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Abstract— In positron emission tomography (PET),
gating is commonly utilized to reduce respiratory motion
blurring and to facilitate motion correction methods.
In application where low-dose gated PET is useful, reduc-
ing injection dose causes increased noise levels in gated
images that could corrupt motion estimation and sub-
sequent corrections, leading to inferior image quality.
To address these issues, we propose MDPET, a unified
motion correction and denoising adversarial network for
generating motion-compensated low-noise images from
low-dose gated PET data. Specifically, we proposed a
Temporal Siamese Pyramid Network (TSP-Net) with basic
units made up of 1.) Siamese Pyramid Network (SP-Net),
and 2.) a recurrent layer for motion estimation among the
gates. The denoising network is unified with our motion
estimation network to simultaneously correct the motion
and predict a motion-compensated denoised PET recon-
struction. The experimental results on human data demon-
strated that our MDPET can generate accurate motion
estimation directly from low-dose gated images and pro-
duce high-quality motion-compensated low-noise recon-
structions.Comparative studies with previous methods also
show that our MDPET is able to generate superior motion
estimation and denoising performance. Our code is avail-
able at https://github.com/bbbbbbzhou/MDPET.

Index Terms— Low-dose gated PET, denoising, motion
estimation, motion correction, unified network, deep
learning.

I. INTRODUCTION

POSITRON emission tomography (PET) is a commonly
used functional imaging modality with wide applica-

tions in oncology, cardiology, neurology, and biomedical
research. PET scans require injection of a small amount
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of radioactive tracer to patients, introducing radiation expo-
sure to both patients and healthcare providers. By reduc-
ing the administered injection dose, low-dose PET is of-
great-interests according to the As Low As Reasonably
Achievable concept (ALARA) [1], in particular for applica-
tions of serial PET scans to measure response to therapy.
Since the data acquisition typically takes 10 to 20 minutes,
the patient’s respiratory motion in the thorax and upper
abdomen areas inevitably introduces blurring in the recon-
structed images, affecting subsequent diagnosis and treat-
ments [2]. Respiratory gating facilitated by external motion
monitoring devices, such as Anzai [3], is typically used to
provide gated images with reduced respiratory motion effect.
The gated image that shows minimum motion effects is then
used for clinical interpretation. However, the interpretation
can still be hampered by the increased image noise level
as each gated image is generated by only a fraction of all
detected events. To tackle the issue, previous works pro-
posed approaches involving an initial image reconstruction
for each gate followed by an image registration for motion
estimation among different gates. The motion vectors derived
from the image registration were then utilized to average
transformed images or incorporated into a final reconstruction
to generate a motion compensated image with all events.
In addition to using the conventional non-rigid image reg-
istration algorithms [4]–[7], deep learning based methods
were explored recently as well [8], [9]. However, the noisy
gated images could lead to inaccurate motion estimation and
alignment errors. In applications of low-dose gated PET, this
makes extending the previously mentioned approaches for
motion estimation/correction challenging because the noise
level is further increased in each gated images. The highly
noisy gated image could lead to non-ideal motion estima-
tion results by previous methods, and could subsequently
degrade the final motion-compensated reconstructions. More-
over, in low-dose gated PET, denoising methods should also
be applied to the final motion-compensated image recon-
structed with all events because there are limited events
from low-dose data.

