acquired 

Region of Interest (RoI) corresponded to a 512 × 512-pixel 

image beamformed at 𝜆 4⁄  resolution, which covers the entire 

brain (i.e., ~13 × 13 mm RoI). To encompass the entire RoI 

with the 3D-CNN, we used a spatial sliding window. 

Specifically, the inference was done on spatiotemporal 

windows of 32 × 32 × 512 pixels (i.e., the size of the 3D-CNN 

input) with a spatial overlap of 94 % (corresponding to a stride 

of 2 pixel in both directions). Overlapping regions were binary 

summed, which corresponds to a logical or between binary 

tracks regions. The 256 × 256 binary track outputs were 

cropped 32 pixels before and 32 pixels after in each spatial 

directions to avoid edge effects, coherently summed and 

binarized to form a single binary track image of the whole RoI 

per data block (4096 × 4096 image). To consider organ 

displacement, we applied a rigid registration method between 

data blocks outputs, as described in [41]. 

IV. RESULTS 

A. In silico performance of Deep-stULM 

While varying the MB concentration, we can first study the 

effect of the number of data blocks (related to the acquisition 

duration), used in the ULM process, to recover the vessel 

network angiogram. Using ground truth simulated MBs, we 

analyzed the network filling ability of the ULM process (i.e., 

assuming that all MBs can be accurately located), as a function 

of the number of data blocks, for various MB concentrations 

(see Fig. 3) by taking all simulated MBs in the 6th vessel 

network used only for testing (i.e., 4000 data blocks @ 

5 MB.mm-3) to build a reference angiogram. 

 
Figure 3 - Vessel network filling as a function of the number of 

accumulated data blocks. Dice score between the ground truth density map 

obtained with 4000 data blocks and the ground truth density map obtained with 

𝑵𝒃 data blocks for different MB density. 

The network filling capacity was quantified as the dice score 

between the ground truth angiogram (i.e., using all simulated 

MBs) and the intermediate angiograms computed with a fixed 

number 𝑁𝑏 of ground truth data blocks. This measure enables 

thereby to implicitly visualize the blood vessels’ network filling 

against the acquisition time. We show in Fig. 3 that there is a 

saturation phenomenon as a function of the number of data 

blocks used for reconstruction. The higher the MB density, the 

earlier this saturation appears. In theory, we can achieve the  
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Figure 4 – Effect of MB concentration on ULM angiogram reconstruction. 

In-silico results comparing the ground truth (first column) to the prediction 

obtained by the proposed method (third column) and, for comparison, the 
considered expert model (second column) for the 4 data sets at different MB 

concentrations. The last column shows superposed intensity profiles along a 

given horizontal line. The dynamic of images is shown in log(1+Ntrack), where 
Ntrack is the number of tracks per pixel, to better discriminate low- and high-

density regions. 

Table II: In silico performance of ULM angiogram reconstruction for an 

800 data blocks acquisition @ different MB concentration compared to the 

angiogram generated from all simulated MBs (i.e., 4000 data blocks) 

Concentration 
Metrics 

(%) 

Ground 

Truth 

Expert 

Method 

Deep-

stULM 

1 MB.mm-3 

Precision 100 90 96 

Recall 35 33 40 

Dice 52 48 56 

5 MB.mm-3 
Precision 100 74 87 

Recall 63 63 67 

Dice 77 70 78 

10 MB.mm-3 
Precision 100 70 81 

Recall 78 64 82 

Dice 88 67 81 

20 MB.mm-3 

Precision 100 67 58 

Recall 89 63 92 

Dice 94 65 71 

 

same level of filling for half acquisition time when doubling the 

MB concentration. From these results, we can extrapolate the 

acquisition time necessary to achieve a complete reconstruction 

for a given concentration. Assuming all MB are accurately 

located, Fig. 3. gives the best-case scenario that can be obtained 

from our simulations. However, in vivo vessel network filling 

is subject to more variables than only time and more complex 

models should be considered in this case such as in [42], [43]. 

