
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 9, SEPTEMBER 2021 2233

Learning-Based Regularization for Cardiac
Strain Analysis via Domain Adaptation

Allen Lu, Shawn S. Ahn , Kevinminh Ta , Nripesh Parajuli, John C. Stendahl, Zhao Liu, Nabil E. Boutagy,
Geng-Shi Jeng , Lawrence H. Staib , Senior Member, IEEE, Matthew O’Donnell , Life Fellow, IEEE,

Albert J. Sinusas, and James S. Duncan , Life Fellow, IEEE

Abstract— Reliable motion estimation and strain analysis
using 3D+ time echocardiography (4DE) for localization
and characterization of myocardial injury is valuable for
early detection and targeted interventions. However, motion
estimation is difficult due to the low-SNR that stems from
the inherent image properties of 4DE, and intelligent regu-
larization is critical for producing reliable motion estimates.
In this work, we incorporated the notion of domain adapta-
tion into a supervised neural network regularization frame-
work. We first propose a semi-supervised Multi-Layered
Perceptron (MLP) network with biomechanical constraints
for learning a latent representation that is shown to have
more physiologicallyplausible displacements.We extended
this framework to include a supervised loss term on syn-
thetic data and showed the effects of biomechanical con-
straints on the network’s ability for domain adaptation.
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We validated the semi-supervised regularization method
on in vivo data with implanted sonomicrometers. Finally,
we showed the ability of our semi-supervised learning reg-
ularization approach to identify infarct regions using esti-
mated regional strain maps with good agreement to manu-
ally traced infarct regions from postmortem excised hearts.

Index Terms— Cardiac function, echocardiography,
motion analysis, machine learning.

I. INTRODUCTION

A. Motivation

ISCHEMIC Heart Disease (IHD) remains a major problem
in the United States. It is characterized by myocardial

ischemia and infarction (MI) caused by coronary artery nar-
rowing that reduces the blood and oxygen supply. The reduced
blood flow leads to left ventricular dysfunction, which may
lead to heart failure and/or death. Therefore, a reliable quanti-
tative assessment of regional cardiac function for localization
of myocardial ischemia and infarction is valuable for detection
and potential interventions. Utilizing imaging modalities such
as Cardiac Magnetic Resonance imaging (CMR), nuclear
imaging, Computed Tomography (CT), and echocardiogra-
phy [1], a number of quantitative and semi-quantitative metrics
of regional myocardial function have been proposed, includ-
ing regional ejection fraction, wall thickening, wall motion,
and strain. In comparison to other modalities, 4-dimensional
echocardiography (4DE) has advantages of cost-effectiveness
and a lack of ionizing radiation. In this work, we focus on
developing robust methods for estimation of regional myocar-
dial strain for the left ventricle (LV) from 4DE.

Regional myocardial strain estimation requires accurate
and reliable motion tracking of the myocardium. Tracking
methods typically follow image appearance or image-derived
features over the cardiac cycle to produce a dense Lagrangian
displacement field, where all vectors reference a material point
in the end-diastolic (ED) frame. Most previous motion tracking
and registration algorithm development efforts implement a
compromise between accuracy and smoothness in the regular-
ization of sparse cardiac deformation fields. For example, some
algorithms over-smooth for a more global motion estimation
(using e.g. registration algorithms) while others lack the ability
to do cost-effective and accurate 3D displacement estimation,
such as MR tagging. Therefore, intelligent regularization of
the dense displacement field is a necessary step for producing
cost-effective and more reliable strain analysis, which provides
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objective evaluation of regional cardiac health that leads to
improved ability for diagnosis and targeted therapy. However,
addressing this problem from a supervised learning-based
approach reveals a domain adaptation problem, as no ground
truth labels of displacement vectors exists on the target domain
(i.e. in vivo domain). Thus, we approach the problem of
domain adaptation by utilizing biomechanical constraints to
regularize the cardiac displacement field generated from a
range of motion tracking algorithms.

B. Related Works

1) Cardiac Motion Tracking Algorithms: Motion tracking
algorithms can largely be divided into two categories:
intensity-based tracking and feature-based tracking. Intensity-
based tracking includes block matching which assumes a con-
sistent speckle pattern across several consecutive frames in the
entire echo sequence. For a particular 3D image patch, a search
region is defined in the next image frame to find the patch
that maximizes similarity to the initial patch. Motion vector
is defined from centers of the two blocks. Since each motion
vector is estimated independently, the resulting displacement
tends to be spatiotemporally noisy. Therefore, post-processing
is often performed [2]–[6].

In contrast to block matching, nonrigid registration simul-
taneously estimates all voxel-wise displacements by deform-
ing an entire image frame to match a subsequent image
frame optimally and produces a displacement field rep-
resented by smooth kernels such as B-splines, Thin-plate
splines, or Radial Basis Functions (RBF). Different para-
meterizations to characterize cardiac motion and strain
include cubic splines [7], B-Spline with 3-D bending
energy [8], and LV-shaped coordinate system parameterized
with B-splines [9]. Registration-based methods are computa-
tionally intensive due to solving for all voxel displacements
with global coarse-to-fine optimization [10]. In addition, these
methods require careful placement of grid points in the image,
as misplaced grid points may bias myocardial motion such
as when the grid points cover both the blood pool and the
myocardium in the image [11].

Feature-based tracking extracts image features and tracks
these features over the image sequence. These features include
curvature [12], texture [13] or shapes and surfaces [11],
[12], [14]–[17]. However, feature tracking methods have some
weaknesses. First, the majority of methods focus on spatial
regularization and disregard temporal regularization [12], [17].
Second, feature tracking performance depends on performance
of feature extraction, and ultrasound segmentation is a chal-
lenging, non-trivial task. Third, cardiac motion may have a
torsional component, and rotationally in-variant features are
difficult to extract. Lastly, feature tracking methods produce
sparse displacements only, and postprocess spatial interpo-
lation and regularization step is required to generate dense
displacement fields.

2) Regularization Models: To address the sparsity of
displacement field, regularization models are embedded
in intensity and feature-based tracking methods that
enforce physiologically-plausible motion behavior, such as
spatiotemporal smoothness, tissue incompressibility, and

temporal periodicity. Free Form Deformation (FFD) models
lay a lattice of rectangular set of control points on the
image domain [18], [19]. These control points are displaced
from their original locations, and the resulting deformation
is represented by a set of polynomial basis functions such
as B-splines. As a result, the local displacements enclosed
within the control points are implicitly regularized. The choice
of basis function determines local smoothness which results
in an inherent trade-off between smoothness and accuracy.
Since improperly placed control points may bias displacement
estimation, Extended Free Form Deformation (EFFD) models
are designed to overcome issues caused by the rectangular grid
from FFD [20]. EFFD models define control point lattices that
are adapted to the heart, such as cylindrical or anatomical [7],
[9], [21]–[23].

