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Abstract— Photoacoustic (PA) imaging can revolutionize
medical ultrasound by augmenting it with molecular infor-
mation. However, clinical translation of PA imaging remains
a challenge due to the limited viewing angles and imaging
depth. Described here is a new robust algorithm called
Superiorized Photo-Acoustic Non-NEgative Reconstruction
(SPANNER), designed to reconstruct PA images in real-time
and to address the artifacts associated with limited viewing
angles and imaging depth. The method utilizes precise
forward modeling of the PA propagation and reception
of signals while accounting for the effects of acoustic
absorption, element size, shape, and sensitivity, as well as
the transducer’s impulse response and directivity pattern.
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A fast superiorized conjugate gradient algorithm is used for
inversion. SPANNER is compared to three reconstruction
algorithms: delay-and-sum (DAS), universal back-projection
(UBP), and model-based reconstruction (MBR). All four algo-
rithms are applied to both simulations and experimental
data acquired from tissue-mimicking phantoms, ex vivo
tissue samples, and in vivo imaging of the prostates in
patients. Simulations and phantom experiments highlight
the ability of SPANNER to improve contrast to background
ratio by up to 20 dB compared to all other algorithms, as well
as a 3-fold increase in axial resolution compared to DAS and
UBP. Applying SPANNER on contrast-enhanced PA images
acquired from prostate cancer patients yielded a statisti-
cally significant difference before and after contrast agent
administration, while the other three image reconstruction
methods did not, thus highlighting SPANNER’s performance
in differentiating intrinsic from extrinsic PA signals and its
ability to quantify PA signals from the contrast agent more
accurately.

Index Terms— Optoacoustic/photoacoustic imaging,
prostate, image reconstruction - iterative methods,
molecular and cellular imaging.

I. INTRODUCTION

HOTOACOUSTIC imaging (PAI), also known as optoa-

coustic imaging, is a biomedical imaging modality that
combines the portability and high resolution of ultrasound
imaging (USI) with the molecular contrast and multiplexing
capabilities of optical imaging methods [1], [2]. PAI derives
its contrast from the optical absorption of tissues. PAI can be
implemented in multiscale domains: either in a microscopy
configuration [3], which sacrifices imaging depth to achieve
micrometer scale resolution or in a tomographic configu-
ration [4], which allows for a few centimeters of imaging
depth with ultrasound resolution (typically sub-mm) [5]. Over
the past twenty years, the engineering aspects of PAI were
thoroughly researched with impressive results obtained mostly
for phantom or small animal imaging [6]-[8]. More recently,
clinical translation has begun with experimental clinical sys-
tems for thyroid cancers [9], lymph node metastasis [10],
breast cancers, surgical guidance [11], psoriasis biomark-
ers [12], or carotid arteries [13]. PAI holds considerable
promise for clinical translation with minimal interference to
clinical workflow [14], [15] because it can be combined with
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conventional USI to provide co-registered anatomical and
molecular information [16], [17].

For many PAI technologies, the transition from full-body
tomographic imaging in small-animal models to regional clin-
ical human imaging, which allows illumination and detection
from only one side, presents new challenges [18]. Such
challenges include the limited field of view, degraded signal-
to-noise ratio (SNR) due to increased imaging depths, and
a requirement for fast processing to allow real-time opera-
tion [19]. Moreover, co-registered high-quality USI is invalu-
able for clinical translation, as it is the standard of care for
multiple procedures. Without a clear anatomical image, it is
almost impossible to visually segment the image into clinically
meaningful regions or find the same region of interest (ROI)
in subsequent imaging sessions. Thus, the combination of
USI and PAI might seem quintessential; the same transducer
can serve as an acoustic emitter for USI as well as an
acoustic receiver for both USI and PAI. However, those two
modalities often pose different or even conflicting design
requirements. USI utilizes small elements [20] (compared
to the acoustic wavelength) and flat or convex transducer
geometry, while PAI requires large area elements (to increase
sensitivity) and concave or tomographic full view transducer
geometries.

Despite these hurdles, there is still an essential need for
a clinical PAI system that can provide highly accurate and
physically faithful image reconstruction in a sufficiently fast
(typically 10-20 Hz) manner [18]. Here, we demonstrate a new
reconstruction technique, Superiorized Photo-Acoustic Non-
Negative Reconstruction (SPANNER), that can provide high
quality real-time photoacoustic (PA) image reconstruction even
in the presence of limited view and low SNR. This algorithm is
based on the concept of mathematical superiorization [21] and
is achieved using a detailed model matrix for forward model-
ing, as well as a superiorized and modified conjugate gradient
algorithm for real-time inversion of the model relations. This
manuscript compares SPANNER to the two most common
image reconstruction algorithms: delay-and-sum (DAS) and
universal back-projection (UBP) [22]. Finally, to distinguish
the contribution of the SPANNER algorithm from the contribu-
tion of the forward model-matrix, we compare it with a model-
based reconstruction (MBR) scheme based on a regularized
typical least-squares solver [23].