We performed ULM reconstructions with both standard ULM, 

here referred to as the expert method, and the proposed deep- 

learning framework, referred to as Deep-stULM (Fig. 4 and 

Table II) for various concentrations (i.e., 1 MB.mm-3, 

5 MB.mm-3, 10 MB.mm-3 and 20 MB.mm-3) and for 800 data 

blocks (i.e., ~14 minutes acquisition).  

For the lowest concentration (i.e., 1 MB.mm-3), both methods 

showed comparable performance in terms of precision and 

recall. However, because of the low concentration, a network 

filling of only 48%, for the Expert method, and 56% for the  

 
Figure 5 – Effect of acquisition time on angiogram reconstruction. In-silico 

results comparing the ground truth (first column) to the prediction obtained by 

deep-stULM (second column) for the 2 data sets at different concentration (i.e., 

5 MBs.mm-3 and 10 MBs.mm-3) and equivalent total MB count. 

Deep-stULM were obtained respectively. Larger 

concentrations enabled increased network filling, but at the cost 

of a loss in precision, which was more acute in the case of the 

expert method, especially for concentrations larger than 

10 MB.mm-3. Deep-stULM maintained high precision up to a 

10 MB.mm-3 concentration (81% vs 70% for the expert method) 

as showed in the intensity profiles (Fig. 4). At 20 MB.mm-

3,both methods failed at qualitatively resolving the 

angioarchitecture. At low MB concentrations (i.e., 

1 & 5 MB.mm-3) the proposed Deep-stULM framework 

outperformed the Ground truth in terms of recall and dice score 

(see Table II) which seems to indicate that the trained CNN can 

predict the presence of vessels from incomplete MB tracks.  

We further evaluated whether it was possible to recover the 

vessel network in half the acquisition time when doubling the 

concentration from 5 to 10 MBs.mm-3 (Fig. 5). The ground truth 

(left column) indicates that both scenarios can provide similar 

angiograms with a network filling of 77% and 79% 

respectively. 

The expert model achieved network fillings of 70% and 60% 

respectively while Deep-stULM produced similar angiograms 

in both cases with a network filling close to the ground truth 

(i.e., 77% in both cases). Note, however, that the shorter 

acquisition time led to a reduction in precision: 87% down to 

83% for the proposed Deep-stULM method and 74% down to 

72% for the expert method. The reduction in precision and 

network filling is depicted in Fig. 5 by an increase of blurring 

artifacts and a loss in small vessel detection.  

B. In vivo performance of Deep-stULM 

Fig. 6 shows an example of ULM reconstructions in a rat brain, 

after a 50-𝜇𝐿 bolus injection of microbubbles, using the expert 

method (bottom left panel) and the proposed Deep-stULM 

method (bottom right panel) compared to ultrasensitive Power 

Doppler with (top right) and without MB injection.  

Both methods resolved the brain microvasculature with high 

contrast and sub-wavelength resolution. The Deep-stULM 

angiogram provided improved contrast and resolved smaller 

vessels that could not be detected with the expert method (see 

zoomed patches in Fig. 6). 

To further analyze the impact of MB concentration in vivo on 

the proposed Deep-stULM capabilities, we recovered 

angiograms from the same animal, successively acquired for  
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Figure 6 - Ultrasound Localization Microscopy vs ultrasensitive Power 

Doppler in a rat brain: Power Doppler without MB injection (top left panel), 

Power Doppler with MB injection (top right panel), Angiogram reconstruction 

using classical ULM processing (bottom left panel) and the Deep - stULM 

(bottom right panel) on a 𝟓𝟎 𝝁𝑳 bolus ULM acquisition. 

