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a Cascaded Residual Dense Spatial-Channel

Attention Network With Projection Data
Fidelity Layer

Bo Zhou , Student Member, IEEE, S. Kevin Zhou , Fellow, IEEE, James S. Duncan , Life Fellow, IEEE,
and Chi Liu , Senior Member, IEEE

Abstract— Limited view tomographic reconstruction
aims to reconstruct a tomographic image from a limited
number of projection views arising from sparse view or lim-
ited angle acquisitionsthat reduce radiation dose or shorten
scanning time. However, such a reconstruction suffers from
severe artifacts due to the incompleteness of sinogram.
To derive quality reconstruction, previous methods use
UNet-like neural architecturesto directly predict the full view
reconstruction from limited view data; but these methods
leave the deep network architecture issue largely intact and
cannot guarantee the consistency between the sinogram of
the reconstructed image and the acquiredsinogram, leading
to a non-ideal reconstruction. In this work, we propose
a cascaded residual dense spatial-channel attention net-
work consisting of residual dense spatial-channel attention
networks and projection data fidelity layers. We evaluate
our methods on two datasets. Our experimental results on
AAPM Low Dose CT Grand Challenge datasets demonstrate
that our algorithm achieves a consistent and substantial
improvement over the existing neural network methods on
both limited angle reconstruction and sparse view recon-
struction. In addition, our experimental results on Deep
Lesion datasets demonstrate that our method is able to gen-
erate high-quality reconstruction for 8 major lesion types.

Index Terms— Tomographic reconstruction, cascaded
network, projection data fidelity layer, RedSCAN, limited
angle, sparse view.

I. INTRODUCTION

TOMOGRAPHY imaging is a non-invasive projection-
based imaging technique that visualizes an object’s inter-

nal structures and hence finds wide applications in healthcare,
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security, and industrial settings [1]–[3]. In healthcare, tomog-
raphy imaging techniques such as medical Computed Tomog-
raphy (CT) based on x-ray projections, Positron Emission
Tomography (PET), and Single-photon Emission Computed
Tomography (SPECT) based on gamma-ray projections are
indispensable imaging modalities for disease diagnosis and
treatment planning. In the traditional CT setting, one assumes
access to the measurements that are collected from a full range
of view angles of an object. To reduce radiation dose and
speed up acquisition, recently it is of increasing interest to
develop methods that can recover images when a portion of the
projection views is missing, namely limited view tomographic
reconstruction. There are two notable sub-problems: limited
angle (LA) reconstruction, i.e., when α ∈ [0, αmax ] with
αmax < 180◦ for equivalent parallel beam geometry, and
sparse view (SV) reconstruction with a view interval larger
than normal. Both LA and SV acquisitions can efficiently
reduce radiation dose. Using LA acquisition, the scan time
can also be drastically reduced by restricting the physical
movement of the scan arc. Note that fast acquisition or high
temporal resolution is paramount; even a slightly longer scan
time can lead to appreciable motion blur and artifact in the
image [4], [5].

There are two major factors, namely reconstruction quality
and speed that need to be properly considered in designing
a tomographic reconstruction algorithm. Currently, Filtered
Back Projection (FBP) is widely used as the standard algo-
rithm as it can reconstruct a high-quality image with a
fast speed, following an analytical solution. However, FBP
assumes the access to the measurements that are collected from
a full range of views of an object. Reconstruction using FBP
in both LA and SV conditions are highly ill-posed, yielding
non-ideal image quality with severe artifacts and high noise.
Previous algorithms for tomographic reconstruction under
limited view conditions can be classified into two general
categories: model-based iterative reconstruction (MBIR) and
deep learning based reconstruction (DLR). MBIR can generate
images with high quality by minimizing the predefined image
domain regularizers and the sampled sinogram inconsistency
in an iterative fashion. Common choices of the regularizer
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include total variation [6], dictionary learning [7], and non-
local patches [8]. However, MBIR methods are computation-
ally heavy and time-consuming since they rely on repetitive
forward- and back-projections. Moreover, using regularization
solely based on prior assumptions requires careful hyper-
parameter tuning and tends to bias the reconstruction results,
especially when under-sampling rate is high.

Recently, deep learning techniques, such as convolu-
tional neural networks (CNNs), have been widely adapted
in tomography and demonstrated promising reconstruction
performance [9]. Combining MBIR with deep learning,
Gupta et al. [10] and We et al. [11] first proposed to model
regularizer in MBIR frameworks with CNNs and Autoen-
coders. Adler et el. [12] unfolded the optimization procedure
of MBIR to an N-stage network to balance the tradeoff
between reconstruction and speed. Although improved over
traditional MBIR methods, they still suffer from high compu-
tational cost with iterative procedures. As an alternative, DLR
is often formulated as image post-processing. Jin et al. [13]
and Chen et al. [14] proposed to use UNet [15] and Resid-
ual UNet to post-process the noise/artifacts in the sparse-
view CT. In [16] and [17], adversarial loss and perceptual
loss were used to reinforce the network’s learning. Later,
Zhang et al. [18] and Han et al. [19] proposed to incorpo-
rate dense block and wavelet decomposition into UNet for
more robust feature learning for reconstruction. Direct sino-
gram inversion and sinogram completion strategies were also
proposed. Lee et al. [20] found that synthesizing complete
sinogram from sparse view sinogram and then using FBP can
also reconstruct high-quality image. Although these methods
can be easily applied to raw sinograms or corresponding FBP
reconstructed images with relatively low computational cost
and low design complexities, they either only applied on
image domain that remove artifacts in already reconstructed
image or synthesizing complete sinogram from sparse one, and
cannot guarantee the sampled sinogram data are preserved.
Note that the sampled sinogram data are the original sources
that should be kept as identical as possible before and after
reconstruction to ensure the high fidelity of reconstructed
content. There are also recent ideas of replacing the already-
sampled sinogram to the predicted sinogram during the test
stage. Anurudh et al. [1] proposed to first use a sinogram-
to-image auto encoder to predict an initial reconstruction.
Then, during the test stage, the reconstruction’s sinogram is
partly replaced by the already-sampled sinogram to generate a
final reconstruction. However, their method does not guarantee
the continuity between the already-sampled sinogram and
the predicted sinogram, which may further degrade the final
reconstruction, and their method is limited to parallel-beam
geometry. Similarly, Huang et al. [21] proposed to first use
UNet [15] to predict an initial reconstruction. Then, during
the test stage, the initial reconstruction is utilized in a TV
reconstruction to help the projection data fidelity constraint of
unmeasured projection data. However, the final reconstruction
quality relies on a high-quality initial reconstruction from
UNet’s prediction. In addition, the projection data fidelity
constraint of unmeasured projection data is not incorporated in
the network design and used only in the separated test stage.