II. THE SPANNER ALGORITHM

The goal of PA image reconstruction is to find p, an
estimated initial pressure image, given s, a vector of all
the measured RF time samples from all detectors and M,
pre-calculated forward model matrix that transforms the true
image into a noiseless RF: s = Mp. Additional a-priori
constraints must be added to the reconstruction in-lieu of the
missing data to negate the effects of noise and limited view.
Regardless of the image content, a high-quality PA image
should exhibit only nonnegative physical values, clear bound-
aries, and no signals from optically non-absorptive regions.
Thus, proper constraints and regularization are essential for
better image qualities. In particular, the anisotropic L' total

variation (TV) regularization is adapted to enforce desirable
image features. TV demonstrates superior performance over
classical regularizations [24] since sharp edges are preserved
but are not necessarily under- or over-expressed compared to
the smooth ones. Instead, the presence of these edges hinges
upon the detected signals. However, a non-differentiable L!
regularization scheme poses challenges for implementation
and integration with a conjugate gradient type algorithm.
These challenges are exacerbated in a real-time algorithm,
where computation efficiency is critical. Thus, we propose
using superiorization to perturb a non-linear conjugate gradient
algorithm. Superiorization techniques are typically used to
improve the efficacy of iterative algorithms in which conver-
gence is resilient to perturbations [21]. Leveraging upon such
algorithmic resilience, perturbations can be utilized to steer
the algorithm’s iterations away from the path that the original
algorithm would naively take. The perturbed algorithm is often
called the ’superiorized version’ of the original unperturbed
algorithm. These perturbations force the superiorized algo-
rithm to produce the results that have more desirable attributes
compared to the original algorithm, even in the presence of
partial or noisy data. Leveraging the work of Zibetti et al. [25],
we perturbed the non-linear conjugate gradient algorithm to
produce a nonnegative, total variation regularized, rapidly
converging result. Thus, the problem to be solved for every
frame, is:

bspsw = argmin {IMB — 515 + 1713 + TV ®)} (1)
P>
where p is the initial pressure, M is the model matrix, s is the
raw pressure waveform, and A is a scalar parameter to control
the regularization. The notation || - ||2 denotes the L, norm
of the argument while TV(-) denotes the total variation norm
of the argument. Additionally, a precise model matrix was
constructed. Succinctly, the model matrix M implements the
following relation:

I'A;
1 (0) = dzo /// exp{—a[r—d;ll f}
' llr—d;lla=0st
x Dj(r—d;) Qin(:)%(ﬁz(r)dr] s _Gh(;t(t) )

where I is the Griineisen coefficient, f, is the detector’s
central frequency, and a is the acoustic attenuation (in Nepers
per unit distance per unit frequency). Each non-ideal detector
is characterized by its location d;, its directivity function

. 1
D; (+), its surface Q; (r) = 0 re detoecut)or area

sitivity A;, and its impulse response is 4; (t). By using a
two dimensional Cartesian grid and bilinear interpolation,
the relation in Eq. 2 can be written in a vector-matrix form.
This implementation deviates from the one presented by
Rosenthal et al. [26]-[28] in the sense that it accounts for
the medium properties, the individual element properties of
each detector in advance without the need to re-calculate these
“on the fly.” Finally, the use of a Cartesian grid rather than a
triangular grid allows more efficient computation of the total
variation regularization.

, its sen-
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Overall, SPANNER allows a rapid convergence rate on the
order of tens of milliseconds on a graphics processing unit
(GPU). Further reduction in computation time was achieved
by A) parallel implementation of the algorithms on the GPU,
B) use of the Jian, Han & Jiang hybrid coefficient [29]
to incorporate computed data from previous iterations to
accelerate the next iteration, C) incorporation of data from
previous reconstructed images as an initial guess for the algo-
rithm to accelerate the reconstruction of the next image (i.e.,
hot-start), and D) normalization of the model matrix columns,
which is known to accelerate numeric algorithms. A Matlab®
code for the SPANNER algorithm can be found online
at: github.com/idanstei/Superiorized-PhotoAcoustic-Non-
NEgative-Reconstruction-for-Clinical-Photoacoustic-Imaging.

