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Abstract— Separatingand labeling each nuclear instance
(instance-aware segmentation) is the key challenge in
nuclear image segmentation. Deep Convolutional Neural
Networks have been demonstrated to solve nuclear image
segmentation tasks across different imaging modalities,
but a systematic comparison on complex immunofluores-
cence images has not been performed. Deep learning based
segmentation requires annotated datasets for training, but
annotated fluorescence nuclear image datasets are rare and
of limited size and complexity. In this work, we evaluate and
compare the segmentation effectiveness of multiple deep
learning architectures (U-Net, U-Net ResNet, Cellpose, Mask
R-CNN, KG instance segmentation) and two conventional
algorithms (Iterative h-min based watershed,Attributedrela-
tional graphs) on complex fluorescence nuclear images of
various types. We propose and evaluate a novel strategy to
create artificial images to extend the training set. Results
show that instance-aware segmentation architectures and
Cellpose outperform the U-Net architectures and conven-
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tional methods on complex images in terms of F1 scores,
while the U-Net architectures achieve overall higher mean
Dice scores. Training with additional artificially generated
images improves recall and F1 scores for complex images,
thereby leading to top F1 scores for three out of five sample
preparation types. Mask R-CNN trained on artificial images
achieves the overall highest F1 score on complex images of
similar conditions to the training set images while Cellpose
achieves the overall highest F1 score on complex images
of new imaging conditions. We provide quantitative results
demonstrating that images annotated by under-graduates
are sufficient for training instance-aware segmentation
architectures to efficiently segment complex fluorescence
nuclear images.

Index Terms— Architecture evaluation, artificial images,
deep learning, expert-annotated data, nuclear image
segmentation.

I. INTRODUCTION

M ICROSCOPY has become a powerful tool to gain
insights into cellular or sub-cellular structures by

visualizing cellular compartments such as the nucleus,
the cytoplasm, sub-cellular appearance of proteins or DNA
elements [1]. By applying automated microscopes and image
analysis workflows, quantitative results can be generated at
the single cell level. These allow the detection of even subtle
biological changes while taking advantage of the statistical
power of analyzing thousands of cells. The main sites of
operation for quantitative microscopy analysis are pathology
departments and diagnostic laboratories. In addition, quan-
titative microscopy techniques are applied and refined in
research laboratories. While pathology departments routinely
use Hematoxylin and Eosin (H&E) histological or immuno-
histochemical (IHC) stainings, research laboratories mainly
rely on immunofluorescence (IF) stainings. This is because
up to 90 or more (sub-)cellular compartments can be visu-
alized simultaneously using multiplex-IF staining techniques
and epifluorescence microscopy. This provides a substantial
gain of information compared to the visualization of two
to three cellular characteristics when using H&E or IHC
stainings and brightfield microscopy. While pathology depart-
ments mainly rely on tissue sections to diagnose disease type
and grade or stage of cancer [2], [3], research laboratories
frequently use additional tissue preparations such as cell lines
grown on or cytospinned to microscopy glass slides, cytospin
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Fig. 1. Examples of nuclear morphologies in various tissue preparations.
(a) Neuroblastoma bone marrow cytospin presenting varying nuclear
intensity and size. (b) Annotated mask of (a). (c) Ganglioneuroma
tissue cryosection presenting overlapping/aggregated nuclei with varying
morphology and intensity. (d) Annotated mask of (c).

preparations of bone marrow or tumor touch imprints. Quanti-
tative, microscopy based image analysis workflows generally
consist of the following steps: sample preparation, microscopy
image acquisition, nuclear and/or cytoplasmic image segmen-
tation, feature extraction and cell population analysis. Each
step within such a workflow can impact quantification and
thus, interpretation of experiments [4].

A prerequisite that also represents a bottleneck in automated
quantitative microscopy is accurate nuclear image segmenta-
tion. To generate quantitative results at the single cell level,
segmentation algorithms must segment each nucleus instance.
Such algorithms are called instance segmentation or instance-
aware segmentation algorithms. Inaccurate image segmenta-
tion is frequently caused by tightly aggregated nuclei that
cannot be separated by the segmentation algorithm, compro-
mising biological conclusions [5]. Figure 1 shows examples
of images highly challenging for human experts as well as
for automated nuclear image segmentation methods tasked to
separate each nucleus instance. These images are further called
complex images.

To tackle nuclear image segmentation, deep learning archi-
tectures have shown to be capable of detecting nuclear
instances while outperforming classical segmentation algo-
rithms [6]. Most prominently, the U-Net architecture and
variants thereof are applied, transforming a nuclear image into
a probability map indicating the class membership (nucleus
or background) for each pixel. Similar to autoencoder net-
works, the U-Net architecture consists of an encoder CNN
(contracting path) coupled with a decoder CNN (expansive
path) forming a U-like shape. Additional skip-connections
between different layers in the down- and up- sampling
part of the network are introduced. This strategy allows to
preserve spatial information and image details that would
otherwise get lost during the down sampling process. Despite
the success of applying the U-Net architectures to nuclear
image segmentation, nuclei in tight aggregations sometimes
lead to under-segmentation. To overcome this, post-processing
steps are commonly applied to a predicted initial nucleus
segmentation [7]–[9], relying on morphological or intensity
based features derived from segmented objects. These features
are further used to identify under-segmented objects and to
guide the separation or merging process.

U-Net based nuclear segmentation algorithms frequently fail
to segment nuclear instances in IF images because:

• Epifluorescent microscopic images are blurry caused by
out-of-focus light, leading to aggregations if nuclei are
located in spatially close neighborhoods.

• Nuclei in dense tissue sections, bone marrow cytospins
or tumor touch imprints are frequently aggregated and/or
overlapped, stem from various cell types showing het-
erogeneous intensity levels and present arbitrary con-
vex or even concave shapes, complicating the use of
morphology-based features in post-processing operations.

Another type of architecture recently applied to tackle
nuclear image segmentation are instance-aware segmentation
networks. Built upon networks designed to detect object
instances, they apply local segmentation after object detec-
tion in the coarse region of each located object. High-level
feature layers from the object detection part of such networks
are reused for segmentation. A prominent example is Mask
R-CNN, being among the three best solutions proposed to the
Data Science Bowl 2018 contest [10] on nucleus segmenta-
tion. By separating object detection from object segmentation,
instance-aware segmentation architectures are a good choice to
solve nuclear image segmentation in complex nuclear images.
However, in contrast to the U-Net architectures, no mecha-
nisms to keep spatial information are applied. Thus masks
(nuclear outlines) of predicted instances might be less accurate.