Previous works on denoising low-dose PET can be
summarized into two categories: conventional image
post-processing [10]–[12] and deep learning based
methods [13]–[22]. Conventional image post-processing
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techniques, such as Gaussian filtering, are standard
techniques in practice, but have challenges to preserve local
structures. Non-local mean filter [10] and block-matching
4D filter [11] were proposed to denoise low-dose PET
while better preserving the structural information. Although
these conventional image post-processing methods may
substantially improve the image quality, over-smoothing is
often observed in ultra-low-dose data. Recently, deep learning
techniques have achieved promising performance in medical
imaging applications, such as reconstruction [23]–[27],
segmentation [28]–[30], registration [31] and denoising [32].
As the statistical characteristics of noise in medical imaging
is complex and hard to model, deep learning models can
learn the highly non-linear relationship from data and recover
the original signal from noise. For deep learning based
low-dose PET denoising, previous works can be further
divided into two categories. The first category only uses
the low-dose PET data as input. Kaplan and Zhu [16]
proposed using a GAN [33] with UNet [28] as generator
to predict standard-dose PET images from low-dose PET
images. Similarly, Wang et el. [14] proposed using a
3D-conditional-GAN [34] also with UNet as generator to
translate low-dose PET images to standard-dose PET images.
In addition to GAN, Ouyang et el. [20] further improves
the denoising performance by incorporating patient specific
diagnosis information. Zhou et el. [19] and Gong et el. [18]
found incorporating Wasserstein GAN [35] can also achieve
promising low-dose PET denoising performance. Furthermore,
Hu et el. [17] proposed a DPIR network that directly predicts
the standard-dose PET image from low-dose PET sinogram
data. The second category uses the low-dose PET images
and MR/CT images as input. Xiang et el. [13] proposed a
deep auto-context CNN that takes low-dose PET image and
T1 MR image as input for prediction of standard-dose PET
image. Similarly, Chen et el. [21] proposed to input low-dose
PET images along with multi-contrast MR images into a
UNet [28] for ultra-low-dose PET denoising. Cui et el. [36]
suggested to use a UNet to iteratively predict the denoised
PET from the CT image. Comparing to conventional PET
denoising methods, all these deep learning based methods
achieved superior denoising performance on static low-dose
PET.

However, none of the above mentioned studies addressed
motion estimation and denoising in low-dose respiratory gated
PET. Recently, our group proposed a Siamese Adversarial
Network (SAN) to estimate the motion between pairs of
low-dose gated images by first denoising the low-dose gated
images and estimating the motion based on them [37]. One
limitation of this approach is that the motion estimation
network only considers pairs of gated images for registration
and relies on high-quality denoised images of each gates, while
disregarding the temporal information over the gated images.
The temporal information containing respiratory motion pat-
terns may be potentially helpful for motion estimation tasks.
Therefore, it is desirable to develop a motion estimation algo-
rithm that does not rely on denoised low-dose gated images
and can directly estimate the motion from original low-dose
gated images, while incorporating the temporal information

Fig. 1. Illustration of phase gated PET and the proposed method.
The Anzai signal (red curve) can guide the assignment of the detected
events to different respiratory phases and generate 6 gated images.
End-expiration gate with the least intra-gate motion (G4) is used as our
reference gate. Our goal is to register all the low-dose gated images to
the reference gate, averaging them, and denoise the averaged image to
generate a high-dose gated image at the reference gate with the least
intra-gate motion.

among gates. With accurate motion estimation from low-dose
gated images, we can register the low-dose gated images to a
reference low-dose gated images and average all the aligned
low-dose gated images to generate a motion-compensated
PET image with preliminary denoising. This image can be
fed into another deep network for further denoising. The
general pipeline of the idea is illustrated in Figure 1. In this
work, we design a unified motion correction and denoising
adversarial network for low-dose gated PET, called MDPET.
As illustrated in Figure 2, our MDPET is a unified network
consisting of a Temporal Siamese Pyramid motion estimation
network (TSP-Net), a denoising network, and a discriminator.
Specifically, our TSP-Net consists of multiple shared-weights
Siamese Pyramid Networks (SP-Net) and a bi-directional
LSTM (Figure 3). Each SP-Net predicts the transformation
field between the source gated image and the reference gated
image by utilizing the coarse-to-fine pyramid features from
pairs of low-dose gated images. After registering all the
source low-dose gated images with the reference low-dose
gated image via Spatial Transformation Layers (STL) [38],
the average image is fed into the denoising network for
generation of our final motion-compensated denoised PET
image. The network structure and training details are described
in the following sections. The experimental results on human
data demonstrate that our MDPET can accurately estimate the
motion from low-dose gated images and generate high-quality
motion-compensated PET images.
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Fig. 2. The overall structure of our unified motion correction and denoising network (MDPET). The reference gate low-dose image Lref and N-th
gate low-dose images Ln are fed into each Siamese Pyramid Network (SP-Net) within our Temporal Siamese Pyramid Network (TSP-Net). The
predicted transformation fields Tn simultaneously transform the paired Ln and Hn. The transformed low-dose gated image L̂n are averaged and
subsequently fed into the denoising network for denoising. Our MDPET is trained in a unified fashion with registration loss Lreg, denoising loss LDN,
and adversarial loss Ladv combined.