I1l. METHODS
A. In Silico Evaluation

A controlled simulation environment with a
well-characterized ground truth was used to compare
the DAS, UBP (as implemented in ref [22], Section VI),
MBR, and SPANNER. We simulated a 192-element concave
array with a 200-micron pitch and 6 mm height. The
simulated target was a scaled United States Air Force (USAF)
target with an added Stanford University logo in the center
(Figure la). A forward model matrix was calculated based
on the imaging grid (5 cm in depth and 4 cm in azimuth
with a 150-xm resolution), acoustic properties of the medium
(e.g., speed of sound of 1540 m/s, acoustic attenuation
of 0.5 dB/MHz/cm, and Griineisen coefficient of 0.15),
and the detector properties (such as shape, directivity, and
sensitivity). Figure la shows the forward simulation steps to
generate RF data. For forward modeling, the model matrix
was applied to the ground truth image, and gaussian white
noise was added. Then, each channel was filtered with a
80% bandwidth impulse response function (IRF) as shown
in figure 1. This simulated both the effect of the impulse
response and in-band noise. Additional white noise was
added, and the data was quantized at 14-bit levels. The noise
spectral power was varied with respect to the signal power
to achieve the desired SNR. Pre-processing for all algorithms
included a Wiener deconvolution filter acting on the noisy
RF waveforms. In post-processing, nonphysical negative
reconstruction values were set to zero for the UBP and
MBR algorithms, but no further post-processing steps were
taken. The reconstruction performance of each algorithm was
evaluated as a function of input RF data SNR, ranging from
—9 dB to 20 dB in increments of 3 dB. For each noise level,
a total of 200 simulations were performed using random
images and noise values. The location of the absorbing
pattern shown in Figure la was randomly shifted inside
the ROI and flipped in both directions to generate different
images. Each simulation contained a different realization of
random noise, scaled to maintain the specified SNR. The
performance was quantified using the root mean square error
(also known as the L2 norm) with respect to the noiseless
ground truth image. For each noise level, the mean error and
95% confidence intervals were calculated.
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Fig. 1. In-silico comparison of the reconstruction algorithms.
a (left) The simulated target based on a scaled standard USAF target
with the Stanford logo in the center. A concave array is used to image
the target from only one side (right). Forward simulation steps which
were taken for generating the simulated RF signals. b Comparison of
the reconstruction performance of the three algorithms as a function of
different SNR of the input RF data. The error is shown with respect
to a random guess reconstruction. For each noise level, the aver-
age error and 95% confidence intervals are shown. c-f DAS, UBP,
MBR, and SPANNER reconstructions. Green arrows mark a region of
interes.

B. In Vitro Characterization

All algorithms were first evaluated in data previously
acquired using a prototype PAI device [30], [31] with a single
optical wavelength of 750 nm. The PA signals were acquired
using a linear array transducer with 64 elements and a total
aperture length of 12.8 mm. The subtended viewing angle at
clinically-relevant depths is 65° at 1 cm depth and decreases
to less than 15° at 5 cm depth. The impulse response and
sensitivity varied greatly between channels and were estimated
based on the RF data itself. These were then incorporated
into a Weiner-filter pre-processing stage, as well as into the
model matrix used by the MBR and SPANNER algorithms.
Additionally, the effect of the time-gain-compensation curve
was removed during pre-processing from the raw RF data
to achieve a constant gain at all depths, as defined by the
average intensity across the lateral span. Six black fishing
wires (100 micron in diameter) perpendicular to the imaging
plane were immersed in water (Fig. 2a). The DAS, UBP, MBR,
and SPANNER images were reconstructed from data with
identical pre-processing, and the axial resolution was measured
as the full-width at half maximum (FWHM).
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Fig. 2. Reconstruction of in vitro wire-phantom images using a
single optical wavelength. a B-mode ultrasound image of the wire
phantom. The six wires are marked with colored triangles. b-e DAS, UBP,
MBR, and SPANNER respective reconstructions. f,g Amplitude profiles
along a single wire marked with blue and multiple wires marked in green,
respectively.

To test the multispectral performance of the SPANNER,
we have reanalyzed RF data obtained from a chicken
breast phantom experiment [46]. Two pieces of chicken
breast (1.8 cm in thickness) were used to sandwich a
micro-centrifuge tube containing indocyanine green (ICG)
dissolved in PBS at 1.3 mM. PA images were acquired with
optical excitation wavelengths ranging from 750 to 950 nm.
The amplitude values across the tube were calculated and
normalized with respect to the laser power, as well as the
adjacent chicken breast surroundings (5 mm below and above
the ICG tube) to negate the effect of spectral coloring. The
mean and 95% confidence intervals were value calculated as
a function of the optical excitation wavelength.