Due to the rapid development of the aforementioned and
other deep learning-based methods aimed at nuclear image
segmentation, scientists and application specialists working
with automated image analysis workflows are faced with
an ever-increasing number of publications, challenging the
process of selecting the best performing method to process
their own dataset. A comparison of deep learning architectures
and conventional algorithms on confocal fluorescence nuclear
images has been proposed [6] as well as an evaluation of the
top-performing models submitted to the Data Science Bowl
2018 contest on segmenting nuclear images of a heterogeneous
dataset including fluorescence and brightfield images [10].
However, to the best of our knowledge, there is no work pub-
lished that systematically evaluates deep learning architectures
on instance-aware segmentation of nuclei on complex fluores-
cent images of various tissue origins, sample preparation types
and magnifications, further called sample conditions. This
might be based on the reason that fluorescent nuclear image
datasets that cover a broad range of sample conditions and
contain complex images are rare and of limited size. In par-
ticular, the annotation of highly complex images such as tissue
sections is time consuming and expensive due to the human
resources needed. To enable an evaluation of state-of-the-art
segmentation methods on such images, we recently published
an expert-annotated dataset consisting of fluorescent nuclear
images and annotations of various tissue origins and sample
preparation types, acquired using multiple modalities, different
levels of magnification and signal-to-noise ratio [11], [12].

In this paper, we systematically compare the segmentation
effectiveness of two U-Net architectures, a U-Net architec-
ture with modified mask representation (Cellpose) and two
instance-aware segmentation architectures utilized to segment
cellular nuclei in complex images using the aforementioned
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expert-annotated dataset. In addition, we evaluate and compare
the deep learning architectures to two conventional methods,
namely Iterative h-min based watershed (Iterative h-min) and
Attributed Relational Graphs (ARG), designed to segment
fluorescence nuclear images. To increase the size of the
annotated dataset, we propose a strategy to synthesize artificial
images focusing on overlapping nuclei, thereby simulating
complex nuclear images. Hou et al. generate artificial nuclei on
nuclei-free background patches of Hematoxylin&Eosin stained
samples and transform them to realistic images using a Gener-
ative Adversarial Network (GAN) [13], while Dunn et al. [14]
place ellipsoids representing nuclei in empty 3D volumes and
transform them to realistic volumes using spatially constrained
CycleGANs. In contrast to these approaches, we rather create
artificial images by modelling a realistic background and by
placing cropped and augmented nuclei from real images on
this artificially created background, subsequently transforming
these patches into natural-looking images using a paired GAN.
Thereby, we focus the generation process on overlapping
and overlaying nuclei, forcing the deep learning architectures
trained on these images to learn how to split aggregated nuclei
as occuring in complex images. Moreover, our method allows
to generate artificial images using individually augmented
nuclei, representing the varying nuclei intensities within fluo-
rescence nuclear images.

The contributions of the paper are as follows:
• We propose a formal description of nuclear image com-

plexity with respect to the challenge to annotate or
segment single-nuclei instances.

• We evaluate and compare deep learning architectures and
conventional methods prominently used for nuclear image
segmentation on complex and heterogeneous fluorescence
images with respect to different image complexity levels.

• We demonstrate to which extend investigated deep
learning architectures can generalize to new imaging
conditions.

• We propose a novel method to extend fluorescence
nuclear image training sets by simulating complex fluo-
rescence nuclear images and demonstrate its effectiveness
with respect to high complex images and five sample
preparation types.

• We provide quantitative results demonstrating to which
extent the quality of dataset annotations influence the
segmentation effectiveness of each architecture investi-
gated (U-Net, U-Net ResNet, Cellpose, Mask R-CNN,
KG instance segmentation, Iterative h-min, ARG). Based
on our results, we recommend the combination of silver-
standard data annotation, artificially synthesized images
and an instance-aware segmentation architecture or Cell-
pose for obtaining the most effective segmentation of
complex fluorescence nuclear images.

II. RELATED WORK

The most popular nuclear segmentation algorithms used
until deep learning architectures gained importance, further
called conventional methods, are based on the watershed
algorithm, region growing, level-set or active contour meth-
ods (comprehensive overview in [15]). Deep learning has

outperformed traditional methods on many tasks including
nuclear image segmentation [6]. Thus, we briefly describe
deep learning based segmentation approaches targeting bright-
field nuclear images, fluorescence nuclear images or both.
Moreover, we describe data augmentation strategies and meth-
ods generating synthetic images to extend the training sets.

A. Deep Learning Based Methods to Segment Nuclear
Images of H&E and IHC Stained Samples

Recent work showed that Deep Convolutional Neural Net-
works (DCNN) outperformed most standard methods applied
in computer vision tasks such as image classification or
segmentation by a large margin [16], [17]. The advantage of
DCNNs over traditional methods was also demonstrated for
nuclear image segmentation [6].

Recently, annotated datasets of H&E and IHC stained sam-
ples became publicly available. This led to the development
of new deep learning based architectures to segment these
challenging nuclear images [18]–[20]. Naylor et al. [7] use
and compare CNN architectures (FCN, U-Net, Mask R-CNN)
for segmenting H&E stained histological slides. In this study
the segmentation is presented as a regression task, resulting in
the prediction of the distance-transform of the binarized image.
Graham et al. [21] use a property of histopathology images
(rotational symmetry of nuclear objects across images) and
employ steerable, rotational filters to reduce the number of
network parameters, while maintaining similar segmentation
effectiveness.

B. Deep Learning Based Methods to Segment
Immunofluorescence Based Nuclear Images

In contrast to annotated H&E or IHC stained nuclear image
datasets, only a limited number of annotated fluorescence
nuclear images covering a diverse range of preparation types
and tissues are publicly available. Most datasets published
consist of confocal images of cell line cytospins or cell lines
grown on microscopy slide and are thus of low complexity.
Alom et al. [20] use a Recurrent Residual CNN based U-Net
to segment images of the 2018 Data Science Bowl [10] dataset,
including, among others, nuclear images of H&E stained
tissue sections and IF stained cells grown on microscopy glass
slides. The proposed architecture, however, failed to achieve
instance-aware segmentation.

Other deep learning based segmentation methods have been
tested on datasets with lower segmentation complexity than
tissue sections, characterized by the absence of larger nuclear
aggregations or overlaps, or operate on 3D image stacks.
Caicedo et al. [6] compare a U-Net and the DeepCell archi-
tecture [22] evaluated on images of the BBBC022 dataset1 as
part of the Broad Bioimage Benchmark Collection, a dataset
consisting of nuclear images of cells grown on microscopy
slides. Fu et al. [23] use the SegNet architecture [24] to
segment 3D image stacks of rat kidney tissue. Images of
lung carcinoma cells grown on slides and images from the
BBBC022 dataset were used to evaluate a FCN network
structure by Sadanandan et al. [25].

1https://data.broadinstitute.org/bbbc/BBBC022/
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C. Deep Learning Based Methods Approaching
Generalizability

Most recently, methods designed to segment nuclear images
across different datasets gained attention. Inspired by the
2018 Kaggle Data Science Bowl contest, researchers aimed
to solve a generalized nuclear segmentation problem [10].
The dataset used within the Data Science Bowl consists of
H&E stained images, confocal fluorescence images and other
light-microscopy images, thus the architectures were aimed at
learning underlying characteristics of nuclear objects to be able
to detect and segment them. Hollandi et al. [26] outperformed
all contest submissions by using clustering methods and image
style transfer to translate all images of the training set for data
augmentation. Despite the success of algorithms proposed to
segment images of the Data Science Bowl dataset, images
from some types of preparation such as tumor-touch imprints
or bone marrow cytospins are missing in this dataset. Another
approach proposes an online tool [27] to upload annotated
imaging experiments to a cloud server and to fine tune
pretrained U-Net models on the given dataset to adapt to
the specific type of experiment. Stringer et al. [28] convert
annotation masks into vectorflow representations that can be
learned and predicted by a U-Net-shaped deep neural network
called Cellpose. The authors claim that a generalist nuclear
and cytoplasm segmentation is achieved without the need to
retrain the dataset to segment images of a previously unseen
dataset.