Finite Element Method (FEM) models start by dividing the
myocardium using meshing techniques that facilitate incor-
poration of biomechanical modeling parameters. For example,
the authors in [12] imposed a transversely isotropic linear elas-
tic model that incorporated a fiber model that enforced motion
in myocardial directions. However, cardiac deformation in
ischemic regions was determined to be exponential [24]. Fur-
thermore, although the process of finite element mesh has been
fairly easy to personalize in recent years [25], the difficulty
in segmenting out the myocardium accurately due to lung
artifacts and rib shadowing have made it difficult to use FEM
especially in ultrasound. In contrast to FEM, Radial Basis
Function (RBF)-based displacement representations do not
require explicit mesh construction and are hence referred to
as mesh-free. Work done in [26] specifically used the compu-
tationally advantageous Compactly Supported RBF (CSRBF)
for both displacement field representation and integration of
shape and speckle tracking for strain analysis. The authors
of [27] extended this work to incorporate a sparsity penalty
for data-driven selection of RBF centers.

The aforementioned regularization models use model-based
constraints that may not adhere to typical cardiac motion
patterns. Models alone may be too generic to accommodate
different pathological motions of the heart. Furthermore, they
impose spatial regularization only, and extension to spatiotem-
poral regularization is non-trivial. To address the spatiotempo-
ral regularization problem, our group has investigated several
approaches. First, we used a dictionary learning approach to
learn a sparse representation of displacement maps in order
to recover a well-regularized true displacements [28]. Second,
we extended the dictionary learning-based regularization to a
supervised learning framework with a feedforward neural net-
work for spatiotemporal regularization of noisy displacements.
This framework was generalized to various tracking methods.
Most recently, we proposed combining complementary track-
ing methods using a multi-view learning model and showed
further improved tracking and strain estimation performance.
Finally, we applied the multi-view network to in vivo data and
showed plausibility for domain adaptation [29]. Our previous
work showed that data-driven models using deep learning
strategies provide a way to integrate information generated
from a synthetic dataset [29], which is FEM-based, with in
vivo data. These efforts help overcome the limitations of
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model-based methods, which are computationally challenging
to use in clinical setting, often cannot easily adapt to abnormal
clinical scenarios (e.g. infarction or ischemia), and lack local
tuning parameters. Nevertheless, physics and anatomy-based
left ventricle models are still useful in informing the overall
cardiac deformation and stress during the cardiac cycle. Thus,
in order to realize the advantages of physical-based modeling
using FEM techniques while also addressing the limitations,
we utilize a synthetic dataset which was fully generated
from a FEM physical model that has ground truth labels to
train our data-driven model as a proof-of-concept framework
to show that deep learning-based methods can handle other
ground truth data easily. However, addressing the problem
of regularization using supervised learning-based approaches
leads to domain adaptation problems since there are no ground
truth labels of displacement vectors in the target domain (in
vivo).

3) Domain Adaptation: Curating an accurate and
well-labeled dataset is a difficult and expensive task, especially
in medical imaging, due to the clinical expertise required to
annotate a given imaging modality dataset. Segmentation and
classification problems in medical imaging have large labeled
datasets that are freely or easily available. However, motion
tracking datasets, specifically for echocardiography, are
scarce due to the rarity of ground truth labels. Previous work
addresses this issue by generating synthetic datasets [30], but
using synthetic datasets inevitably leads to the problem of
domain transfer when solving the motion tracking task in the
target domain (i.e. in vivo data).

There has been extensive prior work on domain adaptation
and domain transfer learning. The main strategy is to guide
the feature learning by minimizing the differences between the
source and the target features.

Some have proposed domain adaptation models using
autoencoders to find common features between the source
and target distributions by training [31]. The most popular
approach has been using an adversarial loss to minimize the
domain shift, learning the features that are both discriminative
and invariant to the change of domains. The aim of these
models is to confuse the network through an adversarial
objective with a discriminator. References [32], [33] proposed
adversarial unsupervised adaptation methods to regularize the
learning of the source and target mappings by minimizing
the distance between source and target mapping distributions.
Reference [34] learns a joint distribution of multi-domain
images and enforces weight sharing using Generative Adver-
sarial Networks (GANs) [35]. Reference [36] proposed a
reverse domain adaptation method using GAN to make real
medical images look more like synthetic images. In contrast
to adversarial approaches, others have approached the problem
as a data reconstruction by using encoder for source label
prediction and decoder for target data reconstruction [37], [38].
Extending from this, we take a related, but new, approach as
described in the next section.

C. Key Contributions

Our previously proposed method required the availability of
true displacement for learning, and cross-domain prediction

performance was typically poor [29]. Despite the advance-
ments in domain adaptation in deep learning, prior methods
focus on classification problems which is difficult to translate
into motion tracking problems. Also, the adversarial losses
that have been commonly used do not produce stable results
due to non-convergence, mode collapse, and diminished gra-
dients. Thus, in order to address the problem of domain
adaptation in cardiac motion tracking, we propose to use
a biomechanically constrained learning-based framework to
regularize the displacement field. The noisy and difficult in
vivo echocardiography tracking can be better informed by the
synthetic dataset that has a smooth and accurate ground truth
displacement fields. In this paper, we fully address the problem
of domain adaptation as it relates to our previously proposed
neural network-based approach while specifically addressing
the limitations in that method. Thus, this work is a substantial
expansion of [29], where we make the following contributions:

• Develop a complete approach for supervised regulariza-
tion based on an MLP design.

• Present a novel semi-supervised neural network frame-
work with biomechanical constraints for displacement
regularization and domain adaptation.

• Validate the proposed methods on in vivo data with
implanted sonomicrometers.

• Illustrate the promise of proposed method for identifying
injury zones using estimated regional strain maps.

II. FEEDFORWARD NEURAL NETWORK LEARNING

A. Tracking Methods for Initial Displacement Estimation

We utilize three different representative methods for produc-
ing initial noisy estimates of the displacement field for regu-
larization: Radio-frequency-based Block Matching (RFBM),
Flow Network Tracking (FNT), and Nonrigid Registration
with Free Form Deformation model (FFD).

1) RF-Based Block Matching: We utilized the RF-based
block matching (RFBM) algorithm from [5], [39] as an input
to our proposed framework. This method is performed on
phase-sensitive radio-frequency (RF) images, which precede
the log-compression and envelop detection steps and are com-
plex valued. As a result, additional intensity-level information
was retained for tracking in contrast to B-Mode images,
which are filtered for enhanced visualization. RFBM performs
tracking in the natural spherical ultrasound coordinate system
that spans axial (in the direction of ultrasound beam), lateral,
and elevational directions using Normalized Cross Correla-
tion (NCC) as the similarity metric. The sub-voxel precision
displacement in the axial direction was estimated by finding
the zero-crossing of the phase of complex NCC, and a second
order polynomial was fitted to the voxel-level displacement
field in the elevational and lateral directions. Further details
of this method can be found in [6].