C. Ex Vivo Imaging of Pancreatic Cancers

We reconstructed the PAI data that was previously
collected and analyzed during a clinical trial reported by
Mallidi et al. [47]. In this study, a small cohort of patients
(N=7) were injected with 50-100 mg of a functionalized
fluorescent agent (panitumumab-IRdye800), which is targeted
to the EGFR receptor expressed in pancreatic carcinomas.
The confirmed pancreatic cancer patients were injected with

the imaging agent 2-5 days prior to fluorescent-guided tumor
resection. This period allowed proper agent accumulation at
the tumor sites and clearance of the free dye. Following the
surgeries, the freshly resected pancreas samples were scanned
with both a fluorescence imaging (FLI) system, as well
as a custom made PAI system previously reported by our
group [46]. Both the FLI and PA images were then correlated
to assess the potential of using those modalities for real-time
surgical guidance. To ensure the integrity of the samples, they
were sandwiched between two agar blocks.

D. In Vivo Imaging of Prostate Cancer Patients

Finally, we assessed the efficacy of these algorithms in
reconstructing in-vivo PAI data, which were collected using
the same device [30]. In this study, PAI RF data were col-
lected from ten patients with suspected prostate cancer lesions
who were scheduled for a standard-of-care ultrasound-guided
prostate biopsy. These patients were scanned with multiple
optical excitation wavelengths (700 nm to 950 nm with
a 25 nm interval) before and after systemic injection of
FDA-approved ICG contrast agent with doses of 5 to 75 mg
in a single bolus injection. Kothapalli er al. [46] have
recently reported the complete details of this study. Despite
the large doses of ICG, the PA images produced in the
original work could not demonstrate a statistically signifi-
cant difference between the images pre- and post-injection
(p > 0.57 at 800 nm) without resorting to a complicated
multi-region, multispectral analysis based on linear unmixing
of hemoglobin and ICG. Accurate spectral unmixing remains
a significant challenge in PAI [32] due to the absence of
multispectral optical fluence compensation [33]. This problem
is exacerbated when long measurement times (10-20 minutes
per session) introduce motion artifacts and when low SNR and
narrow viewing angles skew the reconstruction. Thus, under
such conditions, spectral unmixing is inaccurate. To avoid
this problem, we chose to focus on a single wavelength
of 800 nm close to the ICG peak absorption spectrum (around
790 nm, concentration-dependent). Only the very last image
acquired before and immediately after injection were com-
pared. To make the analysis more clinically relevant and to
reduce motion artifacts further, we delineated the prostate
region in each image manually and quantified the PA signals
within the prostate. Then, we used a threshold to reject the
lower 10% values within the prostate, thus highlighting blood
vessels and regions with high absorbance. We used a two-
tailed, paired t-test between the pre- and post-injection images
to determine statistical significance. To further assess if the
signal increase observed post-injection is attributed to ICG
injection and not to any intrinsic contrast or motion artifacts,
we analyzed the PA images acquired at 950 nm excitation.
Since ICG does not absorb light at 950 nm [34], the images
pre- and post- should be statistically equivalent. There are
multiple statistical teststo affirm statistical equivalency. The
simplest is by using one set of the full overlap of the entire
90% confidence intervals pre- and post-injection to test each
reconstruction’s ability to quantify a lack of change. For a
fair comparison, the PA images presented from this study
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were jointly normalized to a 40 dB range for both pre-
and post-injection images, the amplitude of the PA signal is
presented with respect to the maximal amplitude post-injection
with the same optical excitation wavelength of 800 nm. All
analyses were performed on the linear scale values. Finally,
we analyzed the PA amplitude as a function of the ICG
dose injected into each patient. As the signal value changes
significantly from patient to patient, we calculated the ratio
(i.e., mean PA amplitude in the prostate post-injection divided
by the same amplitude pre-injection). These ratios were plotted
(best fit and 90% prediction bounds) as a function of the dose
for each of the four algorithms.

E. GPU Implementation of SPANNER

The SPANNER requires heavy computations for real-time
operation. Simultaneous co-localized USI and PAI were imple-
mented for GPU-based execution on a single high-end GPU
(Nvidia, Quadro GV-100, USA) based on a modified open-
source GPU beamforming package by Hyun et al [35].
USI was performed using a diverging-beam, coherently com-
pounded synthetic aperture sequence, and PAI was performed
using the SPANNER algorithm. The algorithm was imple-
mented as a set of CUDA kernels based on cuBLAS-V2 and
cuSPARSE libraries. Computations were further accelerated
by using the Jian, Han, & Jiang hybrid coefficient [29] to
incorporate computed data from previous iterations to speed
up the next iteration, and by using previously-reconstructed
images as an initial guess for the algorithm to accelerate the
reconstruction of the following image (i.e., hot-start). Finally,
an optional pre-processing step of frequency Wiener filtering
was implemented in the frequency domain using the cuFFT
library for Fast Fourier Transforms. The CUDA implemen-
tation also normalized and log-compressed the images as
necessary as well as extracted timestamps and maximal values
for both PA and US images.