A systematic comparison of deep learning architectures on
complex fluorescence images has not yet been performed.

D. Data Augmentation and Artificial Image Synthesis

Data augmentation techniques can substantially improve
the prediction performance of deep neural networks [29].
On biomedical image segmentation tasks, data augmenta-
tion was introduced by Ronneberger et al. [30] in 2014.
Cui et al. demonstrated the benefit of data augmentation in
nuclear image segmentation of H&E stained histopathologi-
cal samples [18]. Moshkov et al. [31] recently showed that
applying the same data augmentation methods used to extend
the training set to images upon inference and calculating a
pixel-based majority vote over all augmented images increases
the segmentation effectiveness of deep networks.

The standard data augmentation techniques currently
applied in deep learning (e.g. flipping, cropping, rotation,
elastic deformations, intensity variations, shifting, etc.) do not
address the vast number of parameters influencing IF based
imaging. Parameters include varying image integration time
and varying quality and intensity of a given immuno-staining
signal. Weak signals have to be captured with higher inte-
gration time to ensure an acceptable dynamic range of the
resulting images, leading to an overall increased background
intensity and thus a low signal-to-noise ratio. Moreover,
the intensity of nuclei can vary within a field of view (FOV),
depending on the DNA compaction, cell integrity and proper
focus settings during image acquisition.

To allow for a better generalization performance in flu-
orescence nuclear image segmentation, the use of synthetic

datasets was proposed. Russell et al. [32] created simulated
images by modeling nuclear shape and fluorescence image
characteristics by overlaying the image with Gaussian noise
and blurring. Hou et al. [13] proposed a pipeline using real
image patches from histo-pathological images and a neural
network called refiner CNN to create artificial image patches.
Dunn et al. [14] use a spatially constrained CycleGAN, trained
on sub-volumes of the specific dataset to be segmented,
to create synthetic volumes based on ellipsoids placed within
empty volumes. Mahmood et al. [19] used a dual GAN that
learns to transform masks, including polygons, to synthetic
histo-pathological patches. Bailo et al. [33] use objects of
the training set segmentation masks to generate photorealistic
images of blood cells to extend the training set.

III. EVALUATION OF DEEP LEARNING ARCHITECTURES

AND CONVENTIONAL ALGORITHMS

We compare the segmentation effectiveness of five deep
learning architectures and two conventional algorithms to
segment nuclear images of IF stained samples. The deep learn-
ing architectures can be divided into two categories: U-Net
architectures (U-Net [30], U-Net with a ResNet34 backbone
(U-Net ResNet)), U-Net based on transformed image repre-
sentation (Cellpose) and instance-aware segmentation archi-
tectures (Mask R-CNN [34], KG instance segmentation
[35]). The conventional methods investigated were specifically
designed to solve image segmentation problems on fluores-
cence nuclear images and consist of a marker-based approach
(Iterative h-min) and a model-based approach (ARG).

1) U-Net: The U-Net architecture is prominently used in
nuclear image segmentation [9], [27], [30]. The success of this
architecture is based on the fact that accurate segmentation is
possible even with small training sets. We use a theano/lasagne
based implementation of the U-Net.

2) U-Net ResNet: When substituting the deconvolution part
of the U-Net architecture by a deeper network structure and by
using pre-trained weights from e.g. the ImageNet dataset [16],
one could expect to increase segmentation accuracy as previ-
ously demonstrated for segmentation and classification tasks
[36], [37]. Therefore, we use a U-Net architecture where the
feature encoding part, called the “backbon”, was substituted
by a ResNet34 [36] architecture, using 34 layers for feature
encoding but keeping the skip-connections to ensure spatial
resolution for the up-sampling part of the architecture. We use
an available keras/tensorflow implementation,2 but changed
the loss function to implement the weighted cross-entropy loss
by setting a higher loss to nuclear borders as suggested by the
U-Net authors [30].

3) Cellpose: Cellpose uses a U-Net shaped neural network
with two modifications as compared to the afore mentioned
approaches: image masks are not directly predicted but instead
a flow-based representation is predicted. The representation
builds upon a heat-diffusion simulation where each pixel
within the same object can be assigned to a path converging
at the center of the object. In addition to the transformed
representation of training images and predictions, test time

2https://github.com/qubvel/segmentation_models
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enhancements are employed to increase the power of the pre-
dictive model. We use an available pytorch implementation.3

4) Mask R-CNN: Mask R-CNN was designed to solve
instance-aware segmentation. The architecture builds upon
the Faster Region-based CNN (R-CNN) approach [38] by
predicting object masks in parallel to classification of objects
in bounding boxes [34]. Thus, unlike the behaviour of DCNNs,
Mask R-CNN does not provide a pixel to pixel mapping but
rather splits the problem of image segmentation into region
detection and subsequent classification and segmentation of
region proposals. By focusing on region proposals using coarse
spatial quantization for feature extraction, candidate regions
can be extracted with high accuracy. We use an available
keras/tensorflow implementation.4

5) KG Instance Segmentation: The keypoint graph instance
segmentation (KG instance segmentation) network [35] was
developed to tackle cell instance segmentation tasks. In con-
trast to approaches such as the aforementioned Mask
R-CNN, which typically utilize anchor box based detectors,
keypoint-based detectors in combination with multi-scale fea-
ture maps are used. Keypoint detection is applied to find five
keypoints per cell. These points are then grouped using a
keypoint graph to retrieve cell bounding boxes. A publicly
available PyTorch implementation5 was used in this work.

6) Iterative h-Minima-Based Marker-Controlled Watershed:
The nuclear segmentation approach proposed by Koyuncu
et al. [39] collects a set of watershed candidate markers based
on the h-minima transform and on multiple scales. They are
iteratively selected based on size constraints and used to apply
the watershed transform. The effectiveness of the method was
demonstrated on images showing nuclei clumps.

7) Attributed Relational Graphs: In contrast to the iterative
h-minima based approach, Arslan et al. [40] propose an algo-
rithm for the segmentation of nuclei based on image gradient
information. The underlying assumption is that a nucleus is
composed of four edges that can be retrieved from the image
gradient. To this end, nuclear edges called edge primitives are
detected, related to each other to obtain a representation of
the nucleus and finally a region growing algorithm is applied,
starting from the center of the representation. The approach
was demonstrated on dense cell line images.