On a different note, the network design issue is highly under-
explored as a research topic and still limited to UNet-based
or auto-encoder architectures [13], [14], [16], [17], [19], [20],
[22]. In addition, none of previous works have evaluated the
performance under both LA and SV scenarios, and recon-
struction evaluation on CT scan with pathological finding are
barely performed. While a k-space data consistency layer for
MRI fast reconstruction is proposed in [23], [24], projection
data consistency layer has not been systematically studied in
tomographic reconstruction.

To tackle these limitations, we propose a Cascaded Residual
Dense Spatial-Channel Attention Network (CasRedSCAN) for
tomographic reconstruction under limited view conditions. Our
CasRedSCAN consisting of Residual Dense Spatial-Channel
Attention Network (RedSCAN) and Projection Data Fidelity
Layer (PDFL) closely resembles the iterative process in MBIR
methods, which allows end-to-end optimization of the recon-
struction. Specifically, RedSCAN is the backbone network that
is used in each cascade block for de-aliasing the input image.
PDFL is concatenated to the RedSCAN output to ensure the
prediction’s projection data fidelity while allowing gradient
back-propagation. Experiments on limited angle and spare
view scans using AAPM Low Dose CT Grand Challenge [25]
and DeepLesion dataset [26] demonstrate that our CasRed-
SCAN can provide high-quality limited view tomographic
reconstructions.

II. PROBLEM FORMULATION

Let I ∈ CN represent a 2D tomography image with a size
of N = Nx Ny , and Q ∈ CM represent its full-view sinogram
with M projection views. Our problem is to reconstruct I
from Qu ∈ CMu (Mu � M), where Qu is the under-
sampled sinogram of limited views. Here, sinogram data is

only measured for lines corresponding to a subset � ⊂ A
�=

{1, · · · , M}, where A is the full projection set. Denoting G
and Gu as the full-view and limited-view discretized forward
projection operators, the full-view sinogram Q and limited-
view sinogram Qu are obtained via Q = G I and Qu = Gu I ,
respectively. While FBP provides stable numerical implemen-
tation of pseudo-inverse for Q, applying FBP to Qu in the
limited view conditions yields reconstructed Iu with severe
artifacts.

Previous works of MBIR propose to solve I by

min
I
[T (I )+ λ||Gu I − Qu ||nn], (1)

where T is the regularizer and || · ||nn is the projection data
fidelity constraint [6], [27]. Previous deep learning-based,
post-processing methods utilize deep networks, denoted as
P with parameters θ , to estimate the full-view reconstructed
image P(Iu; θ) by training P on (Iu , Igt ) pairs, where Igt

is the full-view reconstruction ground truth. However, these
methods only consider a subsequent regularization of the
initial solution Iu similar to the functionality of T (·) in
MBIR, and omit the projection data fidelity constraint of
||Gu I − Qu ||nn . One should force reconstruction I to be well-
approximated by the CNN reconstruction and ensure the
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consistency of acquired data in the projection domain by:

min
I
[||I − P(Iu; θ)||22 + λ||Gu I − Qu ||22], (2)

However, it is not feasible to directly optimize the above
equation since the deep network reconstruction and the projec-
tion data fidelity terms are independent. Specifically, as deep
network P only operates in the image domain, P is trained
to reconstruct the full-view image without prior knowledge of
the already acquired data in the projection domain. Similar
to the MRI k-space data fidelity [23], given a portion of
already acquired projection data from limited-view acquisi-
tions, the deep network should be discouraged from chang-
ing the already acquired projection data up to the level of
acquisition noise. Incorporating the projection data fidelity
in the network design could potentially better preserve the
image content and lead to a better reconstruction. In this work,
we propose a projection data fidelity layer (PDFL) embedded
in a cascade network for full-view reconstruction. With PDFL
in our cascade network, the reconstruction output from our
network is now conditioned on both network parameter θ and
limited-view projection data �:

Irec = P(Iu; θ,�) (3)

Then, given the training data pairs of (Iu, Igt ), we can train
our network by minimizing the L2 loss function:

L = ||P(Iu; θ,�)− Igt ||22 (4)

Details of our PDFL and cascade network are explained in
Section III and Section IV, respectively.