IV. RESULTS
A. In Silico Evaluation

The in silico evaluation results are shown in Figure 1.
Figure la shows the simulated phantom and the forward
generation of RF. Figure 1b shows the RMS reconstruction
errors compared to the ground truth image. The error was
normalized with respect to the error from a random guess.

Due to the limited view angle, spatial frequencies in the
azimuthal direction cannot be fully recovered by any of the
algorithms. As expected, all algorithms performed better as
the SNR of the input RF data increases. However, as the
SNR improves, the artifacts due to the limited view become
dominant and hamper further reduction in the reconstruction
error. The SPANNER produces the most accurate result for the
most input noise levels. Accuracy is improved up to 3-fold
compared to DAS and UBP at the high SNR and up to
7-fold compared to MBR at the low and mid-range SNRs.
Figures lc-f show an example of the reconstructed images
with an input SNR of 4 dB. The DAS algorithm severely
smears the image, and the image values are not quantitative as

the lower spatial frequencies (i.e., the baseline) are missing.
This means that the pixel values do not scale with the actual
absorption. One can observe that the full rectangle in the
upper region (marked with a green triangle) appears as two
boundaries with minimal signal inside, instead of accentuating
the proximal and distal edges. The UBP algorithm exhibits
much less smearing in the axial direction but still fails to
reconstruct the lower frequency content. While the MBR was
able to achieve a more quantitative reconstruction close to
the detector array, it is severely hampered by the noise, and
the reconstructed image is very unclear at depth. In contrast,
the SPANNER was able to reconstruct both clear boundaries
and preserve the feature’s inner filling accurately, although
there is some smearing in the lateral direction.

B. In Vitro Characterization

The in vitro imaging results using a single optical wave-
length are presented in Figure 2. Figure 2a depicts the exper-
imental setup, and Figure 2b shows a conventional B-mode
ultrasound image of the wires, each marked with a colored
triangle. The images produced by all four algorithms are
shown in Figures 2c-f. Both DAS and UBP demonstrate low
resolution (both axial and lateral) and a high background
noise clutter (i.e., spurious signals). The MBR algorithm also
suffers from a high spurious background. While the SPANNER
algorithm could not improve the lateral resolution, it had
a much higher axial resolution and improved the signal to
background ratio.

We quantitatively compared the cross-sectional PA ampli-
tude profiles across the wire marked with a blue triangle
(Fig. 2g). Each amplitude profile was normalized to the peak
value. The axial resolutions of the DAS and UBP (465 um)
are almost three times worse than that of SPANNER and MBR
(165 pm). While the MBR was more successful in rejecting
the background noise compared to the UBP, the SPANNER
markedly outperforms all algorithms and significantly reduces
the background noise by at least 40 dB (an order of magnitude
better than DAS). Figure 2h illustrates the separability of
multiple point targets using the amplitude profiles through the
three tightly packed wires (~1 mm apart) marked with green
triangles. The DAS failed to detect the center point target,
whereas the UBP, MBR, and SPANNER resolved all three
distinct points. The SPANNER and MBR retained a markedly
better axial resolution in contrast to the DAS and UBP.
However, the MBR algorithm, while outperforming the DAS
and UBP, generated multiple spurious artifacts that prevented
proper image quantification and reduced the contrast and thus
was also limited to a dynamic range of 20 dB or less. The
SPANNER provides an additional 15-20 dB of dynamic range
and allows a more physically accurate reconstruction.

Figure 3 demonstrates the multispectral performance of the
four reconstruction algorithms. The ICG tube was located
between two chicken breast tissues (Figure 3a) and was con-
firmed in the B-mode US image (Figure 3b). The multispectral
PA amplitudes processed using the four reconstruction algo-
rithms were calculated in Figure 3c. The known, normalized
absorption spectra of ICG with the same concentration [34] is
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Fig. 3. Multispectral reconstruction of an ICG tube in chicken breast
tissues in vitro. a The experimental setup - an ICG tube was sandwiched
between two pieces of thick chicken breasts. b B-mode ultrasound image
showing the ICG tube and chicken breast layers. ¢ The DAS, UBP, MBR,
and SPANNER PA spectra vs. the actual ICG absorption spectrum. The
values shown are average across all pixels + 95% confidence intervals.

included as a reference. Both the DAS and UBP algorithms
fail to track the ICG spectrum accurately.