A. Dataset Description

We use a recently published dataset [11] consisting
of 79 images of IF stained nuclei images containing
7813 nuclei in total. The images are from specimens
of different diagnosis, namely human ganglioneuroblas-
toma (GNB) tumors, human neuroblastoma (NB) tumors,
Wilms tumor (Wilms) and a human keratinocyte cell line
(HaCaT). Among those are GNB, NB and Wilms tissue
cryosections, HaCaT cell line cytospin preparations, HaCaT
cell line cells grown on slide, NB cell line cytospins, NB bone
marrow cytospin preparations and NB touch imprints.

3https://github.com/mouseland/cellpose
4https://github.com/matterport/Mask_RCNN
5https://github.com/yijingru/KG_Instance_Segmentation

Fig. 2. Examples of all types of preparations/specimen including a
comparison between silver-standard and gold-standard annotations.
Green arrows indicate differences between silver-standard and gold-
standard annotations.

The dataset contains accurate nuclear annotations and pro-
poses a split into a training set and a test set. The training
set exists as silver-standard set and gold-standard set, while
the test set is only gold-standard. The difference between
the two annotation standards is given by the level of exper-
tise preparing the annotations (trained under-graduates vs.
expert pathologists and biologists), the accuracy of nuclear
outlines (contours) and the number of annotated objects (in
gold-standard annotations, nuclei with weak intensity, nuclei
partially present at image borders and the in-focus parts of par-
tially out-of-focus nuclei were annotated, leading to a higher
number of annotated nuclei, especially in GNB tissue cryosec-
tions). The test set is made up of two sets, one representing
images acquired with the same conditions as the training set
images, further called similar test set, and the other acquired
with different conditions, further called new conditions test
set. The latter allows to evaluate the generalizability of all
trained architectures. Both sets form the cumulative test set.
Examples of all types of preparations/specimens present in the
similar test set including a comparison between silver-standard
and gold-standard annotations are given in Figure 2.

B. Image Complexity

The complexity to annotate or segment a fluorescence
nuclear image varies between images of different preparation
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type, tissue and imaging conditions such as signal-to-noise
ratio, sharpness or presence of damaged nuclei. To some
extent, it depicts a subjective measure, correlating with the
underlying ability to unambiguously separate nuclei from each
other, either by experts or by automated methods. There are
two ways to estimate image complexity: 1. By classification
through experts, i.e. pathologist, biologist, image analysis
experts, and 2. by making use of image features potentially
representing image complexity. We aimed to address both
approaches by calculating the correlation of image-derived
features with expert classification.

To generate expert annotations of image complexity, we cre-
ated a scoring scheme to rate the segmentation complexity of
each image of the test set, by the subjective impression of
each annotator. We decided to assign each image to one out
of three classes: low-, medium- and high complexity level.
Four independent experts (two biomedical imaging experts and
two biologist experts) scored each image two times (Suppl.
Fig. 1a). We then calculated the final complexity annotation
by calculating the mean experts’ score rounded to the next
integer (class level) for each image, resulting in an annotation
of one of the three classes for each image.

To analyze whether the generated complexity annotation
correlates with image-derived features such as cell density and
thus, the latter can be used to represent image complexity,
we extracted image features potentially representing nuclear
image complexity from all annotated images (Suppl. Tab. I).
We then calculated the Spearman’s correlation coefficient
[41] between each feature extracted and the mean experts’
score (Suppl. Fig. 1b). Resulting coefficients show that none
of the features highly correlates with mean experts’ scores.
A medium correlation (correlation coefficient >0.4 and <0.5)
is given by the variance of nuclear size (measured by the
nuclear area) and the variance of nuclear mean intensities.
Thus, the complexity of an image cannot solely be defined
based on image-derived features.

Based on the feedback received from expert biologists and
pathologists and the image-level features extracted, we con-
clude that the complexity is influenced by the quality of
the image, the signal-to-noise ratio, the number of aggre-
gated/overlapped nuclei, the number of damaged nuclei,
the number of out-of-focus nuclei and the homogeneity of
nuclear intensity and size. We formally describe the three
complexity classes as follows.

• Low Complexity Level: Almost no touching nuclei are
available in the image. If nuclei touch, they appear with
sharp contrast to other nuclear instances and nuclear
borders in between the touching nuclei. Only a minor
number of burst, damaged or out-of-focus nuclei are
present within the image with respect to the total number
of nuclei. Nuclear size and morphologies are almost
constant, nuclear intensities do not extensively vary.

• Medium Complexity Level: Images contain clumps or
damaged or out-of-focus nuclei, but in a modest fre-
quency as compared to the total number of nuclei.
If images are blurred, nuclei have to appear separated to
each other, for a vast majority of nuclei. Borders between

nuclei might disappear, but each nucleus has not more
than three to four direct neighbors and nuclear instances
can be concluded by the shape of single instances within
a clump. Nuclear intensities vary, but nuclear sizes are
almost homogeneous with only a minor number of nuclei
with diverging sizes as compared to the total number of
nuclei.

• High Complexity Level: These images are characterized
by a high number of clumps and/or a high number of burst
nuclei and/or a high number of out-of-focus objects or
damaged objects and/or a high variation of nuclear size.
Nuclei occuring in clumps present varying morphologies
and borders can frequently not be determined. Overall,
annotating nuclei is highly challenging in these images
and uncertainty in annotating at least a modest number
of nuclei remains.

Example images for the three levels of complexity are
visualized in Suppl. Fig. 2.

C. Artificial Image Generation

We evaluate the influence of adding artificially generated
images to the training set on segmentation effectiveness.

The strategy to create artificial images is as follows: we ran-
domly select an annotated natural image and the corresponding
annotation mask from one of the datasets with respect to
a certain tissue origin/specimen. By dilating the foreground
regions of the binarized annotation mask using a circle-shaped
structuring element of size 15, pixels with values higher
than the mean background intensity, occurring due to blurred
nuclei, are included. When inverting the resulting mask, only
the region of pixels representing the background signal is
covered. We now iteratively sample the intensity values of
random pixels from this region and assign them to one of the
pixels of an empty image patch. This is done until all pixels
of the respective image patch are set. Thus, the background
pixel value distribution of the created image patch roughly
matches the one of the original image. Subsequently, we use
arbitrary nuclei cropped from the annotated image, transform
them by rotation, size variation, elastic deformation, intensity
variation, blurring, adding Gaussian noise, and combinations
of those operations. The transformed, cropped nuclei are
then placed at crossing positions of a grid virtually overlaid
with the image patch, including a randomly added offset in
x- and y- directions. The maximum offset value gives the
probability of a nucleus to overlap with a neighbor nucleus
placed on the grid. For each crossing position on the grid,
we randomly decide if the object shall be placed or not.
If a nucleus to be inserted overlaps another nucleus already
present, we randomly decide to either replace the existing,
overlapped part of the nucleus or to add it to the existing
nucleus scaled with a constant between 0 and 1 to imitate
overlap. Thus, we can simulate aggregating and overlapping
nuclei. The same augmentation and placement is done for
cropped nuclear masks, placed on a new image mask patch,
except that placed nuclei masks always replace overlapping
parts of existing nuclei masks as we do not model masks with
fuzzy annotations.
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Finally, we obtain a nuclear image and a mask image.
The former contains random nuclei augmented with image
transformation strategies. The latter contains labeled objects
placed on the same positions as the nuclei in the nuclear image.
Configuration details can be obtained in Suppl. Tab. II.