5 minutes after three bolus injections of 12.5 μL, 25 μL and 50 

μL and waiting 5 minutes between acquisitions to make sure 

that the previous bolus was flushed out. Fig. 7 shows closeup 

patches and intensity profiles of the whole angiogram for the 

three concentrations. Overall, there was a good reproducibility 

between the acquisitions, even though they were taken five 

minutes apart. From the track density profiles showed in the 

zoom-in regions of Fig. 7, we can see that at low MB 

concentration (12.5 µL bolus), the number of well resolved 

vessels and their resolution are similar for both methods. While 

increasing the MB concentration, the number of well resolved 

vessels shows a difference as 6 vessels are detected by Deep-

stULM whereas 2 are detected by the expert method within the 

25 µL bolus experiment. At high MB concentrations (50 µL 

bolus), both methods demonstrate robustness to MB density as 

the numbers of peaks detected is similar. Nevertheless, the 

mean+/-std resolution over the 6 vessels detected by both 

methods is 16.1±3.5 µm for Deep-stULM and 18.3±4.1 µm for 

the expert method, with Deep-stULM resolving one more 

vessel at 11 µm. Overall, Deep-stULM enabled to resolve 

sufficiently more vessels than our expert method in comparison, 

especially small vessels that were less likely to be perfused. 

Looking at the track density profiles, the proposed Deep-

stULM method appears to offer a better resolution than the 

expert model when increasing MB concentration and could 

resolve smaller micro vessels with diameters as small as 10 µm. 

V. DISCUSSION 

In this study, we proposed a deep spatiotemporal convolutional 

neural network to recover subwavelength angiograms out of 

densely populated ULM acquisitions. Rather than locating/ 

pairing multiple microbubbles in ultrafast ultrasound cineloops, 

the proposed Deep-stULM method was trained to resolve 

multiple MB tracks (i.e., trajectories) by considering both 

spatial and temporal information from the beamformed 

 
Figure 7 – Effect of bolus concentration in vivo. Zoom-in of ULM 

Angiograms using classical ULM processing (first column) and the 

Deep - stULM (second column) for three in-vivo dataset acquired successively 

after a 12.5-𝝁𝑳 (first row), 25-𝝁𝑳 (second row) and 50-𝝁𝑳 bolus injections. The 

third column shows the track density profiles along a given horizontal line 
overlaid in red and blue with corresponding vessel diameters estimated as the 

Full Width at Half Maximum. 

ultrasound datasets. The CNN was trained using an 

anatomically-realistic ULM simulation framework based on : 

highly-resolved (i.e., 2 𝜇𝑚) 3D angiograms acquired with two-

photon microscopy in a mouse brain [31] and an in house GPU 

implementation of the SIMUS ultrasound simulation software 

described in [32] and validated both in silico, on a subset of the 

simulated data and in vivo on ULM acquisitions in a rat brain. 

In silico, we could achieve a two-fold reduction in the 

acquisition time, by doubling the microbubble concentration, 

while preserving the precision and specificity of super-resolved 

angiograms. In vivo, we obtained an increase in resolution as 

compared to standard ULM methods especially at high MB 

concentration. 

MB separation and therefore precise localization in ULM 

mostly rely on the controlled MB concentration (e.g. using a 

continuous low-concentration MB perfusion instead of a bolus 

injection), to avoid MB signal interference, and minutes-long 

acquisitions, to fill the smallest vessels whose perfusion 

likelihood diminishes with size [35]. Microbubbles isolation in 

ultrasound images is a prerequisite to precise localization. If not 

achieved, the ULM process leads to a blurred and inconsistent 

reconstruction of the underlying network (see column 2 in Fig. 

4). In this study, rather than isolating and locating individual 

microbubbles in independent frames, we trained a 

spatiotemporal CNN to isolate MB tracks in ultrasound cine-

loops. Doing so, we hypothesized that overlapping/crossing 

MB tracks can be recovered even if they are interfering at some 

point in the sequence. To do so we adopted the well-known 

V - net architecture [23], originally designed for the 

segmentation of volumetric data in medical imaging, and 

trained it to recover highly resolved binary maps of multiple 

crossing MB tracks. With this simple framework, we were able 
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to recover densely filled angiograms with very high precision 

where the standard ULM method collapsed (see Table II). This 

method paves the way to time-resolved ULM reconstruction 

through a significant reduction of the acquisition time. 