III. PROJECTION DATA FIDELITY LAYER

Let G and G f bp be forward projection (FP) layer and filtered
back-projection (FBP) layer, respectively. The projection data
of the image reconstruction by a deep network can be formu-
lated as: Scnn = G Icnn = GP(Iu; θ), where Scnn(i) is the i -th
projection data entry. Similarly, we denote the already acquired
projection data as Su , where Su has identical size to Scnn and
the i -th projection data entry Su(i) is all zeros when i /∈ �.
Then, we can write a closed-form solution for the second term
in Eq.(2) as:

Srec(i) =
{

λScnn(i)+Su(i)
λ+1 if i ∈ �

Scnn(i) if i /∈ �
(5)

where Srec is the reconstructed sinogram, which is updated
by the projection data fidelity. Then, the image can be
reconstructed via filtered back projection, that is, Irec =
G f bp Srec . To elaborate, when the i -th projection data is not
acquired, we directly estimates the i -th projection data from
the projection data of the deep network’s output. Otherwise,
the i -th projection data is a linear combination of the acquired
projection data and projection data of the deep network’s
output, regularized by noise level parameter λ. Assuming
noiseless sinogram acquisition, i.e. λ = 0, we simply replaces
the i -th predicted projection data by the acquired projection
data.

A. Forward Projection Layer
Our FP layer G is a differentiable layer implemented with

fan-beam geometry, allowing gradient back-propagation while
projecting the image into sinogram. In this work, we consider
fan-beam geometry with arc detector [28]. Assuming the
distance between x-ray source and the gantry rotation center
as D, the forward pass of the FP layer can be written as:

S f an(γ, β) =
∫∫
R2

I (x, y)δ[D sin(γ )− x sin(β − γ )

−y cos(β − γ )]dxdy (6)

where a fan-beam sinogram S f an(γ, β) is generated. β means
the detector rotation angle, and γ means the angle between
central projection line and detector projection line. In the
backward path of G, the loss in the sinogram domain should
be aggregated and back-projected to the image domain. Thus,
we define the derivative of G with respect to the input image
I as the filtered back-projection operation G f bp (discussed in
Section III-B).

B. Filtered Back-Projection Layer
Our FBP layer G f bp is also a differentiable layer imple-

mented with fan-beam geometry, allowing gradient back-
propagation while reconstructing the image from sinogram.
Similar to above, assuming the distance between x-ray source
and the gantry rotation center as D, we have a fan-beam
sinogram S f an(γ, β), where β is the detector rotation angle
and γ is the angle between central projection line and detector
projection line. Our FBP layer consists of three modules:
i) parallel-beam conversion module, ii) filtering module, and
iii) back-projection module.
Parallel-beam conversion module converts the fan-beam
sinogram S f an(γ, β) to parallel-beam sinogram Spara(ρ, α)
via: {

α = β + γ,

ρ = D sin γ.
(7)

where the change of variable is implemented by grid sampling1

in (ρ, α), which allows gradient back-propagation.
Filtering module applies the filtering to the converted sino-
gram Spara in the Fourier domain:

Ŝ = T−1
ρ {|ω| · Tρ{Spara(ρ, α)}} (8)

where Tρ and T−1
ρ are the discrete Fourier transform and

inverse discrete Fourier transform along the detector dimen-
sion ρ, respectively.2 ω is the window function and we used
Ram-Lak in this work.
Back-projection module back-projects the filtered parallel-
beam sinogram Ŝ to the image domain for every projection
angle α via:

I (x, y) =
∫ 2π

0
Ŝ(x cos α + y sin α, α)dα

≈ �α
∑

i

Ŝ(x cos αi + y sin αi , αi ) (9)

1implement with Pytorch using torch.nn.functional.grid_sample
2implement with Pytorch using torch.fft and torch.ifft
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Fig. 1. The architecture of our CasRedSCAN. Each block consists of a RedSCAN (blue) and a PDFL (gray).

where we parallelize the back-projection operation,3 such
that the reconstruction can be efficiently computed. In the
backward path of G f bp, the loss in the image domain should
be aggregated and projected to the sinogram domain. Thus,
we define the derivative of G f bp with respect to the input sino-
gram S f an as the forward projection operation G (discussed
in Section III-A).

Here, we use pixel-driven algorithm for our implementation
of forward projection and back-projection [29].

C. Forward and Backward Pass
Our Projection Data Fidelity Layer (PDFL) consists of three

operations: i) forward project G, ii) the projection data fidelity
of Eq.(5), and iii) the FBP layer G f bp. The projection data
fidelity of Eq.(5) can be formulated in matrix form as:

DScnn + 1

λ+ 1
Su (10)

where D = diag(e1, e2, · · · , eM ) with:

eM =
{

λ
1+λ , when i ∈ �,

1, when i /∈ �
(11)

Then, our PDFL combines the three operations discussed
above. Specifically, the forward pass of PDFL can be writtern
as:

PP DF L(Icnn , Su) = G f bp(DG Icnn + 1

λ+ 1
Su)

= G f bpDG Icnn + 1

λ+ 1
G f bp Su (12)

where Icnn is the image predicted from an image-domain deep
network and is the input of our PDFL. The output of PDFL
is an image with projection data fidelity from limited-view
projection data Su . Assuming low noise level, we set λ =
0.001 (analyzed in Section V-C.4). Given the forward pass of
Eq.(12), the gradient of the PDFL with respect to the input
Icnn can thus be written as:

∂PP DF L

∂ Icnn
= G f bpDG (13)

which is defined for our PDFL’s backward pass. There is no
learnable parameter in our PDFL.

IV. CASCADED RESIDUAL DENSE SPATIAL-CHANNEL

ATTENTION NETWORK

Previous MBIR methods solve the optimization problem
in Eq.(1) for CT reconstruction by switching the de-aliasing

3implement with Pytorch’s Custom C++ and CUDA extensions

step and the projection data fidelity step back and forth
until convergence. However, in many previous deep-learning
based reconstruction methods [13], [18], [19], they use
single-step deep networks for de-aliasing and reconstruction.
Unfortunately, a trained single-step network cannot be used
for iterative de-aliasing, since iteratively applying single-step
network de-aliasing does not guarantee to converge to a rea-
sonable reconstruction. Moreover, single-step deep networks
with limited de-alising capability are prone to issues, such
as over-fitting. Therefore, it is desirable to have a network
structure that is able to iteratively de-alias the image using
a deep network with sufficient de-aliasing capability, while
preserving the projection data fidelity. Here, we propose a
cascaded network structure, called CasRedSCAN, with basic
units of Residual Dense Spatial-Channel Attention Network
(RedSCAN) and PDFL.