Nevertheless, we observed that training DL architectures
using such artificially generated images does not lead to
better segmentation results. This may be due to the fact that
nuclei naturally showing blurred borders in IF images do
not show those when cropped, transformed and placed on
new image patches, guiding the network to learn features
differently from natural image features. To overcome this
issue, we trained an image-to-image translation GAN [42] to
learn the transformation of artificially generated images into
natural-like images. The GAN is trained on pairs of natural
and artificial images, where nuclei are cropped from natural
image patches and placed at the very same position on a new
image patch. By training the network on these paired images,
the network is forced to learn the implicit transformation of
artificial to natural-like images. The final workflow to create
natural-like artificial images is depicted in Figure 3.

D. Pipeline for Architecture Comparison

To evaluate the potential of state-of-the-art architectures
to segment nuclear images across various tissue origins and
sample preparation types with varying levels of image com-
plexity, we set up a pipeline to enable an objective comparison.
The code is publicly available.6 The pipeline, illustrated in
Figure 4, operates as follows.

Dataset Split: We use the split proposed with the dataset
[11] into training and test set and further split the training
set into a training and a validation set, for all of the three
different tissue origins present in the training set (HaCaT cell
line, NB tumor, GNB tumor) separately. We do not consider
the different preparation types applied to the imaged samples
for architecture training, but we split the dataset such that
at least one image of each sample preparation type present
in the training set is contained in the validation and test set.
Moreover, the test set consists of additional images acquired
using different modalities, signal-to-noise ratios, magnifica-
tions and sample specimens. All images of these datasets
are further called natural images, in contrast to natural-like
artificial images that result from artificial image synthesis.

Rescaling&Tiling: We use a self-implemented version of the
U-Net architecture and third-party generic implementations of
the Mask R-CNN, the KG instance segmentation, the U-Net
Resnet34 and the Cellpose architectures. There are two ways to
use generic implementations of CNNs for a specific dataset:
1. the architectures are modified to the data at hand or 2.
the specific dataset is transformed to fit the input layer of the
architectures. We decided for the latter to allow straightforward
re-use for increased reproducibility. Moreover, this allowed us
to use available pre-trained weights.7 Thus, we transformed the
dataset to fit the input layer of the architecture evaluated, for

6https://github.com/perlfloccri/NuclearSegmentationPipeline
7Pre-trained on the ImageNet dataset (KG instance segmentation, U-Net

ResNet.) or the Pascal COCO dataset (Mask R-CNN)

Fig. 3. Generation of natural-like artificial image patches. Nuclei and
respective mask objects of (a) a training image patch are (b) collected
and cropped from the raw nuclei image respective mask (c). Each
nucleus patch is arbitrarily augmented using rotation, intensity variation,
elastic deformation, flipping. The same morphological transformations
are applied to the mask patches. We create a new image patch and set
the background pixels sampled from the original raw image background.
Subsequently, we place nuclei at certain positions induced by a grid sized
3 × 3, 5 × 5, etc. For each position on the grid, we randomly decide if a
nucleus shall be placed there and if so, we add a random offset, where
the maximum offset indicates the probability to overlap with neighbor
nuclei. The same placement is performed for mask objects on a new
mask patch. Finally, a GAN is used to transform the artificial image into
a natural-like image (d). This is done for each dataset independently.
Training set images were scaled such that all nuclei have the same mean
size. First image pair: artificial/natural-like HaCaT image. Second image
pair: artificial/natural-like neuroblastoma image.

each architecture, and did not modify the generic architectures
with respect to the specific dataset used. We set the input layer
size of the U-Net architecture to 256 × 256 while the generic
third-party implementations (Mask R-CNN, U-Net ResNet,
KG Instance segmentation) expect RGB images resulting in an
input layer size of 256 ×256 ×3 or 256 ×256 ×2 (Cellpose).
To fit this input sizes, we duplicated or triplicated all images
to obtain RGB images.8. To prepare the dataset to fit the
given input layer dimensions, we apply a tiling strategy to
the dataset images as proposed by Ronneberger et al. [30]
in order to obtain image patches sized 256 × 256. By using
this tiling strategy we observe the following benefits: 1) The
training and validation sets are extended due to overlapping
tiles. 2) Overlapping tiles prevent artefacts at tile borders
when reconstructing final network predictions after network
inference on the test set image tiles. Moreover, we rescale the
natural images such that nuclei have equal mean size across all
images as we want to evaluate the impact of rescaling images
on the segmentation effectiveness. We calculated the nuclear
area as measure for nucleus size. To rescale images, the mean
nuclear size of an image was calculated based on the mean

8A further minor improvement of segmentation effectiveness might be
achieved by customizing publicly available colour image architectures to
single-layer inputs and pre-training with grayscale images (e.g. with ImageNet
images converted to grayscale) [43]
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Fig. 4. Pipeline for training and evaluation of deep learning architectures for instance-aware nuclei image segmentation.

size of all nuclear mask objects within the corresponding mask
image. Subsequently, all images and masks were resized.

Artificial Image Generation: In addition to the natural
images of the training and validation set, we create artificial
images of size 256×256 as described in Section III-C and add
them to the training set. As we aim to additionally compare
the segmentation effectiveness for all architectures between
silver-standard and gold-standard training sets, we apply the
same steps except for generating artificial images to the silver-
standard dataset.

Network Training: We then train all architectures four times
using the:

• non-scaled natural images of the gold-standard training
set

• scaled natural images of the gold-standard training set
containing nuclei with equal mean size across images

• scaled natural images of the silver-standard training set
containing nuclei with equal mean size across images

• scaled natural and equally scaled natural-like artificial
images of the gold-standard training set

Rescaling & Reassembling: After network inference on the
test set patches, the patches are reassembled and rescaled to
fit the original image size. Thus, prediction results can be
compared across all architectures. The output of the tested
networks differs: while the U-Net architectures, except for
Cellpose result in a probability map, Mask R-CNN and KG
instance segmentation inference result in object masks, one
mask for each detected object. We threshold the resulting,
reassembled probability maps of the U-Net architectures by
a value of 0.5 to obtain binary masks and label them to obtain
the labeled object masks. For reassembled Mask R-CNN and

Cellpose predictions, we label each object and add it to a new
image mask to obtain the final labeled object mask.

Recursive Waterflow Post-Processing: We apply the recur-
sive waterflow (RWF) algorithm [44], an algorithm tackling
under-segmentation problems, to the U-Net predictions to
evaluate the influence of post-processing on the segmentation
effectiveness. The only parameter we adapt is related to the
mean nuclear size, the other parameters are fixed (see Suppl.
Tab. II for details).

Artefact Removal: We apply a common post-processing
to all predictions by removing small artefacts that do not
fit the size of nuclei, where the threshold was calculated
from the respective ground truth mask (size of the smallest
nuclear instance). Thus, this post-processing is based on prior
knowledge, but is equal for all architectures investigated,
is independent of shape or intensity-based features and is not
specific to a certain sample preparation type or tissue type.