The main objective of this study was to assess the capabilities 

of machine learning (ML) methods to recover vessel tracks 

from highly concentrated MB solutions circulating in a dense 

microvascular network. We demonstrated that the proposed 

CNN outperformed the now standard localization in terms of 

precision and network filling (see Table II).  

The proposed Deep-stULM was extensively tested and 

validated both in silico and in vivo. Although in vivo results 

seemed promising and demonstrated the generalization 

capacity of the neural network, trained on in silico data, to 

achieve state-of-the-art results, several limitations deserve to be 

pointed out: 

• Even though the correlation map sequence (i.e., resulting 

from the cross-correlation of the beamformed IQ data and 

the spatial impulse response of the imaging system) are 

complex data, they were treated as independent channels 

(i.e., a real channel and an imaginary channel) in the 

proposed CNN. Complex number CNN [27] would be 

better suited for this application. Indeed, from a signal 

processing point of view, using real and imaginary parts as 

separated channels through real number operations appears 

as a very indirect approach to solve this problem. The use 

of complex CNN would probably ease the optimization and 

convergence process while considering the instantaneous 

phase of the signal which is a well-known key feature in 

most ultrasound application (e.g. color Doppler). 

• In the training process, we did not consider the underlying 

tissue signal which was assumed to be completely 

suppressed by the clutter filter process (i.e., Singular Value 

Decomposition). Even though the trained CNN performed 

well in vivo (see Fig. 6 & 7), it would highly benefit from 

more realistic training sets. One could, for example add 

incoherent white gaussian noise: to emulate acquisition 

noise, as well as coherent noise from real in vivo data to 

further train the CNN to distinguish MB signals from 

underlying tissue signals. Similarly, tissue motion could 

also be included in the simulation framework. 

• The proposed method would probably perform better after 

data augmentation (i.e., translation, rotation, scaling etc…) 

to generate additional training datasets [44]. Coupled with 

the six vessel networks, the potential wide variability in 

datasets could enable us to better investigate reliability and 

robustness of our model through more complex training 

procedure such as tuning methods of hyperparameters or 

cross-validation between datasets. As an example, in this 

study, the CNN was trained with a fixed concentration of 

5 MBs.mm-3 which, from our experience seems to be close 

to the limit of the standard ULM method (see Fig. 4). 

Mixing different MB concentration in the training process 

would also benefit the proposed method without changing 

the model. One would have however to find the appropriate 

balance between concentrations. The richness of 

customization in this data simulation process paired with 

the proposed supervised learning method could be used as 

a powerful first step to transfer learning. Indeed, the future 

possibility to get access to annotated data in silico or even 

in vivo for the validation of ULM would be certainly 

limited in quantity, thus our model would be the starting 

point for the application of a supervised method on this 

gold standard data. 

• Because our train sets only covers a 1 mm-3 region of 

interest, we had to implement a sliding window algorithm 

to avoid Gibbs artifacts in the inference process in vivo. 

This drastically increased the inference time and might 

introduce unwanted artefacts. To bypass this problem, one 

could use data augmentation in the training process to 

cover wider RoIs. Data augmentation in this context must 

however be addressed with caution. Indeed, augmented 

data must remain consistent with a realistic microvascular 

network. Furthermore, in practice, the size of the input data 

block (i.e., 32 × 32 × 512 pixels) was originally chosen to 

fit on the physical memory of our graphic card (GeForce 

RTX 2080 Ti). Using larger RoIs is feasible in principle, 

but would require major changes in our approach and 

equipment. 