Moreover, the dynamic range, i.e., the change in absorption
between peak and lowest absorption, is limited to a 3-fold
for the UBP and 4-fold for the DAS. The MBR performed
slightly better with a dynamic range of 5-fold. In contrast, The
SPANNER produces accurate quantitative measurements that
correlate well with the ICG absorption spectrum at 1.3 mM.
Furthermore, the dynamic range of the SPANNER is more
than an order of magnitude better (~71-fold) than all other
algorithms.

C. Ex Vivo Imaging of Pancreatic Cancers

Clinically excised pancreatic cancer samples were ultrason-
ically (Fig. 4a), fluorescently (Fig. 4b), and photoacoustically
(Figs. 4c—f) imaged. The tissue samples were sandwiched
between two blocks of agar. The boundary of the pancreatic
cancer sample was confirmed by histopathology.

The tissue sample was shown to be highly fluorescent when
excited at 780 nm, and the tumor region is marked with a
dashed line (Fig. 4b). The PA images processed using the
DAS, UBP, MBR, and SPANNER (Figs. 4c—f, respectively)
are shown in the log scale with a 40-dB dynamic range.
The bright signals were observed at the bottom of each of
the PA images, mainly due to the suboptimal acoustic and
optical coupling between the gel-filled transducer cover and
the agar blocks. Otherwise, all PA reconstruction algorithms
were able to detect the FLI contrast agent successfully and
showed a good correlation with FLI. As expected, the DAS,
UBP, and MBR fail to entirely reject noise and undesired
signals from the clear agar blocks surrounding the sample,
leading to a 10-fold (20 dB) decrease, in contrast, relative to
the SPANNER.
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Fig. 4. Ultrasound (US), fluorescence (FL), and photoacoustic (PA)
ex vivo images of pancreatic cancer samples. a US image of the
tissue sample sandwiched between two agar blocks. b FLI heatmap of
a part of the pancreases tissue sample, showing the high signal in the
tumor region. c-f PA image of the same tissue sample produced by the
DAS, UBP, MBR, and SPANNER reconstructions, respectively.

D. In Vivo Imaging of Prostate Cancers

The in vivo PAI data acquired from the patients with
suspected prostate cancer are shown in Fig. 5. An exemplary
US B-mode image delineates a rectal wall (R), prostate (P),
connective tissue (C), and bladder (B) (Fig. 5a). The PA
images were reconstructed using all four algorithms pre-
(Figs. 5d—g) and post-injection (Figs. 5h-k). The PA ampli-
tudes estimated with all four algorithms are quantitatively
compared before and after the injection of ICG at 800 nm. This
wavelength allows the maximal PA signal due to the peak ICG
absorption. As shown in Fig. 5b, all methods demonstrated
a mean increase in PA amplitude (DAS, 5.4%; UBP, 6.4%;
MBR, 6.5%; and SPANNER, 59.5%), but the DAS, UBP, and
MBR failed to produce any statistically significant difference
(p-values of 0.25, 0.13 and 0.08 respectively). In contrast,
the SPANNER was able to demonstrate a statistically sig-
nificant difference in quantitative PA value before and after
injection (p-value < 0.04). To further confirm whether the PA
signal increase after ICG injection is attributed to ICG injec-
tion, to any intrinsic contrast, or motion artifacts, we analyzed
the spectral PA response at another wavelength, 950 nm, where
no ICG absorbs light. The SPANNER only generated the PA
signals with a full overlap of the confidence intervals, and thus
showing statistically significant equivalency between two PA
signals before and after injection at 950 nm (Fig. 5c¢).

When comparing a set of exemplary PA images before
(Figs. 5d-g) and after (Figs. 5h-k) ICG injection (25 mg),
we qualitatively observed a slight increase in PA amplitude
between those images reconstructed using the four different
algorithms. These differences are further pronounced in the
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Fig. 5. PA image reconstruction and quantification of prostate cancers in vivo. a. B-mode US image for anatomical reference. The rectal
wall (R), prostate (P), connective tissue (C), and bladder (B) are delineated with dotted lines. b. Quantified PA amplitudes at the Prostate regions
before and after injection of ICG at 800 nm (N = 10). Paired t-test showing that the SPANNER only achieved a statistically significant difference
(p = 0.04). c. Quantified PA amplitudes of the prostate before and after injection of ICG at 950 nm (N = 8). d-g. Exemplary DAS, UBP, MBR, and
SPANNER reconstruction of the pre-injection PA image at 800 nm. h-k. PA images of the same patient immediately after injection of 25 mg of ICG.
i-o. Relative PA amplitudes within the prostate (post-injection amplitude divided by pre-injection amplitude) as a function of ICG dose for the DAS,
UBP, MBR, and SPANNER algorithms, respectively. Colored thick lines show linear regression; thin black lines show 90% prediction bounds.

SPANNER images. Further, the background noises are promi-
nent in the DAS, UBP, and MBR images, while the noises are
significantly suppressed in the SPANNER image.