2) Flow Network Tracking: We also utilized Flow Network
Tracking (FNT) [16] as an input to our proposed frame-
work. First, 3D surfaces of endocardium and epicardium were
extracted from B-mode image frames using the segmentation
method called Dynamical Appearance Model (DAM) devel-
oped by [14]. DAM discriminates class appearance differences
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at multiple scales by finding sparse representations of image
patches for each class (i.e. blood vs. myocardium). The
trained dictionaries were updated on-line through the cardiac
cycle, leveraging spatiotemporal coherence. Chan-Vese level
set functions were fitted to the discriminated classes to produce
smooth myocardial surfaces [40]. FNT sampled points from
the extracted myocardial surfaces and assigned these points
as nodes on a graph, and edges were the potential paths
through the graph. FNT then solved for the optimal flow
across the graph given the following constraints: 1) Sum of
outgoing flow is less than or equal to one. 2) Sum of outgoing
flow and incoming flow should be equal. The above problem
was solved with Linear Programming. The edge weights
were precomputed as a function of Euclidean and feature
distances among neighborhood points. The feature distances
were learned by training a Siamese network that finds an
optimal feature distance between two image patches. Feature
distance was minimized when two patches were most similar
(based on shape) and maximized when most dissimilar [41].
Details of this algorithm can be found in [16].

3) Nonrigid Registration: We implemented the nonrigid
registration-based method developed by [10] using B-mode
images. This method has two components. First, a global
affine transformation is found between two images of interest
that aligns the moving image to the fixed image frame. The
objective function was solved with Limited Memory-Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) [42]. This registration
method produced a displacement field between two image
frames, and we had two ways of utilizing this method to
produce a 4-dimensional Lagrangian displacement field. In the
first approach, we first registered adjacent frames to produce
an Eulerian displacement field for each image frame. We then
converted the Eulerian displacement field to a Lagrangian dis-
placement field by temporally interpolating the displacements
over time. We referred to this approach as Frame-to-Frame
Registration using FFD model (FFD FtoF). In the second
approach, we registered every frame in the cardiac sequence
to the end-diastole frame. This approach directly produced a
4D Lagrangian displacement without the need for conversion.
We referred to this approach as Frame 1-to-Frame Registration
using FFD (FFD 1toF). We utilized results with both of these
registration approaches as part of our overall work.

4) Combining Complementary Tracking Methods: Each track-
ing method is unique in capturing certain features in the
image that allows it to produce displacement maps. We also
aimed to integrate complementary tracking methods applied
to inter-modal ultrasound images for overall improved esti-
mations. Our approach was to learn the relationship between
complementary tracking methods using multi-view learning.
Multi-view learning [43] is a class of machine learning models
that combine multiple independent sources of features and has
classically been used in the medical imaging community for
integrating multiple instances or views of the same object.
Inspired by this, we combined the extracted displacement
patches from complementary tracking methods at the input
layer of our feedforward neural network, and the network
produced one set of regularized displacements from both of
these sources. As a result, the network implicitly learned

Fig. 1. Multi-view learning architecture for integrating RFBM and
FNT-generated displacement patches.

to weigh the inputs to produce one set of displacement
estimates that captured the complementary nature of the inputs.
Fig. 1 illustrates the network architecture. This would replace
the architecture in Fig. 2 training phases. We validate our
multi-view learning architecture by exploring different combi-
nations of complementary tracking methods. First, we looked
at combining RFBM and FNT. RFBM has better performance
inside the myocardium but has poor performance near the
boundaries due to speckle de-correlation. On the other hand,
B-mode based FNT tracks extracted myocardial surfaces and
provides more reliable displacement estimation performance
near the boundaries. Therefore, RFBM and FNT have comple-
mentary tracking features. Second, we study the combination
of FFD FtoF and FFD 1toF. FFD FtoF displacement field
represents the sequential Eulerian displacement map while
FFD 1toF represents a reference-based Lagrangian motion
field. Therefore, we pair these two methods to combine the
Eulerian and Lagrangian displacement fields. Lastly, we test
our model on combining FNT and FFD FtoF. FNT relies
on tracking surface points and FFD FtoF tracks intensity
information from B-mode. This combination allows us to test
combining shape/surface-based and appearance-based B-mode
derived information.

B. Synthetic Data

Our use of synthetic dataset was pivotal in not only
validating the performance of our algorithms but providing
ground-truth for development of learning-based approaches.
The synthetic dataset contained eight 3-D echocardiographic
sequences developed by [30]. These synthetic image sequences
incorporated realistic ultrasound features that simulated the
difficulty in tracking real ultrasound image sequences. The
8 individual sequences from the dataset simulated different
physiological conditions, including 1 normal, 4 sequences with
occlusions in the proximal (ladprox) and distal (laddist) left
anterior descending artery, left circumflex artery (lcx), right
coronary artery (rca), and 3 sequences with dilated geometry
with 1 synchronous (sync) and 2 dyssynchronous left ventricle
activation (lbbb, lbbbsmall). The non-dilated geometry image
had image sizes of 224 × 176 × 208 voxels with a voxel size
of 0.7 × 0.9 × 0.6 mm3 with frame rate 23 Hz. The dilated
geometry had the same image dimensions as the non-dilated
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Fig. 2. Overview of the method in Section II. The red box indicates the training phase, where we train the MLP using extracted patches and ground
truth displacement field. The blue box indicates the testing phase, where we predict the regularized displacement field using the trained MLP.

geometry but acquired with a frame rate of 21 Hz. Each image
sequence contained 2250 sparse ground-truth trajectories Usp

f
for interpolation to dense field.