Similar to the process of MBIR that alternates between
the de-aliasing step and the projection data fidelity step,
our CasRedSCAN also alternates between the RedSCAN
and PDFL, as illustrated in Figure 1. With the initial FBP
reconstruction image inputted into the first RedSCAN, the de-
aliasing output is fed into the first PDFL. Then, the PDFL
output is fed into the second RedSCAN+PDFL block. The
same procedure is iterated a fix number of times for a
final reconstruction output Iz . The loss function can thus be
formulated as:

L = ||PCas Red SC AN(Iu; θ, Su)− Igt ||22, (14)

where Iu is initial FBP reconstruction. θ is the RedSCAN
network parameters. Su is the limited-view sinogram data. Igt

is the ground truth reconstruction from full-view sinogram
data. The algorithm is summarized in Algorithm 1. In our
implementation, all the RedSCAN shared the same network
parameters in CasRedSCAN, thus maintaining nearly the same
model size as compared to the single-step RedSCAN.

A. Residual Dense Spatial-Channel Attention Network

Our RedSCAN consists of three key components, including
initial feature extraction (IFE) using two 3×3 convolution lay-
ers, multiple Residual Dense Spatial-Channel Attention Block
(RedSCAB) followed by global feature fusion, and global
residual learning. The network architecture is demonstrated
in Figure 2.

Let PI F E1 and PI F E2 be the first and second convolutional
operations in IFE, we first extract F−1 = PI F E1(Iu) for global
residual learning, and F0 = PI F E2(F−1) for feeding into
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Algorithm 1 Cascaded Residual Dense Spatial-Channel Attention Network

Input: � = {(Iui , Sui , Igti )}, for i ∈ {1, . . . , N} ; � training dataset
Initialize: θinit :← N (0, 1) ; � initialize weights
for i ter = 1 to k do

T = {(Iu, Su , Igt )} ← � ; � get training batch
for j = 1 to z do

if j = 1 then
input j = Iu ;

else
input j = output j−1 ;

output j ← PRed SC AN (input j , θ) ; � unregularized output
output j ← PP DF L(output j , Su) ; � regularized output

Iz = outputz ;
θ :← min[L(Iz, Igt )] ; � optimization

Output θ ; � return upon convergence

Fig. 2. The architecture of our residual dense spatial-channel attention network (RedSCAN), which are used in both the recurrent image
reconstruction blocks in Figure 1.

RedSCAB. Assuming we have n RedSCABs, the n-th output
Fn can thus be written as:

Fn = PRed SC ABn(Fn−1), (15)

where PRed SC ABn represents the n-th RedSCAB operation
(n ≥ 1). Given the extracted local features from a set of
RedSCAB, we apply our global feature fusion (GFF) to extract
the global feature:

FG F = PG F F ({F1, F2, . . . , Fn}), (16)

where {} means concatenation along feature channel and our
global feature fusion function PG F F consists of a 1 × 1 and
3 × 3 convolution layers to fuse the extracted local features
from different levels of RedSCAB. The GFF output is used as
input for our global residual learning:

I = P f inal (FG F + F−1), (17)

The element-wise addition of global feature and initial feature
are fed into our final 3×3 convolution layer for unregularized
output. In our experiment, we set the size of IFE feature
channel to 32.

Residual Dense Spatial-Channel Block contains four
densely connected convolution layers, local feature fusion,
local residual connection, and spatial-channel attention. In the
n-th RedSCAB, the t-th convolution output is:

Ft
n = Ht

n{Fn−1, F1
n , . . . , Ft−1

n }, (18)

where Ht
n denotes the t-th convolution followed by Leaky-

ReLU in the n-th RedSCAB, {} means concatenation along
feature channel, and the number of convolution t ≤ 4. Then,
we apply our local feature fusion (LFF), a 1× 1 convolution
layer, to fuse the output from the last RedSCAB and all
convolution layers in current RedSCAB. Thus, the LFF output
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TABLE I
QUANTITATIVE COMPARISON OF LIMITED ANGLE RECONSTRUCTION AND SPARSE VIEW RECONSTRUCTION RESULTS UNDER DIFFERENT LIMITED

ANGLE AND SPARSE VIEW SETTINGS USING PSNR (DB), SSIM, AND RMSE ON AAPM DATASET. BEST RESULTS ARE MARKED IN RED

can be expressed as:

FL F,n = PL F F,n({Fn−1, F1
n , F2

n , F3
n , F4

n }), (19)

where PL F F,n denotes the LFF operation. Then, it is fed
into our Spatial-Channel Attention (SCA) module with two
branches to re-weigh channel-wise features and spatial-wise
features, as illustrated in Figure 2. The channel attention output
FC A,n and spatial attention output FS A,n are fused together via
FSC A,n = FC A,n + FS A,n . Finally, we apply the local residual
learning to SCA output by adding the residual connection from
RedSCAB input, generating the n-th RedSCAB output:

Fn = FSC A,n + Fn−1 (20)

In our experiment, we set the number of RedSCAB to 5.
Spatial-Channel Attention contains two Squeeze-and-
Excitation branches for Channel Attention (CA) and Spatial
Attention (SA), respectively [30], [31]. Traditional CNNs
treat channel-wise features and spatial-wise features equally.
However, in an image reconstruction task, it is desirable
to have the network focus more on informative features by
acknowledging both the channel-wise feature interdependence
and the spatial-wise contextual interdependence. The CA and
SA structures are illustrated in orange and blue boxes in
Figure 2, respectively.