Finally, we plotted the normalized PA values as a function
of the ICG dose at 800 nm. Since there were only a few
patients for each dose (one to five patients per dose), the con-
fidence intervals are broad. Nevertheless, only the SPANNER
produces a trend sensitive to the ICG dose. The slope of
SPANNER (12.85 g_1 ICG) was 12 to 28 times higher than
any other method (—0.46, —1.03, and 1.76 g_IICG for the
DAS, MBR, and UBP respectively).

E. GPU Implementation of the SPANNER

The GPU implementation was able to reconstruct both PA
and US images with a clinically-relevant image grid (5 cm in
depth and 4 cm in azimuth with a 135-micron pixel size) in

~90 milliseconds. This reconstruction time includes all over-
head, including the transfer of data from Matlab to the GPU
and back. For PAI alone, the SPANNER was able to achieve
~45 milliseconds of computation time per frame. Such a rate
allows for a frame rate higher than 11 frames per second for
combined PAI and USI or 22 frames per second for PAI alone.

V. DISCUSSION

We describe a novel algorithm for PA image reconstruction
called SPANNER. This algorithm was explicitly designed to
overcome the existing hurdles for clinically realistic PAI,
which consists of limited viewing angles and high noise, and to
enable real-time imaging. The proposed algorithm leverages a
model-based approach [26] for forward modeling that is com-
bined with the concept of mathematical superiorization [21].
Unlike a simple, conjugate gradient algorithm that solves the
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linear model matrix equation, our proposed algorithm enforces
nonnegativity and anisotropic total variation regularization
that results in robustness to noise and physically accurate
images. This algorithm was thoroughly compared with both
the DAS and UBP beamforming methods, two of the most
widely-used algorithms in biomedical PAI [36]. Additionally,
the SPANNER algorithm was also compared to a model-based
approach (MBR) using the same forward model matrix as
SPANNER but with Tikonov L? regularization and a conjugate
gradient algorithm. Because clinical translation is our primary
focus, SPANNER is more compatible with clinical transducers
and PA tomography.

Based on the in-silico and in vitro results, the SPANNER
algorithm can improve axial resolution by up to 3-fold and
contrast by up to an order of magnitude. The SPANNER
provided a more quantitative reconstruction and was shown to
quantify the ICG absorption spectrum properly and achieved
a 15-30 fold higher dynamic range. Thus, the proposed algo-
rithm represents a significant improvement toward clinical
translation of PAIL. Applying SPANNER to ex-vivo patient
sample data showed a high correlation with fluorescence sig-
nals and better rejection of the background. Statistical analysis
of in-vivo data showed the improved ability of SPANNER to
distinguish between images before and after ICG injection.
This will allow for better diagnostic capabilities and reducing
the agent dosage.

While SPANNER demonstrated impressive performance,
it is also prone to several difficulties. The first and most
important hurdle is its strong dependence on an accurate
forward model matrix. The model matrix used in SPANNER
describes the relationship between the image to be estimated
and the (noiseless) RF signals to be measured. The model
matrix can be calculated in advance and incorporates data
regarding the transducer properties and the geometry of imag-
ing. We did not optimize the speed of sound or acoustic atten-
uation and used standard values from the literature (1540 m/s
and 0.5 dB/MHz/cm). It might be the case that better tuning
of these values will result in improved images, but from our
experience, there is low sensitivity to the exact value chosen
as errors from the limited view and low SNR overwhelm
these inaccuracies. However, inaccuracies in the model matrix
will lead to artifacts in image reconstruction. We did not
evaluate the degradation in performance with respect to the
model matrix inaccuracies; however, considerable inaccuracies
might cause reconstruction errors that overwhelm the true
image features and would make it unusable. In that regard,
the DAS algorithm, and its variants [19], only requires the
exact location of each transducer element with respect to each
pixel, which is more straightforward to implement. However,
the model matrix only needs to be calculated once. Because all
the required data needed for the calculation can be collected
in advance by simple hydrophone measurements, we do not
consider data availability to be a significant hurdle.