C. Data Preprocessing

By utilizing a manually segmented myocardium as a region
of interest (ROI) guidance for the first frame of the image
sequence, we first develop a Lagrangian dense displacement
field within the actual myocardium, which is a 4-dimensional
vector field, where the displacements at each voxel represent
the motion in relation to a material point in the reference
point, usually end-diastole in cardiac cycle. Since the heart
is a moving 3D object, learning from 4D data is required to
avoid out-of-plane motion errors and allows the network to
fully capture spatiotemporal motion patterns. Also, properly
regularized frame-to-frame (over 3D) displacement estimates
are critical for the downstream algorithms and for accurately
estimating strain for use in identifying injury zones. Therefore,
4D patches were extracted from the dense field as input to the
network. The sparse ground-truth trajectories in our synthetic
dataset [30] were spatially interpolated to produce dense
ground-truth displacement field. Given sparse trajectories Usp

f
for image frame f , we solved for frame-to-frame ground-truth
dense displacement field U∗

f for frame f with the following
objective function:

w∗ = U f ||Hw − Usp
f ||22 + λ1||w||1 + λ2||∇ · U f ||22 (1)

where H defined the radial basis function kernels (RBF),
w are the optimal weights of RBF, and λ1 and λ2 are

hyper-parameters for L1 and divergence-free regularization
terms. The resulting frame-to-frame or Eulerian displacement
field U f for all f were temporally interpolated with respect
to material coordinates of the end-diastole frame and accu-
mulated to produce a Lagrangian displacement field for patch
extraction.

In order to learn spatiotemporal patterns, overlapping 4-
dimensional patches were extracted from Lagrangian displace-
ment fields as illustrated in Fig. 2. Overlapping 4D patches
were used instead of non-overlapping patches in order to
upsample more data from a single 4D video clip. The 4D
patches were then flattened and concatenated to form the train-
ing data. This was applied to both ground-truth Lagrangian
displacement field and initial noisy displacement field esti-
mates to form Utrue and Unoise, respectively. Corresponding
pairs of Unoise and Utrue patches were fed to the feedforward
neural network for learning the regularization function.

D. Neural Network Architecture: Multi-Layered
Perceptron (MLP)

The neural network architecture that we utilized to learn the
spatiotemporal patterns between the noisy displacement fields
and the ground truth displacement fields was a Multi-Layered
Perceptron (MLP). The reason why we utilize MLP over a
convolutional neural network (CNN) is that the spatial region
of interest (ROI) for regularization is already localized at 5 ×
5 × 5 spatial pixels. Therefore, CNN, which typically uses
a kernel size of 3 × 3 × 3, would not provide a significant
advantage as the potential 3 × 3 × 3 window would nearly
encompass the entire ROI.
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In a supervised learning manner, a sample of training
patches and a sample of ground truth patches are fed into either
ends of the MLP so that a latent representation between the
two inputs can be learned. For synthetic dataset, our network
architecture consists of 3 hidden layers with 1000 nodes per
layer along with Dropout with probability of 0.2 and a ReLU
activation. For the in vivo acute ischemia dataset, our network
architecture consists of 7 hidden layers with 1000 nodes per
layer with Dropout with probability of 0.5. We trained for
100 epochs and picked the model with the lowest validation
loss. The optimizer used was RMSProp optimizer with an
initial learning rate at 1e-5. Fig. 2 shows an example of a
3 hidden layer MLP architecture which was used for the
synthetic only training. Details of the loss function used for
MLP are described in the following paragraphs.

E. Spatiotemporal Regularization Learning: Neural
Network Loss Function

Our goal was to learn the condition distribution that maps
the noisy corrupted displacements Unoise to Utrue by mini-
mizing the negative log-likelihood, which is equivalent to the
cross-entropy between the data distribution Pdata and model
distribution Pmodel [44], defined as:

C(θ) = −EUnoise ,Utrue∼Pdata log Pmodel(Utrue|Unoise) (2)

where θ are the parameters of the model. The specific form of
Pmodel determines the loss function. Assuming that Pmodel has
a Gaussian distribution, then the mean squared error (MSE)
loss was derived as:

C(θ) = 1

2
EUnoise ,Utrue∼Pdata ||Utrue − f (Unoise; θ)||22 + K

(3)

where K is a function of the variance. While MSE loss may be
used, we chose to use a Log-Cosh function, which is a smooth
Huber loss function that has L1 behavior for high loss, and
L2 behavior for small loss [45]. Thus, our objective function
for supervised regularization loss was:

θ∗ = θ
1

N

N−1∑
i=0

log cosh
[
U (i)

true − f (U (i)
noise; θ)

]
(4)

where N is the total number of data samples. In addition
to feeding pairs of Unoise and Utrue displacement patches
to the network model (Fig. 2b), pairs of Utrue and Utrue

displacement patches were also fed to the model for data
augmentation. In this way, the model learned to regularize
high-error displacement patches and avoid biasing low-error
displacement patches via learning the identity function.

F. Domain Adaptation Using Semi-Supervised Learning
With Biomechanical Constraints

Our previously proposed method required the availability
of true displacement Utrue for learning. This ground-truth is
difficult to acquire in practice. Furthermore, training a network
with data from one domain (i.e. synthetic domain) and applied
on another domain (i.e. in vivo domain) was challenging

and usually produced poor results, which can be seen in
Fig. 3a. We proposed using a biomechanically-constrained
MLP network for learning the latent representation of noisy
displacements. MLPs must be constrained in order to learn a
useful representation, such as under-complete hidden layers,
L1 penalty on the parameters of the hidden layers, or sparsity
constraint on the outputs of hidden layers [44]. Without these
constraints, the MLP would simply learn the identity function.
In this work, we utilized prior knowledge that well-regularized
displacement patches should be biomechanically plausible.
Specifically, cardiac tissue deformation is near incompressible,
where the volume of myocardial tissue is constant when
deformed. In addition, tissue motion is approximately periodic
over the cardiac cycle. Leveraging these assumptions, we intro-
duced biomechanically-inspired constraints to the MLP with
the objective function in (5):

θ∗ = θ

N∑
i

{||U (i)
noise − Upred (θ)(i)||22

+ λdiv

T∑
t

||(∇U (i,t)
pred(θ))||22

+ λloop

T∑
t

||∂U (i,t)
pred(θ)

∂ t
||22} (5)

The first term is data adherence between Unoise and pre-
dicted displacements Upred = f (Unoise; θ). The second
term enforced incompressibility at each frame t , which was
measured with L2 norm of divergence computed as trace
of displacement gradient tensor. The third term penalized
non-periodicity of cardiac motion. Summation of temporal
derivatives over the temporal dimension of perfectly periodic
Lagrangian displacements is zero. Thus, we penalized the
L2 norm of temporal derivative of Lagrangian displacements.
However, periodicity is not always realistic due to potential
probe motion and strong penalization of the term can push
the displacement to be near 0. Therefore, we pose periodicity
as a soft constraint. λdiv and λloop were hyperparameters
that controlled the influence of divergence and periodicity
constraints, respectively. Utilizing these constraints, the MLP
was forced to learn a biomechanically-plausible representation
of noisy Lagrangian displacement patches.