E. Conventional Segmentation Method Parameter Tuning

Conventional segmentation methods are most frequently
parametrized and these have to be tuned to adapt an algo-
rithm to a specific dataset. The two methods evaluated
within this work (Iterative h-min, ARG) use four parameters
each. We applied a grid search on all possible parameter com-
binations within a range predefined according to preliminary
experiments. To this end, we applied a coarse grid search
followed by a fine grid search based on the best coarse score
(Suppl. Tab. III). The score to be minimized in order to obtain
the best parameter combination for the coarse- and the fine grid
search is F1 − std( f 1) + AJ I − std(AJ I ) − |(F1 − AJ I )|,
where std is the standard deviation. Thus, for each possible
combination we calculate the object-level F1-score and the
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Aggregated Jaccard Index (AJI, see Section IV). The best
combination maximizes both scores, where the standard devi-
ation (std) of each score is minimal and so is the distance
between both scores, ensuring to balance both scores.

F. Data and Code Availability

The annotated dataset used is publicly available
at the EMBL BioStudies database, accession number
S-BSST265 [11], a detailed description is available [12]. The
code used to evaluate the segmentation methods is publicly
available.9

IV. EVALUATION METRICS

Most authors provide object-level as well as pixel-level
metrics to evaluate nuclear segmentation methods. While
pixel-level metrics penalize deviation from predicted fore-
ground regions to those of ground truth annotations,
object-level metrics used in biomedical image segmenta-
tion evaluation count and classify predicted objects/instances.
To overcome the problem of choosing the right class of met-
rics, Kumar et al. [45] proposed a combined metric, the Aggre-
gated Jaccard Index (AJI), taking object- and pixel-level errors
into account. This is achieved by computing an aggregated
intersection cardinality numerator and an aggregated union
cardinality denominator for all predicted- and ground truth
objects. The AJI is prominently used in recent publications
[7], [8], [19]. The disadvantage of using this combined metric
is that it is not obvious if pixel or object-level errors contribute
to a low AJI value.

We provide both types of metrics and report the AJI
in addition. Object-level metrics reported are precision
(PREC), recall (REC), their harmonic mean, the F1 score
(F1), under-segmentation (US) and over-segmentation (OS).
Pixel-level metrics presented are mean Dice score (mDICE)
and mean Jaccard Index (mJI), calculated on all true posi-
tive (TP) objects. The mDICE and mJI are calculated on TP
objects only to evaluate the accuracy of nuclear boundaries
irrespective of the number and shape of FN or FP objects.
We also report the combined metric AJI for completeness as
it is prominently used in related publications, but do not focus
the discussion on this metric.

We consider a ground truth object to be detected if more
than 50% of the ground truth object’s pixels are covered by
predictions, and assign it as false negative (FN) otherwise. We
count a ground truth object as TP if it is overlapped by exactly
one predicted object with a JI between ground truth object and
predicted object of greater than 0.5. Predicted objects only
touching a part of the object would count as false positive
(FP). If more than one predicted object overlaps the ground
truth object such that the overlapping area covers more than
50% of the predicted object’s area, the ground truth object is
considered as OS. An object is classified as FP if it overlaps
less than 50% with the ground truth.10 If more than one
ground truth object overlaps the predicted object such that

9https://github.com/perlfloccri/NuclearSegmentationPipeline
10Examples of possible cases of ground truth objects and predictions are

illustrated in Suppl. Fig. 3

the overlapping area covers more than 50% of the ground
truth object’s area, the ground truth objects overlapped by
the prediction are classified as US. We report US (resp. OS)
as the ratio of the number of under-segmented nuclei (resp.
over-segmented objects) to the number of ground truth objects.

V. RESULTS

Segmentation effectiveness of deep learning architectures
depends on their design and on several additional factors such
as the size and quality of the dataset and the architectures’
hyperparameters. To systematically evaluate the selected deep
learning architectures on small and complex to segment fluo-
rescence nuclear image datasets, we fixed the hyperparameters
of all architectures11 and trained them with the images as
described in Section III-D Pipeline for architecture compar-
ison. The conventional methods were finetuned as described
in Section III-E Conventional segmentation method parameter
tuning.

Related publications suggest that rescaling images to the
same mean nuclear size improves segmentation results if deep
learning architectures are applied [26]. In order to identify the
most effective strategy for the evaluation of our novel artificial
image synthesis approach, we first aimed to confirm this claim.
We compared predictions of all deep learning architectures
trained on non-scaled vs. scaled images (which resulted in
images showing equal mean nuclear sizes). We did not include
conventional method methods in this comparison as the test set
contains images captured using objectives with magnifications
not seen during training. Applying conventional methods tuned
on images with magnifications diverging from those of test
set images would potentially underestimate their segmentation
effectiveness.

As expected, quantitative results show that scaling images
to the same mean nuclear size across images results in
overall improved REC and PREC scores for all deep learning
architectures (Suppl. Fig. 4a). Based on these results, we used
scaled images for all subsequently applied experiments.

A. Silver- vs. Gold-Standard Training

We next compared all methods, including conventional ones,
on two types of annotated training sets: silver and gold-
standard annotations. While silver-standard training sets were
generated by trained under-graduate students and contain par-
tially inaccurate annotation masks, gold-standard training sets
were carefully generated and curated by biology and pathology
experts. The process of image annotation is expensive with
respect to time and resource requirements, in particular if
pathology experts are required. Thus, training with silver-
standard images created by trained under-graduates could be
highly valuable if the results were comparable with results
obtained by training with gold-standard datasets. To show the
impact of annotation standard on the segmentation effective-
ness, we trained all deep learning architectures while applying
parameter tuning for the conventional methods on both training
sets (silver-standard and gold-standard) and evaluated the
prediction results on the cumulative test set.

11See Suppl. Table IV
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TABLE I
NUCLEI SEGMENTATION METRICS FOR ALL ARCHITECTURES ON THE CUMULATIVE TEST SET, COMPARING DIFFERENT TRAINING CONDITIONS:
silver VS gold-standard TRAINING SETS, SCALING VS. NON-SCALING, POST-PROCESSING VS. NON-POST-PROCESSING AND ARTIFICIAL VS.

NON-ARTIFICIAL TRAINING SET IMAGES. THE BEST VALUE PER METRIC IS HIGHLIGHTED

Fig. 5. Performance (precision vs. recall) of deep learning architectures
and conventional methods for the silver vs. gold training set on the
cumulative test set. Using gold-standard training sets, REC and PREC
is increased for all deep learning architectures in comparison to silver-
standard training sets, indicated by the colored arrows connecting silver
and gold scores for each architecture. Conventional methods do not profit
from parameter finetuning on the gold-standard training set.

As expected, PREC and REC increases for all deep learning
architectures when trained on gold-standard images as com-
pared to silver-standard images (see Figure 5). The effect is
lowest for the instance-aware segmentation architectures Mask
R-CNN and KG instance segmentation while these architec-
tures achieve the highest PREC and REC scores. The conven-
tional algorithms do not profit from gold-standard training.
The influence of annotation standards on other metrics can be
observed in Table I and show that pixel-level scores (mDICE,

mJI) are overall only slightly increased when training with
gold-standard images.