For CA, similar to [30], we spatial-wise squeeze the input
feature map using global average pooling, where the feature
map is formulated as F = [ f1, f2, . . . , fC ] here with fn ∈
RH×W denoting the individual feature channel. We flatten the
global average pooling output, generating v ∈ RC with its z-th
element:

vz = 1

H × W

H∑
i

W∑
j

fz(i, j) (21)

where vector v embeds the spatial-wise global information.
Then, v is fed into two fully connected layers with weights
of w1 ∈ R

C
2 ×C and w2 ∈ R

C×C
2 , producing the channel-wise

calibration vector:

v̂ = σ(w2η(w1v)) (22)

where η and σ are the ReLU and Sigmoid activation function,
respectively. The calibration vector is applied to the input
feature map using channel-wise multiplication:

F̂C A = [ f1v̂1, f2v̂2, . . . , fC v̂C ] (23)

where v̂i indicates the importance of the i -th feature channel
and lies in [0, 1]. With CA embedded into our network, the cal-
ibration vector adaptively learns to emphasize the important
feature channels while plays down the others.

In SA, we formulate our feature map as F =
[ f 1,1, . . . , f i, j , . . . , f H,W ], where f i, j ∈ RC indicates the
feature at spatial location (i, j) with i ∈ {1, . . . , H } and j ∈
{1, . . . , W }. We channel-wise squeeze the input feature map
using a convolutional kernel with weights of w3 ∈ R1×1×C×1,
generating a volume tensor m = w3 � F with m ∈ RH×W .
Each f i, j is a linear combination of all feature channels
at spatial location (i, j). Then, the spatial-wise calibration
volume that lies in [0, 1] can be written as:

m̂ = σ(m) = σ(w3 � F) (24)

where σ is the sigmoid activation function. Applying the
calibration volume to the input feature map, we have:

F̂S A = [ f 1,1m̂1,1, . . . , f i, j m̂i, j , . . . , f H,W m̂ H,W ] (25)

where the calibration parameter m̂i, j provides the relative
importance of a spatial information of a given feature map.
Similarly, with SA embedded into our network, the calibration
volume learns to stress the most important spatial locations
while ignores the irrelevant ones.

Finally, channel-wise calibration and spatial-wise cali-
bration are combined via element-wise addition operation
FSC A = F̂S A + F̂C A. With the two branch fusion, fea-
tures at (i, j, c) possess high activation only when they
receive high activation from both SA and CA. Our SCA
encourages the networks to re-calibrate the feature map
such that more accurate and relevant feature maps can be
learned.

V. EXPERIMENTS AND RESULTS

A. Data Preparation and Training

We used two large-scale dataset for our experiments. In our
first dataset, we collected 10 whole body CT scans from the
AAPM Low Dose CT Grand Challenge [25]. Each 3D scan
contains 318 ∼ 856 2D slices covering a range of anatomical
regions from chest to abdomen to pelvis. From the AAPM
dataset, the 2D dataset of 3397 images without lesion are
split patient-wise into 1834 training images, 428 validation
images, and 1135 test images. To evaluate the reconstruction
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Fig. 3. Comparison of limited angle reconstructions (120◦ limited angle) and sparse view reconstructions (1/4 downsampling) in chest,
abdominal, and pelvic CT scans along with error maps. In our LA chest reconstruction, important arterial structure (green arrows) is better preserved
using our CasRedSCAN. Similarly for kidney boundary (blue arrows) in the abdominal reconstruction. The corresponding RMSE is indicated at the
bottom. The display window is [−1000 1000] HU.

performance on CT image with important pathological find-
ings, in our second dataset, we collected 2900 2D CT slices
from the DeepLesion dataset [32], which consists of 8 dif-
ferent lesion types (bone:240, liver:380, lung:380, kidney:380,
mediastinum:380, abdominal:380, pelvis:380, soft-tissue:380).
We split the DeepLesion 2D dataset into 1960 training images
(110 for bone, 250 for each of the rest lesion types), 300 val-
idation images (50 slices for each lesion types), 640 test
images (80 slices for each lesion types). All images are resized
to 256 × 256. We combined two dataset for training and
testing.

Similar to the CT projection simulation in [33], we assume
an equi-angular fan-beam projection geometry. A 120 kV p
polyenergetic x-ray source is simulated. To simulated Poisson
noise in the sinogram, we assume the incident x-ray contains
2 × 107 photons. The distance between the x-ray source and
the rotation center is set to 39.7 cm. There are 439 detector
bins in a row and each image consists of 256×256 pixels. For
each image, the fully sampled sinogram data S was generated
via 360 projection views uniformly spaced between 0 and 360
degrees. In sparse view experiments, we uniformly sampled
180, 90, and 60 projection views from the 360 projection
views to form Su , mimicking 2, 4, and 6 fold radiation dose
reduction. In limited angle experiments, we sampled 90, 120,
and 150 (out of the 360 total) projection views that lies

Fig. 4. Limited angle reconstructions and sparse view reconstruc-
tions at different limited angle settings and downsampling ratio settings.
The display window is [−1000 1000] HU.

within 0− 90, 0− 120, and 0− 150 degrees for our Su . The
reconstructed image I and Iu were obtained by applying FBP
to S and Su , respectively.

We implemented our CasRedSCAN in Pytorch,4 and trained
it on an NVIDIA Quadro RTX 8000 GPU with 48G memory.
The Adam solver [34] was used to optimize our models with

4http://pytorch.org/
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Fig. 5. Comparison of limited angle reconstructions (120◦ limited angle) and sparse view reconstructions (1/4 downsampling) in CT scans
with lesions. The lesion region zoom-in views are shown on the top. The display window of liver, kidney, and abdomen CT is [−300 500] HU. The
display window of lung CT is [−1000 1000] HU.

a momentum of 0.99 and a 0.0005 learning rate. We used a
batch size of 4 during training.