III. EXPERIMENTS AND RESULTS

A. Learning Spatiotemporal Regularization Using
Synthetic Data

We first quantitatively evaluated the performance of our
learning-based regularization on dense trajectories (i.e. trajec-
tory for each voxel in the myocardium) to pick out the best
tracking algorithm to use for our proposed domain adaptation
method. For computational efficiency, we re-sampled each
voxel to 0.5 mm3 with image size of 75 × 75 × 61 voxels.
Training patches were sampled with a stride of 2 in each
direction. For normal geometry datasets (normal, laddist,
ladprox, lcx, rca), our patch sizes were five dimensional:
5×5×5×32×3 for 3 spatial directions, temporal direction, and
x-y-z displacement directions. For dilated geometry datasets
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TABLE I
MEDIAN TRACKING ERROR (mm) PER FRAME COMPILED FOR ALL

8 STUDIES FOR ALL TRAJECTORIES WITHIN MYOCARDIUM. MEDIAN

STRAIN ERROR (%) PER FRAME BETWEEN ESTIMATED STRAIN AND

GROUND-TRUTH STRAIN COMPILED FOR ALL 8 STUDIES

FOR all TRAJECTORIES WITHIN MYOCARDIUM

(sync, lbbb, lbbbsmall), our patch sizes were 5×5×5×39×3.
In total, we collected around 100,000 patches for training and
22,000 patches for testing. Our network architecture for the
synthetic dataset consists of 3 hidden layers with 1000 nodes
per layer along with Dropout with probability of 0.2.

Table Ia shows the median tracking error in mm for
various different tracking methods. We applied Dictio-
nary Learning-based Regularization (DLR) [28] and Neural
Network-based Regularization (NNR) to RFBM, FNT, and
FFD FtoF estimates. We imposed a leave-one-out scheme,
where we trained on 7 images and tested on the 8th image. Out
of the 7 training images, 6 were used for training and 1 was
used for validation. The same training scheme was done for
both DLR and NNR. The FFD FtoF testing was included in
order to compare to an alternative frame to frame approach
beyond our own RFBM and FNT methods. We observed that
NNR yielded significant improvements in tracking accuracy
for all three methods over both initial tracked and dictionary
learning-regularized trajectories (DLR).

We further compared our previous efforts based on integra-
tion using radial basis functions in [26] with our proposed
multi-view network architecture for integration of surface
tracking (FNT) and speckle tracking (RFBM) methods, with
this method denoted as RBF-Comb. in Table I. We used
RBF kernels to interpolate the sparse FNT displacements
and RFBM displacements, with each sample weighted by a
confidence measure. We assumed that FNT was optimal on the
myocardial surfaces; thus, we assigned maximum confidence
value for all FNT-derived displacements on the surfaces. For
RFBM, we used NCC as a confidence measure. We com-
pared the RBF-based combination method with our proposed
learning-based integration method, where we input displace-
ment estimates from RFBM and FNT into the multi-view
learning framework denoted as NNR-Comb.. Furthermore,
we noticed that RBF-Comb.’s performance was in between
the tracking accuracies of FNT and RFBM. Thus, the resulting
displacement field estimate was simply an averaging between
FNT and RFBM, which resulted in tracking performance that
was improved from RFBM but worse than FNT. In com-
parison, our proposed method NNR-Comb. produced better

tracking performance than both FNT and RFBM, suggesting
that it was effective in leveraging the complementary nature of
the two methods. NNR-Comb. produced the highest overall
tracking accuracy.

We also analyzed our performance via regional strain analy-
sis using a spatial strain map similar to Fig. 6b, where we
computed regional strain from dense displacement fields. The
computed strain tensors were projected in clinically relevant
radial (Rad.), circumferential (Cir.), and longitudinal (Long.)
directions. Strain estimation performances were shown in
Table Ib. Finally, additional qualitative evaluations of strain
curves and maps are shown in [29]. Overall, our learning-based
approach to regularize displacements showed a higher accu-
racy in terms of mean tracking error as well as the strain
analysis (Table I) in the synthetic data.

B. Domain Adaptation With Biomechanical Constraints
Using in Vivo Acute Ischemia Model

In order to translate our improved tracking accuracy using
learning-based regularization to our in vivo data while also
addressing the problem of domain adaptation, we use biomech-
nical constraints in our regularization terms to bridge between
the synthetic data and the in vivo data.

1) Image Acquisition Parameters: We acquired in vivo 4DE
from anesthetized open-chest canines. These canine images
were acquired using a Philips iE33 scanner (Philips Medical
Systems, Andover, MA) and X7-2 probe and conducted in
compliance with Institutional Animal Care and Use Committee
policies. We used real time data acquisition sequence ranging
from 50-60 frames per second that typically produced around
15-30 3-D volumes for each 4-dimensional sequence.

For each study, we acquired images from the animal under
3 physiological conditions. First, we acquired a baseline
image (BL) of the animal. We then introduced a severe stenosis
(S) in the mid-left anterior descending (LAD) artery. Finally,
we induced a stress condition with a continuous infusion of
dobutamine (5μg/kg/min) in the continued presence of the
severe stenosis (SSDOB). Further details of the experimental
set up of the animal studies can be found in [46].

2) Effect of Regularization Terms: In this section, we ana-
lyzed the effect of the biomechanically constrained regulariza-
tion parameters λsuper , λloop , and λdiv on the performance of
domain adaptation. Domain adaptation is the task of improv-
ing cross-domain prediction performance. We visualized the
effect of these regularization parameters on domain adaptation
using t-SNE, which is a nonlinear dimensionality reduction
algorithm for visualizing high-dimensional data [47]. It is
commonly used for examining the relationship of latent data
representations from different domains by clustering them into
similar regions that represent the same latent data. We utilize
the t-SNE plots to explore the distributions of our synthetic
data-derived latent representations and in vivo-derived latent
representations. In our experiment, both synthetic displace-
ment patches and in vivo displacement patches were inputted
into our semi-supervised learning model, and t-SNE was
applied to the output of the last hidden layer, which reduced
the number of dimensions from 1000 to 2. We plotted the
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Fig. 3. (a) T-SNE plot with no regularization. (b) L2 Regularization with
weight 0.01. (c) t-SNE plot with low regularization. (d) t-SNE plot with
high regularization.