B. Image Complexity

To measure the segmentation effectiveness with respect to
the image complexity level and to prove the potential of all
methods investigated to generalize to unseen imaging and
sampling conditions, we evaluated all methods on the similar
and the new conditions test set (Figure 6).

In general, with increasing image complexity evaluation
scores decrease (REC, PREC, F1, mDICE, AJI). This holds
true for all methods as expected, except for the Iterative h-min
method on the similar test set. These method achieves highest
REC and F1 scores on high complex images. US scores
slightly increase for all methods with rising complexity level,
while the overall level is highest for the U-Net, the U-Net
ResNet and the ARG method. OS stays constant and is only
increased for high complex images of the new conditions
test set for the Iterative h-min method. All deep learning
architectures achieve comparable scores on the similar and
on the new conditions test set. The scores achieved by the
conventional methods on high complex images of the new
conditions test set (REC,PREC, F1, AJI) are overall decreased
as compared to the similar test set.

C. Artificial Data

Annotated fluorescence nuclear image datasets are most
frequently rare and of limited size and complexity. To further
improve the segmentation effectiveness of the investigated
deep learning architectures, we created a strategy to simu-
late complex nuclear images as discussed in Section III-C.
We evaluate the influence of adding artificially generated
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Fig. 6. The influence of segmentation complexity on segmentation effectiveness, evaluated on the similar and the new conditions test set. The pie
charts show the distribution of complexity classes within the respective test sets.

images to the training set on the similar and the new conditions
test set with respect to the complexity levels (Figure 7a).

Extending the training set by artificially generated images
leads to an increased F1 score for the U-Net ResNet and
the Mask R-CNN architecture on highly complex images in
both test sets. In particular, Mask R-CNN and KG instance,
trained on natural and artificial images achieve the overall
highest F1 score and REC score, respectively, when compared
to all evaluated conditions, and segmentation methods (see
Tabl. I). Applying the generated artificial images to the shallow
U-Net architecture decreases the F1 score on medium and
complex images. The KG instance segmentation and Cellpose
architectures segmentation effectiveness is not affected by
adding artificial data.

We next evaluated the influence of adding artificial data
with respect to the different preparation types (Figure 7b).
Adding artificial training data leads to top F1 scores on
images of three out of five preparation types: tissue sections,
tumor touch imprints (Mask R-CNN) and cell line cytospins
(U-Net ResNet). Tissue sections represent high complex
images while tumor touch imprints are usually of medium
complexity and cell line cytospins result in images of low- and

medium complexity. In BM cytospins of the similar test
set, where one image of each complexity level is repre-
sented, Mask R-CNN and KG instance segmentation F1 scores
decrease when adding artificial data, while the F1 score
increases for the U-Net and the U-Net ResNet architectures.
However, the U-Net ResNet architecture benefits from artificial
data for all preparation types. Applied on complex images of
the new conditions test set, the KG instance segmentation and
Cellpose architectures achieve the highest F1 scores. A com-
prehensive visualization of results evaluated on the cumulative
test set including conventional methods and evaluated with
respect to the preparation type is visualized in Suppl. Fig. 4b.

D. Influence of RWF Post-Processing

Recent publications suggest that deep learning architec-
tures achieve improved segmentation results if post-processing
strategies are applied [46]–[49]. These can only be used
with segmentation architectures generating probability maps
as output. As we observed that the U-Net architectures
(U-Net, U-Net ResNet) achieved the overall highest mDICE
scores on TP objects, we aimed to investigate whether an
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Fig. 7. The influence of extending deep learning training sets with artificial images on segmentation effectiveness with respect to a) segmentation
complexity and b) preparation type. Compl. class dist.: Complexity class distribution within the respective test set.

easy-to-apply post-processing method can increase U-Net seg-
mentation effectiveness for complex images, thereby balanc-
ing the effort to adapt the segmentation method and the

possible improvement of segmentation effectiveness. As our
preliminary results indicated that U-Net segmentations are
prone to under-segmentation but not to over-segmentation,



1946 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 7, JULY 2021

TABLE II
MEAN DICE COEFFICIENT OF THE HUMAN EXPERT ANNOTATIONS AND THE ARCHITECTURE’S AND CLASSICAL ALGORITHM’S PREDICTIONS WITH

RESPECT TO THE RANDOMLY SELECTED GROUND TRUTH ANNOTATIONS. ANNOT. EXP.: ANNOTATION EXPERT, BIOL. EXP.: EXPERT BIOLOGIST.
BOLD VALUES MARK RESULTS COMPARABLE TO HUMAN EXPERT LEVEL

we applied the RWF algorithm, an algorithm specifically
designed to tackle under-segmentation problems in cell image
segmentation (Suppl. Fig. 5).

The US rate improves for medium and high complex
images if RWF post-processing is applied, while the OS rate
decreases. Overall, the F1 score is not increased (U-Net) or
only slightly increased on complex images (U-Net ResNet) by
RWF post-processing. The mDICE score is not affected, while
the AJI score overall decreases when RWF post-processing is
applied.

E. Comparison to Human Experts

To set a baseline for automated segmentation methods,
the dataset used provides single-cell annotations from indepen-
dent human experts. They were created by randomly selecting
25 nuclei from images and masks of each of the 10 test set
classes, further called single-cell ground truth annotations. The
selected nuclei were then marked with red crosses on raw
images and presented to two independent biomedical imag-
ing experts for annotation. Then, mDICE scores comparing
between the experts’ annotations and the single-nuclei ground
truth annotations were calculated [11] and set the baseline for
automated methods to compete with.

We decided to compare all segmentation methods trained
or finetuned on the scaled textitgold-standard annotations.
To calculate the mDICE scores for each method with respect to
the test set classes, we first selected the predicted objects with
the highest overlap to the respective objects of the single-cell
ground truth annotation. We then calculated the mDICE score
between all selected predicted objects and the respective
single-cell ground truth annotations for each test set class
(Table II).

Overall, the mDICE score baseline on randomly selected
nuclei, set by the independent human experts, cannot be

achieved by the investigated methods. The KG instance
segmentation architecture can achieve human expert level for
the GNB-I, NB-III and NC-II class. Human expert level is
reached for the NB-III class by all deep learning architectures
except for Cellpose. The NC-II class can be segmented by
all methods except for Mask R-CNN and Iterative h-min with
human level performance, containing cells with low signal-
to-noise ratios but almost no touching or damaged cells (low
complexity level).

VI. DISCUSSION AND CONCLUSION

Imaging-based microscopy analysis workflows can help
biologists to analyze and explore biological specimens by
processing images of single or multiple tissue samples, thereby
investigating multi-target and multi-scale features such as
tissue cell type composition, antibody expression, or DNA
level chromosome alterations. Applied to complex nuclear
images such as tissue sections, detection of subtle biological
effects or generation of reliable quantitative results can only
be assured if the segmentation method utilized can provide
instance-aware segmentation results.