B. Experimental Results

For quantitative evaluation, both SV and LA results were
evaluated using Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index (SSIM), and Root Mean Square Error
(RMSE) by comparing the synthetic SV and LV recon-
structions to the ground truth reconstruction from FBP of
fully sampled sinogram. For comparative study, we compared
our results on both SV and LA tasks against: 1) image-
to-image translation-based methods, including the combina-
tion of Densenet and Deconvolution (DDNet) [18], Framing
UNet (FUNet) [19], FBPNet [13], and 2) deep learning-based
methods with projection data fidelity used in the test stage,
including DCAR [21] and CTNet [1].

The qualitative comparison of different limited angle recon-
struction methods with AAPM dataset is shown in Figure 3.
As we can observe in chest region, previous methods have
difficulties in reconstructing small anatomical structure, i.e.
arteries. Similarly, with crowded organs in abdominal region,
the organ boundaries are challenging to recover by previous
methods along with additional patient boundary artifacts. Our
CasRedSCAN with advanced network design and projection
data fidelity constraint can provide superior limited angle
reconstruction in terms of organ boundary recovery, small
structure recovery, and boundary artifact elimination. Table VI
outlines the quantitative comparison of different methods on
limited angle reconstruction with AAPM dataset. Compared
to the best previous method’s performance of DCAR [21],
we improve SSIM from 0.970 to 0.983 and reduce RMSE
from 39.1 to 26.1 for 120◦ setup, respectively.

The qualitative comparison of different sparse view recon-
struction methods with AAPM datset is also shown in Figure 3.
Similar to the observations from limited angle experiments
above, our CasRedSCAN yields high-quality reconstruction
in crowded soft tissue area with fine details. As evidenced in
Table VI, our CasRedSCAN achieves the best results among
various previous methods. Compared to the best previous
method’s performance of DCAR [21], we improve SSIM from
0.973 to 0.989 and reduce RMSE 26.3 to 14.4 for 1/4 setup,
respectively. Figure 4 shows the limited angle reconstructions
and sparse view reconstructions from our CasRedSCAN at
different settings.

As CT scan is often used for disease diagnosis, we also
evaluated the reconstruction performance on CT images with
8 different lesion types. Figure 5 illustrates the qualitative
comparison of various limited angle and sparse view recon-
struction methods on 4 major lesion types. As we can observe,
the liver lesion and kidney lesion are hard to recover by
previous methods because these lesions have low contrast
to the soft-tissue background, and their visualization are
further degraded by the limited angle artifacts. Similarly,
the lung lesion are also challenging to recover by previous
methods due to their complex lesion texture. However, our
CasRedSCAN can provide superior recovery of the shape and
texture of the lesion even under these difficult conditions.
For example, our liver and kidney reconstructions on the last
column can provide clear lesion boundary which is critical for
lesion progression assessment. The lung bronchi that originally
diminished on FBP reconstruction can also be better recovered
by our CasRedSCAN. Table II summarizes the reconstruction
performance on CT images with 8 different lesion types. For
120◦ limited angle reconstruction, our CasRedSCAN achieves
RMSE < 30 HU across all 8 lesion types which consistently
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TABLE II
QUANTITATIVE COMPARISON OF LIMITED ANGLE RECONSTRUCTIONS (120◦ LIMITED ANGLE) AND SPARSE VIEW RECONSTRUCTIONS

(1/4 DOWNSAMPLING) RESULTS USING PSNR (DB), SSIM, AND RMSE. BEST RESULTS ARE MARKED IN RED

Fig. 6. Comparison of limited angle and sparse view results on CT
images with 8 tumor types under different limited view settings.

outperforms previous reconstruction methods. Similarly, for
1/4 sparse view reconstruction, our CasRedSCAN achieves
the lowest RMSE across all 8 lesion types as compared to
previous reconstruction methods. Performance comparison of
our CasRedSCAN under different limited angle and sparse
view settings on 8 different tumor types are illustrated in
Figure 6. Our CasRedSCAN is able to keep the RMSE below
20 for limited angle reconstructions (150◦) and sparse angle
reconstructions (1/2) with different tumor types. However,
the RMSE increases as the limited angle reduces or the sparse
view undersampling rate increases.

C. Ablation Studies

1) Number of Cascade: The number of cascade block can
be flexibly adjusted in our CasRedSCAN. We analyzed the

Fig. 7. The effect of increasing the number of cascade blocks (Z) in our
CasRedSCAN for limited angle reconstructions (120◦ limited angle)
and sparse view reconstructions (1/4 downsampling).

effect of increasing the number of cascade blocks in our
CasRedSCAN. The result is summarized in Figure 7 and
evaluated using AAPM dataset. As we can observe, using more
cascade blocks boosts the reconstruction performance, while
the rate of improvement starts to converge after the number
of blocks reaches 3. In LA, increasing the number of cascade
from 4 to 5 only increase SSIM by less than 0.002 and reduce
RMSE by less than 2 in average. Similar observation can be
found in SV.
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TABLE III
ATTENTION MECHANISM ANALYSIS USING PSNR, SSIM, RMSE. ✓

AND ✗ MEANS CHANNEL ATTENTION (CA) AND SPATIAL ATTENTION

(SA) USED AND NOT USED IN OUR CASREDSCAN. THE OPTIMAL

RESULTS ARE IN BOLD. ∗ MEANS THE DIFFERENCE COMPARED TO

BASELINE WITHOUT SA AND CA ARE SIGNIFICANT AT

P < 0.1, WHILE † MEANS NOT SIGNIFICANT

Fig. 8. Sinogram errors over the cascade block’s output in our
CasRedSCAN for limited angle reconstructions (120◦ limited angle)
and sparse view reconstructions (1/4 downsampling).