outputs from the hidden layer for four levels of regularization
in Fig. 3: part (a) no regularization (λdiv = 0, λloop = 0),
part (b) L2 regularization with weight of 0.01, part (c) low
regularization (λdiv = 0.1, λloop = 0.1), and part (d) high
regularization (λdiv = 1, λloop = 1). In (a), the hidden layer
outputs from the synthetic and in vivo data were completely
separated. This indicated that the network implicitly classified
the synthetic data (where outputs were true displacements)
and in vivo data (where outputs were noisy displacements).
As a result, the network predicted in vivo noisy displacements
when the input was in vivo noisy displacements, which were
not spatially smooth or periodic. This motivated the use of bio-
mechanical regularization to force the predicted in vivo noisy
displacements to be spatiotemporally regularized in order to
better resemble synthetic displacements, achieving domain
adaptation. Thus, we experimented with low regularization and
observed a slight “mixing” effect in (c). We further increased
regularization and observed a more significant mixing of the
outputs of the two domains in (d). This suggested that biome-
chanical regularization positively influenced the domain adap-
tation ability of the network model. For general comparison,
we included L2 regularization with weight 0.01 in part (b) to
observe how it compares with our biomechanical regulariza-
tion. This demonstrates that the biomechanical regularization
provides better domain adaptation capability compared to
other network-based regularization methods such as L2. One
thing to note is that there is a fundamental difference in the
L2 regularization with our biomechanical regularization. L2
regularization reduces the magnitude of the model parameters.
Therefore, as the weights of L2 regularization gets too high,
then the model parameters become smaller in magnitude,
which means the model predictions gets smaller in magnitude
for both domains. Thus, we might still see a mixing effect
if the weights are high enough, but that does not necessarily

mean the model is adapted to the data. However, our approach
of using biomechanical constraints is that we do not penalize
the model parameters but the model output itself, so visually
seeing the mixing effect gives us assurance that the model is
adapting to the target domain.

3) Sonometric Crystals: We used sonomicrometric trans-
ducer crystals with recording instrument and software Sonosoft
and Sonoview (Sonometrics Corporation, London, Ontario,
Canada) for recording inter-crystal distances over the cardiac
cycle. Cubic arrays with 3 adjacent cubes and 16 total crystals
were implanted across the myocardium, where 8 crystals were
placed near the endocardial surface, and 8 additional crystals
were placed near the epicardial surface. One cube was in
the ischemic zone (Ischemic) within the perfusion territory
of the stenosed artery. One cube was outside of the ischemic
zone (Remote). The last cube was in the middle of the two
previously described cubes (Border). These cubes are shown
overlaid on sample LV surfaces in Fig. 4a. We computed strain
from the 3D cubic array of crystals based on the work in [48].
For each cube, we defined approximately 50 tetrahedral units,
or elementary units that consist of 4 out of the possible
8 vertices. A strain tensor was computed for each tetrahedral
unit of the cube. Then, we computed the median strain tensors
computed from all of the tetrahedral units to yield one final
strain tensor. Finally, principal strain was computed via eigen
decomposition of the strain tensor.

To utilize the crystal-derived principal strains for validation
of strains calculated from in vivo echocardiographic images,
we used reference crystals attached to the ultrasound trans-
ducer. We made assumptions regarding the locations of those
crystals and solved a system of equations for the locations
of 16 myocardial crystals. On the X7-2 probe, we attached
the reference crystals in the configuration as seen in Fig. 4b.
The two crystals facing each other were placed approxi-
mately 28 mm apart from each other. The third crystal was
approximately 13 mm from the center of the probe surface.
We assumed that these crystals were located approximately
5 mm from top of the “ultrasound fan”. Based on these
assumptions, we estimated locations of all 3 crystals. Then, for
each myocardial crystal, the distances to the reference crystal,
computed from crystal positions, should equal to the recorded
distances from the crystals. We formulated this relationship
as a 3 variable 3 equation problem and solved for the crystal
locations. Fig. 4c/d show how the mapping was done and the
way it appears on the ultrasound space.

4) Experimental Parameters: For each dataset, we collected
image sequences for three different physiological conditions
as mentioned previously: Baseline (BL), Severe Stenosis (S),
and Severe Stenosis with Dobutamine (SSDOB). This allowed
us to quantify the performance of our algorithm from a clinical
perspective, ensuring that we captured the regional (i.e. strain
variations across the 3 cubes) and physiological variations.

We computed peak principal strain from each crystal cube
and compared with image-derived peak principal strains. Peak
strain is the most clinically accepted metric of strain. There-
fore, we focus our strain calculation on peak strain. We utilized
4 studies with 3 physiological conditions (BL, S, SSDOB) with
3 cubes (Ischemic, Border, Remote) for each image sequence.
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Fig. 4. (a) Sonometric crystals layout in relation to LAD artery. (b) Reference crystal on X7-2 transducer arrangement. (c) Mapping crystals onto
ultrasound space in 3D. (d) Example crystals mapped on 2D image slice.

TABLE II
SIMPLE VS. INTEGRATED DOMAIN ADAPTATION: PEARSON

CORRELATION (r) BETWEEN CRYSTAL AND IMAGE-DERIVED PEAK

STRAINS (N = 36). HERE, WITHOUT REGULARIZATION DESCRIBES

NO NEURAL NETWORK MODEL, SYNTHETIC MODEL DESCRIBES

DOMAIN ADAPTATION MODEL TRAINED ONLY ON SYNTHETIC DATA,
AND LASTLY, THE SEMI-SUPERVISED STUDY IS THE DOMAIN

ADAPTATION MODEL INCORPORATING SYNTHETIC

GROUND TRUTH WITH THE IN VIVO STUDIES

In our leave-one-out testing scheme, we have N = 36 samples
for comparison. Our testing metric was Pearson correlation
computed for the 36 samples. We tested our semi-supervised
learning framework on FNT, RFBM, FFD FtoF and FFD
1toF. For each experiment, we extracted approximately
100,000 displacement patches from the synthetic datasets
and 100,000 displacement patches from the in vivo datasets,
totaling approximately 200,000 patches. To accommodate for
the increase in data, we increased the number of hidden layers
from 3 (in our synthetic data experiments) to 7 for these in
vivo experiments. For each dataset, we computed correlations
from peak strains estimated using the initial tracking method
(FFD FtoF, FFD 1toF, RFBM, FNT). We also showed the
computed correlations from peak strains regularized with a
neural network model trained only on the synthetic dataset
(Synthetic). Finally, we showed peak strain correlations with
our semi-supervised framework (Supervised term and MLP)
with biomechanical regularization (Semi-supervised), where
we set λsuper = 1.

5) Comparison of Methods: Pearson correlations for the
various tracking methods after our proposed domain adaptation
method were presented in Table II. RFBM-produced displace-
ments were regularized using λdiv = 0.5 and λloop = 0.5.
As expected, RFBM without any regularization produced poor
results with correlation of 0.01. The severely low correlation
stemmed from the fact that principal strain captured the highest
deformation and was similar to radial strain, which increased
the possibility of over-fitting to noise. A model trained
on synthetic data only improved the global correlation to
0.15. However, with using our semi-supervised learning-based

regularization, we were able to capture higher correlations
of 0.26.