While SPANNER can better utilize the raw RF data to form
a more accurate image, it cannot generate missing data due
to the limited viewing angles. A transducer optimized for
ultrasound imaging (and especially phased-array where the
aperture is typically small) would provide poor PAI regardless

of the algorithm used for reconstruction. Such is the case for
the device that was used for the current study. It is evident
in the wire-phantom experiments where the axial resolution
was improved three-fold, but the lateral resolution remained
poor. Better design of the transducer array (such as a large
aperture or a concave array) is required in order to negate
the effects of the limited view [37]. It should be noted that
only one transducer was used for this study. It is hard to
estimate the improvement in performance for a system fully
optimized for PAI that sacrifices co-registered USI and clinical
applicability. A minor caveat to the proposed SPANNER
method is the assumption of nonnegativity. As long as the
medium of interest is characterized by a positive Griineisen
coefficient (which is the case for all native tissue components
under physiological conditions), a nonnegativity constraint can
improve results. However, under certain extreme conditions
(such as very low temperatures [38] and for some unusual
contrast agents [39]), a negative Griineisen may be encoun-
tered. Under these conditions, the nonnegativity constraint
can be removed from the algorithm by a simple modification
of the projected estimate, but this can adversely affect the
algorithm’s performance. Further work is required to assess the
impact of such a change. Finally, since SPANNER provides
acoustic reconstruction only (i.e., estimation of the initial
pressure and not of the actual absorption), compensation
of the fluence remains a significant challenge in PAI [32]
and, to the best of our knowledge, is not yet addressed by
any generalizable algorithm. However, because SPANNER
provides a more accurate acoustic reconstruction of the ini-
tial pressure compared to other commonly used algorithms,
it provides a better starting point to build upon for any further
offline analysis that attempts at compensating for the fluence
variations.

Lastly, the computation time is vital for the clinical uti-
lization of SPANNER. With a proper implementation on a
single GPU, SPANNER can achieve a frame rate greater than
20 frames per second (or ten frames per second combined with
high-end USI). Because many Q-switched nanosecond lasers
used for deep tissue PAI are limited to 10 pulses per second,
this is not a significant hurdle. Moreover, this frame rate is
sufficiently fast for many clinical applications. Algorithms like
DAS enjoy a simple closed-form structure that allows the
calculation of all required parameters during imaging. Thus,
it can be adapted to many imaging configurations with no
prior preparations. In contrast, SPANNER relies on a forward
model matrix that needs to be computed and stored in advance.
The offline computation of the model matrix can take at least
several hours. Such calculation can be accelerated as well by
a proper GPU implementation; moreover, it is only required
once per experimental setting. For example, all results in this
paper were achieved using only three distinct model matrices:
one for the simulation of a 192 element transducer, one for
the clinical device in water (wire phantom), and one for the
same device in patients (where the speed of sound was set to
1540 m/s). Recent research suggests that the computation of
the model matrix might also be performed in real-time during
imaging by utilizing some approximations [40], which might
allow easier adaptation of SPANNER.
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The implications of more quantitative images in-vivo are
far-reaching. Clinical translation of PAI has just begun in
recent years [18]; however, almost every clinical application
that requires an imaging depth of more than a few mm and
relies on optical absorption contrast can benefit from the
increase in accuracy and lower background levels. Applica-
tions like image-guided surgery [41] and visual servoing [42]
can immediately benefit from SPANNER to better pinpoint
surgical tools and major blood vessels, which is not achievable
with the DAS due to his background noise [42]. Moreover,
endogenous contrast might not be sufficient to provide clin-
icians with molecular data related to disease location and
progression [43]. Thus, exogenous contrast agents (mostly
likely functionalized small molecules), in combination with
clinical PAI, can provide a wealth of molecular informa-
tion with applications for biopsy guidance [44], detection
of cancer [45], and triaging [46] as well as monitoring of
tumor recurrence and treatment efficacies [47]. The increased
sensitivity provided by the SPANNER can help minimize
the injected dose required for reliable imaging, potentially
reducing any adverse toxicities from the contrast agents and
allowing more frequent imaging that can significantly assist in
the clinical translation of PAI.

Further work is required to integrate SPANNER in clini-
cal imaging workflow fully. Both the pre-processing Weiner
filter and the main algorithm have multiple parameters to
control their behavior (such as the number of iterations,
tolerance for convergence, and level of noise rejection). The
full optimization of those parameters depend on the specific
geometry, detector sensitivity, and target to be imaged will
further improve SPANNER performance. Finally, the current
algorithm allows for 2D imaging and not full 3D tomography.
Adaptation of the SPANNER algorithm itself for 3D appli-
cations is straightforward and mainly involves modification of
the fast gradient projection [48] section. However, the forward
model matrix also needs to be updated. Its memory size
might grow considerably (10-100 fold) in such a manner that
it will not allow real-time applications. For many clinical
applications, a single 2D image or a stack of images that
emulate the full 3D data are sufficient, but further investigation
is required [49].

To conclude, this work presents a new approach for the
reconstruction of PA images with markedly better accuracy,
resolution, and dynamic range compared to all other algo-
rithms. It is specifically designed for clinical PAI applications
in which there is limited viewing angle and low SNR at depth.
Real-time application of SPANNER can open avenues for
clinical translation of PAI for an abundance of applications.
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