• At low concentrations, the proposed CNN approach 

outperformed the ground truth in terms of network filling 

(i.e., Dice score) and recall. This suggests that the CNN 

interpolates blood vessels to locations where no or few MB 

have circulated. Note, however, that the training process 

was designed to prevent vessels extrapolation and the 

generation of undetected vessels, to ensure the validity of 

our vascular angioarchitecture maps, especially in presence 

of abnormalities. Exploring the capabilities of the proposed 

network to predict the existence of vessels in which no or 

few MB have circulated is the object of future work. 

• In this study, the ULM process was formulated as a simple 

binary classification task (i.e., pixels inside or outside a 

vessel). Such classification was achieved through the 

minimization of a dice loss. However, beyond the main 

issue of MB separation, multiple close MB, which overlap 

or are crossing each other, would be considered as a single 

track in the target. Moreover, because of the complexity of 

the vascular network, one pixel may belong to more than 

one vessel (i.e., a bifurcation) or to a projection of several 

out-of-plane vessels. So, these sensitive regions could be 

subject to overfitting using the optimization of the dice loss 

function. To improve/generalize the classification process, 

one might consider using the generalized dice loss for 

multiclass segmentation as in [45]. Such a loss would most 

likely improve the specificity of the method in presence of 

a dense network. 

• In ULM, detection of MB can enable, beyond vessels 

density information, to provide blood flow velocity 

information, for example by adding a pairing approach to 

the method [10]. But as in the proposed method, our model 

directly encodes spatio-temporal information to generate 

MB binary tracks, MB velocity information is lost. 

However, blood flow velocity is a highly relevant 

information toward several pathologies’ indication and 

clinical purposes, as for example it is related to the efficient 

functioning of most organs. Thus, we would like to address 

this issue in future works. First, we would like to better 

investigate the impact temporal dimension size and 
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sampling frame rate on the tracking performances. Then, 

as our model showed a good capacity to encode spatio-

temporal information and as deep learning frameworks and 

more particularly losses are more suitable to predict 

probabilities information – labels, classes –, one could 

directly attempt to output clinically relevant classes which 

results from obtaining blood flow velocity information. 

• In vivo results were obtained in the brain where a few 

minutes long motion-free acquisition is the most 

manageable. Our CNN model was trained on data without 

motion artefacts and in vivo inference per buffer enabled 

us to remove some blurry artefacts by rigid registration. 

However, chest organs imaging would require taking into 

account motion compensation in the model. Thus, the 

application of our proposed method to other organs would 

highly benefit from modifications consisting for example 

to insert motion compensation methods directly into the 

3D-CNN model, as proposed in [46]. 

• The US data simulation and acquisition used in this 

framework have constrained us in the scope of this study 

to fix parameters such as the number of compounding 

angles or to heuristically set others such as the SVD 

threshold. Nevertheless, we intend to further investigate 

the impact of such parameters on the accurate tracking 

performance of the proposed method. Moreover, both the 

simulations and in vivo acquisitions were limited to the 

linear regime. Non-linearities associated to the 

microbubbles could potentially be leveraged within the 

proposed method to further enhance microbubble 

detection. 

• In vivo results were analyzed through the comparison of 

Deep-stULM against our expert method. However, as to 

our knowledge there is no proper validation method for in 

vivo ULM, quality assessment of angioarchitecture images 

through criteria such as resolution or contrast highly suffers 

from not being in comparison to a ground truth image. 

Despite this constraint of not being disposed to introduce 

accurate metrics for whole images, we proposed a measure 

of resolution, which however introduced bias in manually 

selecting a region of interest and a few vessels in images 

containing hundreds. 

VI. CONCLUSION 

We demonstrated the feasibility of recovering dense 

microvascular network angiograms, beyond the fundamental 

limit of diffraction, from highly concentrated ULM acquisitions 

using a Deep Convolutional Neural Network. The proposed 

CNN generalized well in vivo and offers a promising solution 

for time resolved ultrasound localization microscopy. 
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