We applied our algorithm to noisy displacement estimates
from FNT using λdiv = 0 and λloop = 1. We observed an
overall increase in global correlations from 0.17 to 0.25. The
relatively low correlation for FNT was due to poor segmenta-
tion results used for surface tracking. Performance of FNT or
any feature tracking-based methods was heavily dependent on
the accuracy of the feature extraction process. In this case,
FNT relied on segmentation accuracy. In our experiments,
we used segmentation method described in [14]. In this
method, the end-diastole (ED) frame was manually segmented,
and the resulting contours were propagated bi-directionally
towards the end-systole (ES) frame. As a result, segmentation
errors propagated temporally and were highest at ES frame.
This was problematic for computing peak strain, which was
typically computed from ED to ES.

We applied our algorithm to noisy displacement estimates
from both nonrigid registration approaches. Both of these
methods were implemented using λdiv = 0.5 and λloop = 0.5.
For FFD FtoF, correlation improved from 0.33 to 0.52 for
semi-supervised learning approaches. We observed that FFD
1toF produced the highest correlation of 0.6 compared to
FFD FtoF, RFBM, and FNT and improved to 0.63 with
semi-supervised regularization. FFD 1toF produced higher
correlation than FFD FtoF likely due to error of propagation
significantly affecting performance of FFD FtoF.

6) Combining Multiple Methods: Given that our multi-view
learning architecture was successful in combining RFBM and
FNT displacement patches, we tested integration of other
combinations of tracking methods, where we inputted two
sets of noisy displacements concatenated at the input layer
and produced one set of regularized displacement output.
We experimented with two combinations that were thought
to be promising from the results seen in Table II. We first
combined FNT and FFD FtoF in order to explore the
shape/surface-based and appearance based B-mode derive
information. FNT relied on tracking surface points, but FFD
tracked intensity information. Therefore, these two meth-
ods provided independent features and produced overall bet-
ter performance than the individual methods. Specifically,
FNT produced 0.17 correlation, and FFD FtoF produced
0.33 correlation. This combined method produced 0.60 for the
semi-supervised models.
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Fig. 5. LAD infarct manual tracings from a postmortem excised LV. Part (a) shows a cross-section of the LV near the apex with infarct (green) Part
(b) shows a cross-section of the LV near the base with infarct (green). Part (c) shows contours in 3D of traced LV with infarct (green), peri-infarct
zones (blue), and myocardium (red). Part (d) shows manually traced LAD infarct (red) onto ultrasound space in the left ventricle (green) and surface
map.

TABLE III
CRYSTAL VS. IMAGE-DERIVED PEAK STRAINS: PEARSON

CORRELATION (r) BETWEEN CRYSTAL AND IMAGE-DERIVED PEAK

STRAINS (N = 36) USING COMBINED TRACKING METHODS

We also experimented with utilizing both FFD 1toF and
FFD FtoF to see the relationship between different tem-
poral displacement calculations. FFD 1toF registered each
frame in the image sequence to 1 reference frame, and in
contrast, FFD FtoF registered adjacent frames in the image
sequence and converted the resulting Eulerian displacements to
Lagrangian displacements. Theoretically, registering adjacent
image frames is easier due to smaller deformation between
adjacent frames, while registering between a reference image
frame (e.g. ED) to another frame in the image cycle (e.g. ES)
would be more difficult due to high deformation between the
two image frames. On the other hand, the process of converting
Eulerian to Lagrangian displacements incurs a propagation of
error, but FFD 1toF directly produced Lagrangian displace-
ments that did not require this conversion. Therefore, these two
methods were complementary in the temporal domain. Our
network combining these two methods produced a correlation
of 0.67, which was higher than correlations of 0.33 and
0.60 from the individual methods. All results are listed in
Table III.

C. Strain Analysis Using in Vivo Chronic Infarct Model

To investigate the improved displacement maps generated
from our proposed domain adaptation approach, we also
evaluate strain in 4D echocardiography which is a derivative
of the displacement map and the measurement that is clinically
relevant.

Stress echocardiography is useful for detecting regions of
ischemia and infarction by observing for wall-motion abnor-
mality. However, rest and stress images are typically analyzed
qualitatively, which introduces observer variability. Strain is
a useful quantitative metric for localizing the ischemic and
infarct regions. Thus, we are investigating utilizing strain
as a fully quantitative tool to analyze rest-stress studies in
echocardiography. There are two physiological states that are

used to analyze ischemic and/or infarct regions by clinicians:
rest state and stress state. Differential strain which is the
difference between rest and stress strains further gives a better
localization of ischemia and infarct that may have been hidden
in a single state. Thus, we explore rest strain, stress strain, and
differential strain to quantify the degree of ischemic/infarct
regions.

We conducted an additional set of studies in dogs with
chronic myocardial infarction (N = 4). All studies were
performed in compliance with Institutional Animal Care and
Use Committee policies. Specifically, a balloon occlusion was
introduced in either the Left Anterior Descending (LAD)
or the Left Circumflex (LCX) arteries and maintained for
3 hours prior to reflow inducing regional myocardial infarc-
tion. This procedure was done on day 0, and the animals
were imaged on day 9. For each study, images from two
animal states were acquired: rest and stressed with dobutamine
(5μg/kg/min). For both rest and stress image sequences, peak
strains were computed using FFD 1toF with semi-supervised
learning regularization since FFD 1toF showed the highest
Pearson Correlation coefficient for the semi-supervised model
(Table II). This initial testing used only the best single method.
Future work will look at the combined methods.

Strain maps were calculated using the regularized displace-
ment developed from the acute ischemia model. To com-
pare our strain-derived infarct zones with real infarct zones,
we excised the postmortem LV from the animal and cut heart
into short axis slices, and manually traced the infarct regions
for each LV slice, and reconstructed the 2D slices into a 3D
surface. Using this surface, we manually mapped the infarct
region onto the ultrasound image.

Fig. 6A shows a predicted infarct zone using strains from
one of the four animal studies. We compare the predicted
infarct zone derived from differential strain against the man-
ually traced infarct zone from the post-mortem excised heart.
Differential strain was selected since it reveals hidden ischemia
that may be imperceptible at either rest or stress states. The
predicted infarct zone was found by using a threshold on
the principal strain based on visual observation to select
the optimum threshold value. Visually, the actual infarct
region (green) and the predicted infarct region (blue) show
a fairly good match, possibly with some registration error.
We also calculated the DICE score between the two. Table IV
shows the DICE scores for all four studies. The mean DICE
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Fig. 6. (a) Visualization of 3D map of strain for one chronic study (DSEC05). The dysfunctional area is shown (purple volume) with superimposed
infarct area (green mesh). (b) Cross sectional view of rest, stress, and differential strain map at the mid-cavity level for all four chronic animal studies.
The color bar indicates the strain value ranges. The red represents the entire myocardium. The blue represents the thresholded infarct zone. The
green contour indicates the manually traced infarct zones from the post-mortem excised heart.