2) AttentionMechanism: Two attention mechanisms are used
and combined in our CasRedSCAN. We analyzed the effect
of these two attention mechanisms in our CasRedSCAN.
The result is illustrated in Table III and evaluated using
AAPM dataset. We compared our CasRedSCAN’s perfor-
mance with or without channel attention or spatial atten-
tion. As we can observe, both channel attention and spatial
attention can improve the reconstruction performance, and the
combination of both attentions provides the best performance
with the least variation, and significantly outperforms the base-
line CasRedSCAN without both channel and spatial attentions.

3) Sinogram Evolution: With the number of cascade block
set to 4 in our CasRedSCAN, we further analyzed how
the generated sinogram evolves over the cascaded network.
We computed the mean RMSE between each cascade block’s
sinogram outputs and the ground truth full view sinogram. The
results for both LA and SV are plotted in Figure 8. As we
can see, the sinogram errors gradually reduce as the generated
data passes through the next cascaded block, while the rate
of sinogram error reduction starts to converge after the first
cascade block.

4) PDFL Parameter: In PDFL, λ is the noise level parameter
that controls the linear combination of the acquired projection
data and the projection data of RedSCAN’s output. Assuming
low noise x-ray acquisition as in our experiments, λ should be
a small value as the impact of noise is minimal. We analyzed
the impact of λ under both LA and SV conditions. The results
are summarized in Figure 9. As we can observe, reconstruction
without considering the noise, i.e. λ = 0, leads to degradation

Fig. 9. Impact of λ in PDFL for limited angle reconstructions (120◦
limited angle) and sparse view reconstructions (1/4 downsampling).

TABLE IV
QUANTITATIVE COMPARISON OF LIMITED ANGLE RECONSTRUCTION

(120◦) AND SPARSE VIEW RECONSTRUCTION (1/4 DOWNSAMPLING)
RESULTS USING DIFFERENT NETWORKS WITH AND WITHOUT

OUR CASCADED FRAMEWORK

on reconstruction performance. Setting λ = 0.001 leads to the
best reconstruction performance in our search range, while
the RMSE difference is less than 1 between λ = 0.001 and
λ = 0.005.

5) Embedded Networks: We embedded different previ-
ous image-to-image reconstruction networks [13], [18], [19]
into our cascaded network and compared the performance
with or without cascade. The qualitative results are visualized
in Figure 10. The quantitative results are summarized in
Table IV. The number of cascade is set to 4 in this study. As we
can observed, embedding different previous image-to-image
networks into our cascade design improves the reconstruction
performance, while RedSCAN embedded into our cascade
network achieves the best reconstruction performance.

VI. DISCUSSION

In this paper, a novel reconstruction framework, named
CasRedSCAN, is proposed. Inspired by the recent advances
in image super-resolution network designs and the projection
data constraint in MBIR, we designed a customized RedSCAN
as our backbone image reconstruction network, and we built a
projection data fidelity layer that can be embedded in deep net-
works. First of all, our RedSCAN is developed based on image
super-resolution network [35] with an addition of spatial-
channel attention, which allows our RedSCAN to re-calibrate
the channel attention and gives different levels of attention
on recovering texture details at different spatial locations,
as artifact distribution is not uniform in the image. In fact,
Hu et al. [36] recently also demonstrated that spatial-channel
attention can boost the image super-resolution performance.
Then, we develop PDFL that can be concatenated to the
RedSCAN’s cascade outputs to ensure the projection data



1802 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 7, JULY 2021

Fig. 10. Comparison of limited angle reconstructions (120◦ limited angle) and sparse view reconstructions (1/4 downsampling) with and
without cascade framework using different basic networks. The display window of limited angle reconstruction is [−1000 1000] HU. The display
window of sparse view reconstruction is [−300 800] HU.

fidelity at the sampled projection views. Our PDFL based on
the analytical FBP solution with fan-beam geometry allows it
to be embedded in a deep network and used during training
and inference.

We demonstrate the feasibility of our CasRedSCAN on
both LA and SV tomographic reconstruction tasks, as shown
in the result section. Firstly, the LA acquisition is more
difficult to reconstruct as compared to the SV acquisition
since a range of projection angles are not covered in the LA
acquisition. Severe image artifacts at these projection angles
can be observed when using conventional FBP. As a result,
the general performance of LA reconstructions are inferior
to the SV reconstruction performance. For example, in 120◦
LA reconstruction, while previous methods can mitigate the
artifacts and recover PSNR up to 37.94 and SSIM up to
0.970, they still have difficulties in recovering the organ
boundaries that are critical for clinical diagnosis and treatment
planning. Our CasRedSCAN provides superior reconstructions
with clear organ boundaries and is able to improve the PSNR

to 41.48 and SSIM to 0.983. In 1/4 SV reconstruction,
while previous methods can generate visually plausible image
content, the reconstruction prediction without projection data
fidelity can result in artificial texture which is undesirable
in clinical tasks. Our CasRedSCAN with PDFL can better
preserve the image fidelity by incorporating the already-
sampled projection data, resulting in best performance in terms
of PSNR, SSIM, and RMSE.

Furthermore, we demonstrate the feasibility of our CasRed-
SCAN on CT lesion imaging under LA and SV conditions.
Lesion is highly heterogeneous, and CT is one of the primary
tool for diagnosis. Obtaining high-quality lesion region recon-
struction under LA and SV is essential for disease diagnosis,
staging, as well as planning and evaluation of treatment.
While previous methods can reduce the reconstruction artifacts
from the whole image perspective, the reconstruction in lesion
region with high heterogeneity is still unsatisfying - the lesion
boundary and texture are highly distorted by previous methods
which will negatively impact the subsequent treatment options.