To this end, we compared and evaluated the segmentation
effectiveness of five deep learning architectures and two
conventional methods on an expert-annotated nuclear image
dataset composed of images from multiple sample preparation
types showing a wide range of variations. We investigated
the concept of image complexity to evaluate state-of-the-art
deep learning architectures and conventional methods with
respect to the segmentation challenge these images present.
In addition, we evaluated the influence of image rescaling,
the quality of groundtruth annotation standard and the influ-
ence of U-Net post-processing on segmentation effectiveness.
Evaluation was performed on two test sets, a similar test set
and a new conditions test set, the latter containing images
diverse from training set images.



KROMP et al.: EVALUATION OF DEEP LEARNING ARCHITECTURES 1947

We show that (i) instance-aware segmentation architectures
and Cellpose overall outperform the U-Net architectures and
the conventional methods in terms of object-level scores (REC,
PREC, F1), while the U-Net architectures achieve highest
overall mDICE scores on TP objects. (ii) The conventional
method ARG achieves results comparable to U-Net and U-Net
ResNet results on low- and medium complex images (PREC,
F1). On high complex images, both conventional methods
cannot compete with deep learning architectures, with respect
to all metrics. (iii) Deep learning architectures better adapt
to domain shifts then the conventional methods, as evaluated
on the new conditions test set. (iv) Augmenting the train-
ing set with artificially generated complex images leads to
increased REC and F1 scores for the Mask R-CNN and the
U-Net ResNet architectures, thereby resulting in improved
segmentation effectiveness. (v) The silver-standard annotated
training set, generated by trained under-graduates, in combi-
nation with instance-aware segmentation architectures (Mask
R-CNN, KG instance segmentation) is sufficient to generate
accurate segmentation results. (vi) Combined U-Net based
segmentation and RWF post-processing keeps US stable for
medium- and high complex images, but does not effectively
improve the segmentation results.

When analyzing all methods investigated with respect to
the training set applied (silver- vs. gold-standard), it can be
observed that all deep learning architectures benefit from gold-
standard annotations in terms of REC and PREC scores.
Although this was expected, our results demonstrate that the
combined use of instance-aware segmentation architectures
such as Mask R-CNN or KG instance segmentation and
silver-standard annotations are sufficient to outperform both
U-Net architectures and the conventional methods in terms of
PREC and REC. This has major implications for data anno-
tation and thus, for broad use of microscopy image analysis:
silver-standard data annotation can be performed by trained
under-graduate students while gold-standard annotations have
to be carefully generated and curated by biology and pathology
experts in a time consuming manner. As resources are limited
in general, silver-standard annotations enable a more effective
adaption to similar tasks in quantitative microscopy and digital
pathology.

When investigating all architectures with respect to image
complexity, our results demonstrate that the conventional
method ARG can achieve results comparable to U-Net pre-
dictions on low- and medium- complex images, but cannot
compete with deep learning architectures on complex images.
The limited ability to generalize to unseen conditions is
based on the low number of parameters used in comparison
to deep learning architectures. The latter demonstrated to
generalize to previously unseen imaging conditions in terms
of signal-to-noise ratio, sample quality, nuclear morphologies,
out-of-focus objects and diverging modalities (see [11] for a
detailed description of images comprised in the new conditions
test set).

Overall, evaluation scores decrease with rising image com-
plexity as expected, but the use of artificially generated
images can counteract this tendency. This is not surprising
as these images were specifically designed to imitate nuclear

aggregations and overlaps. By presenting the images to the
network while training, an increased set of complex images is
processed as compared to training with natural images only.
This especially applies to images of the similar test set where
adding artificial images to the training set results in three
top F1 scores out of five sample preparation types. This is
of high relevance as the ability to separate nuclear instances
is crucial especially in dense tissue sections with a high
diversity of different cell types. The U-Net ResNet and Mask
R-CNN architectures benefit most from artificial images, while
the shallow U-Net architecture cannot. As this architecture
uses the lowest number of parameters, we speculate that the
artificially generated images present a slight domain shift that
cannot be compensated with this comparably low number of
parameters.

When comparing the overall performance of all deep
learning architectures investigated, the instance-aware archi-
tectures outperform the U-Net architectures in terms of
F1 scores, while the mDICE and mJI scores are overall
higher for the U-Net architectures. This is most likely due
to the skip-connections used within the U-Net architectures,
connecting features from the down-sampling path with the
up-sampling path, thereby preserving spatial information and
leading to more accurate boundary predictions. An exception
is presented by the Cellpose architecture, a U-Net archi-
tecture predicting a gradient flow representation of images,
achieving the second best overall F1 score, based on the best
PREC score. Interestingly, HaCaT cells, grown on micro-
scopoy slides, can be segmented with the highest REC
and PREC scores, although these nuclei are more strongly
aggregated then nuclei of e.g. HaCaT cells cytospinned to
glass slides. We assume that this can be explained by the
fact that the former contain nuclei with high texture details,
which is known to be of benefit in ImageNet pre-trained
CNNs [50].

When comparing all architectures to a baseline set by human
experts on randomly selected single-nuclei with respect to
10 test set classes, none of the segmentation methods can
achieve overall human expert level. Though, methods can com-
pete with human experts on the NB-II and the NC-II test set
(U-Net, U-Net ResNet, KG instance segmentation, Attributed
Relational Graphs), containing images of low- and medium
complexity level. In addition, the KG instance segmentation,
the U-Net and the U-Net ResNet architecture can achieve
expert level for the GNB-I or the NB-II classes, if trained
with natural and artificial data. The GNB-I class contains high
complex images, while the NB-II class consists of medium
complex images.

As the application of post-processing to plain deep neural
network predictions is frequently used in cell and nuclei
segmentation approaches, we decided to investigate RWF
post-processing to improve U-Net predictions results, as they
achieve the highest mDICE scores on TP objects. Over-
all, the F1 score is not remarkably improved when RWF
post-processing is applied. This can be explained by the fact
that RWF post-processing is intended to split aggregated nuclei
tackling under-segmentation problems resulting in a lower
number of clumps but possibly more over-segmented nuclei.
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The use of more sophisticated post-processing strategies such
as the application of a region proposal network to predict
marker-points for a seeded watershed segmentation [48] might
be more promising, but come with the costs of having to
modify and tune commonly available and partially pre-trained
deep learning architectures.

Based on our comprehensive quantitative evaluation, we rec-
ommend silver-standard data annotation and the use of arti-
ficially generated images to augment small training datasets
in combination with instance-aware segmentation algorithms,
such as Mask R-CNN, for effective segmentation of complex
fluorescence nuclear images. In terms of generalization to pre-
viously unseen imaging conditions, the use of Cellpose is sug-
gested. Future approaches to further improve segmentation of
complex nuclear images shall combine both, high pixel-level
accuracy, currently obtained by the U-Net ResNet architecture,
with effective instance-aware segmentation. Given the recent
revival and importance of single cell analysis in biomedical
research, this work has the potential to improve the accuracy
and enable broad applications of microscopy based image
analysis workflows on complex images of samples such as
tissue sections.
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