TABLE IV
DICE SCORE COEFFICIENT COMPARISON: MANUALLY

TRACED INFARCT FROM POST-MORTEM DATA VS. PREDICTED

(4DE-ALGORITHM-DERIVED AND THRESHOLDED REGION)

score for the prediction vs. traced infarct was 0.65. This
suggests that incorporation of stress imaging and analysis of
differential strain improves detection of the infarct zones in
the myocardium.

IV. DISCUSSION

In this work, we expanded our previous work [29] and
presented a domain adaptation approach using biomechan-
ically relevant constraints. We also utilized the framework
in calculating strain in canine animal studies for ischemic
region detector. Also, we noticed RFBM produced high radial
strain errors relative to other directions. This was because
deformation was highest in the radial direction relative to
other directions. Thus, RFBM needed a larger search region to
capture high deformation, which meant that it was more likely
for RFBM to over-fit to speckle. Overall, strain performance
trends in the synthetic data experiments correlated well with
the tracking performances of each algorithm. NNR consis-
tently produced improved performance over DLR-produced
displacements and all three initial tracking methods.

Also, combining complementary tracking methods to aug-
ment the displacement accuracy seems to be consistent across
all tracking algorithms, especially when using a neural network
approach. This is promising in medical imaging domain such
as echocardiography where the image features are noisy and
can benefit from accentuating complementary features.

In our attempts at solving the domain adaptation prob-
lem, we observed in the in vivo acute ischemia model that
the semi-supervised approach using biomechanical constraints
to regularize the displacements to be more realistic helped
significantly in bridging the synthetic and in vivo domains
together. In this case, we brought the in vivo data closer to real
or biomechanically meaningful displacements that resemble
the synthetic ground truth displacements. We noticed that the
Pearson Correlation increased significantly for motion tracking
algorithms like RFBM and FNT, while the algorithm FFD
did not have as much of an increase. This is because the
tracking methods that are not heavily regularized (RFBM, and
FNT) stand to benefit more than the already well-regularized
methods (FFD). It is also worth noting that the model trained
only on synthetic datasets had very low Pearson Correlations.
This was likely due to synthetic datasets being significantly
different from in vivo dataset in a few aspects. First, synthetic
datasets were significantly less noisy compared to the in vivo
dataset. Second, the synthetic datasets were generated from
human echocardiography images, but our in vivo datasets
were acquired from canines. Also, the in vivo experiments
represented primarily variations of the left anterior descend-
ing (LAD) artery occlusions, while the synthetic datasets were
an attempt to model all coronary artery infarctions. Therefore,
the pathological perspective of the synthetic dataset is not
realistic to that of the in vivo dataset. Third, our synthetic
datasets were always oriented vertically in the image domain,
but the in vivo datasets were acquired in a variety of probe
angles, which resulted in the left ventricle being oriented
at different angles. Furthermore, there was only a limited
number of synthetically generated echocardiography dataset.
This is the current limitation in using the synthetic dataset
to model the in vivo displacement results. Nevertheless, data
normalization between the two domains with augmentation to
the synthetic domain should significantly improve the perfor-
mance of our semi-supervised regularization approach. How-
ever, the advantage of our proposed deep learning-based
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framework is that the more accurate the training data is,
the better the regularization will be. Thus, our work can be
used as a framework to guide the displacements from 4D
echocardiography by utilizing other higher spatiotemporal or
spatial only modality such as human expert delineation and
confirmation of a CT cardiac image or MR tagging where
there is trusted ground truth displacement vectors. For future
work, we will explore ways to move to another modality such
as CT and/or MRI to influence spatially dense motion patterns
for 4D echocardiography and incorporate a wider variety of
pathological cases in our training samples to develop a more
robust model.

For the in vivo chronic infarct model, the computed differ-
ential strain derived from rest and low dose dobutamine stress
images were used to detect regions with infarcted myocardium.
This was calculated using a principal strain threshold on the
computed differential strain map. The threshold was selected
based on the best overlap between predicted infarct and manu-
ally traced infarct upon visual inspection. We further tested our
method using DICE scores to detect whether definition of the
infarct regions using differential strains improved localization
of the true infarct region, quantitatively. Some studies (i.e.
DSEC07), however, had a relatively low DICE score of 0.55.
This was likely due to the misalignment between the rest
and stress images during the registration process as well as
the accumulation of error from the motion tracking of the
left ventricle. Nonetheless, we were able to achieve improved
visualizations of infarct region in Fig. 6 as well as a mean
DICE of 0.65 among the four studies. In future work, we plan
to increase the number of animal studies to better capture the
DICE scores between the predicted infarct zone and the actual
post-mortem infarct zone and compare them among various
tracking methods.

Our domain adaptation approach using learning-based reg-
ularization with biomechanical constraints in cardiac displace-
ment map generation is based on the prior knowledge about the
physiological movements of the myocardium. Unlike purely
computer vision domain adaptation problems, the unique
advantage in medical image analysis is that we have a deep
understanding of physiology and medicine. Utilizing this
information has been shown to be crucial in our attempts
at bringing together two different domains like synthetic and
in vivo images. Thus, with the added benefit of combin-
ing complementary tracking methods, using the prior phys-
iological information about the specific organ system may
be key in obtaining better registration results, especially in
imaging modalities with low SNR such as echocardiography.
Furthermore, regularizing displacement fields allows us to
generate a smoother strain map, which is critical to better
observe changes that are happening as we move from normal
functioning myocardium to infarcted regions.

V. CONCLUSION

In this work, we have built a learning-based framework
to bridge between imaging-based and model-based estima-
tion of motion fields, proposing a solution that improves
imaging-based performance of motion tracking through a reg-
ularization based on physics constraints. First, we illustrated

the effectiveness of our supervised neural network regular-
ization model on synthetic data, showing improvements in
both tracking and strain estimation performance. Furthermore,
we proposed a novel semi-supervised MLP network with
biomechanical constraints for learning a latent representation
that produced more physiologically plausible displacements
and extended it to include a supervised loss term on synthetic
data and showed the effects of biomechanical constraints on
the network’s ability for domain adaptation. We validated
the semi-supervised regularization method on in vivo data
with implanted sonomicrometers. Finally, we showed, with the
semi-supervised learning regularization approach, the ability
to identify infarcted regions using estimated regional strain
maps with good agreement to manually-traced infarct regions
from postmortem excised hearts. This work can further be used
to incorporate higher spatiotemporal resolution ground truth
data, like MR tagging, to learn accurate and well-regularized
displacement fields.
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