ZHOU et al.: LIMITED VIEW TOMOGRAPHIC RECONSTRUCTION USING CasRedSCAN 1803

On the other hand, our CasRedSCAN can better preserve the
lesion reconstruction even the lesions are highly heteroge-
neous. For example, the supplying vessels of LA lung lesion
in Figure 5 are totally missed by previous methods, while
our CasRedSCAN can better recover it. The complex interior
texture of SV lung lesion in Figure 5 is highly distorted by
previous methods, but our CasRedSCAN can still preserve the
structure. In Figure 5, liver and kidney lesions embedded in
soft-tissue background with low contrast are prone to smooth-
out in SV and distorted in LA by previous methods, and our
CasRedSCAN can better recover the boundary and the contrast
of the lesions.

We believe there are several reasons that potentially
lead to the superior performance of using RedSCAN in
CasRedSCAN. First of all, our RedSCAN has no image down-
sampling for abstraction, thus keeping the image restoration on
original resolution. Second, convolutional layers in different
depths have different sizes of receptive fields, resulting in
hierarchical features. Image restoration should utilize all the
hierarchical features, instead of only the last layer output.
Our RedSCAN concatenating all the hierarchical features can
potentially better learn the restoration. Thirdly, the hierarchical
features are generated by our residual dense channel-spatial
block that allows better feature learning at each hierarchical
level. Moreover, the residual connection in each block also
allows the gradient to be better passed to earlier layers, thus
helping the training of our wide network design. As shown
in Table , the design of our RedSCAN also provides a
relatively smaller amount network parameter (0.51M) as com-
pared to the previous method. Specifically, the RedSCANs in
CasRedSCAN share the same network parameter and there
is no learnable parameter in PDFL, thus the CasRedSCAN’s
parameter size remains the same as RedSCAN regardless of
the number of cascading. In this case, our CasRedSCAN using
the least amount of parameters achieves the best limited view
reconstruction performance.

The presented work also has potential limitations. First of
all, the inference time is longer compared to the previous deep
learning based methods, as illustrated in Table VI. This is
caused by the cascaded design with PDFL interleaved. On one
hand, the iterative reconstruction prediction will increase the
computation time. On the other hand, even though FBP is
a fast analytic solution, the forward projection and FBP
operations in PDFL still consume computation times. The
combination of these two results in longer training and infer-
ence time. However, the inference time is about 150 ms which
is acceptable and much faster than previous MBIR methods.
Moreover, in our PDFL, we assume 360 degrees fan-beam
projection combined from the already sampled sinogram and
the predicted sinogram. The minimal complete sinogram with
reduced number of projection could reduce the computation
time of PDFL. However, additional step of sinogram weight-
ing, such as Parker weighting [37], could be incorporated to
address the data redundancy issue. Secondly, while increasing
the number of cascade block in CasRedSCAN improves the
performance, the memory consumption will increase along
with longer training and inference time. As illustrated in
Figure 7, the increase in performance starts to converge after

n = 3. Thus, in this work, we set n = 4 to balance the memory
consumption and inference time of our CasRedSCAN.

The architecture of our CasRedSCAN also suggests several
interesting topics for future studies. The first one is combining
the projection data fidelity layer with the deep learning based
radon inversion techniques [38]. The cascaded framework with
projection data fidelity can provide the projection domain
constraint during the radon inversion via deep learning. It can
potentially improve the inversion stability, yielding reconstruc-
tion with better data fidelity. Secondly, given the superior
lesion region reconstruction performance demonstrated in the
result sections, our framework could also potentially improve
the projection data based Computer-Aided Diagnosis (CAD).
Recently, there are increasing interests on combining limited-
view reconstruction and CAD for a joint reconstruction-
CAD network structure, and improved CAD performance is
expected with such an end-to-end training strategy [39], [40].
We believe that our CasRedSCAN with high-quality lesion
region reconstruction would provide new opportunities for
these kinds of studies. Thirdly, CT metal artifact reduction
(MAR) under limited-view acquisition is an important research
direction. Current MAR techniques are mostly limited to full-
view acquisition [41], [42]. The current state-of-the-art metal
artifact reduction algorithm, such as DuDoNet [41], utilizes
projection space and image space simultaneously which is
similar to our CasRedSCAN design. Our CasRedSCAN could
potentially integrated with current MAR network for MAR
under limited view conditions. Fourthly, low-dose CT com-
bined with limited-view acquisition may further reduce the
radiation dose. As a matter of fact, Shan et al. [43] and
Wu et al. [44] had proposed cascaded network structures with
basic network of UNet [15] or sequential CNN layers, and
demonstrated their efficiency in low-dose CT. As cascade
network is also potentially efficient in low-dose CT, our
CasRedSCAN could be adapted to limited-view low-dose CT
that may further reduce the radiation dose and acquisition time.
Lastly, we believe our CasRedSCAN could be adapted to other
tomography imaging modalities with similar applications, such
as SPECT, PET, and Cryo-ET [45]–[47].

VII. CONCLUSION

In this work, we proposed a cascaded network with Red-
SCAN and PDFL, a novel framework for limited view tomo-
graphic reconstruction. The proposed PDFL is interleaved
in our cascaded network to ensure the sampled sinogram is
consistent in sinogram domain with the network cascaded
output. A customized image restoration network is used as the
backbone in the cascaded network. Comprehensive evaluation
demonstrates that our CasRedSCAN can provide high-quality
limited angle and sparse view tomographic reconstruc-
tion while reducing radiation dose and shortening scanning
time.
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