II. PROBLEM FORMULATION

As illustrated in Figure 1, assuming a phase gated PET
scan generates 6 gates, we denote high-dose gated images and
low-dose gated images as Hn, Ln ∈ R

h×w×d with gate index
of n ∈ {1, 2, 3, 4, 5, 6} and image size of h × w × d . Here,
typical end-expiration gate 4 with the least intra-gate motion
is used as our reference gate, and we denote Href = H4 and
Lre f = L4, respectively.

First, our goal is to accurately estimate a set of transforma-
tion fields Tn between Lre f and Ln with n ∈ {1, 2, 3, 5, 6}.
Denoting our motion estimation model as PT S P parameterized
by θT S P , the transformation fields can be described as:

T1, · · · , Tn = PT S P
�
L1, · · · , Ln; Lre f , θT S P

�
(1)

Each transformation field Tn is used to deform the low-dose
gated image Ln to generate an average image Lavg:

Lavg = 1

N

⎛
⎝Lre f +

�
n �=re f

Tn ◦ Ln

⎞
⎠ (2)

where N = 6 for 6 gates in our experiments. Then, our goal is
to denoise the motion-compensated low-dose averaged image
and generate a high-quality final PET image. Denoting our
denoising model as PDN parameterized by θDN , the denoised
motion compensated average low-dose image is given by:

Hsyn = PDN
�
Lavg; θDN

�
(3)

Our customized motion estimation model PT S P , denoising
model PDN , and the unified training strategy are discussed
in details in the following section.

III. METHODS

A. Unified Motion Estimation and Denoising Adversarial
Network

The general pipeline of our unified motion estimation and
denoising network (MDPET) is illustrated in Figure 2. Our
MDPET consists of a motion estimation module and a denois-
ing module. The two modules are unified and trained in an
end-to-end fashion.

1) Motion Estimation Network: We build a Temporal Siamese
Pyramid Network (TSP-Net) consisting of basic units of
Siamese Pyramid Network (SP-Net) and a Bidirectional Con-
volutional Long Short Term Memory (BiConvLSTM) [39].
Each SP-Net is responsible for generating features for pre-
dicting the transformation between each source low-dose gated
image Ln and the reference low-dose gated image Lre f with
all SP-Nets share the same network parameters. Details of
our SP-Net are provided in Figure 3. In general, our SP-Net
has two input branches for generating coarse-to-fine pyramid
features of the reference low-dose gated image Lre f and the
source low-dose gated images Ln separately. Then, the coarse-
to-fine pyramid features are fed into our decoder for esti-
mating transformation, similar to the image pyramid used in
traditional image registration methods [40]. More specifically,
we use two 3D UNet in each SP-Net for generating 5 levels of
pyramid features with goals of learning coarse-to-fine features
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Fig. 3. Design of our Siamese Pyramid Network (SP-Net). 5 levels of pyramid features are generated from the reference low-dose gated image Lref
and the source low-dose image Ln. Generation of pyramid features are supervised by the reference high-dose image Href and the source high-dose
image Hn. The pyramid features are fused and decoded to generate the transformation features. The number of feature channel is denoted inside
the feature map. The spatial resolution of each feature map with respect to the input image is printed next to the feature map.

and denoising the input images for robust feature represen-
tations. To achieve these goals, the finest decoded feature
maps from the source low-dose image Ln and the reference
low-dose image Lre f are passed through two 1-channel 3D
convolutional layers, and the outputs Ĥ are supervised by the
high-dose gated images H with mean square error loss (MSE):

LS Pn = Lre f + Lsrcn (4)

= 1

|H |
�

p

	
Href (p) − Ĥre f (p)


2
(5)

+ 1

|H |
�

p

	
Hsrcn(p) − Ĥsrcn(p)


2
(6)

where p denotes the voxel location in the images. |H | is
the number of voxel in each image. n is the index of the
gates. Lre f and Lsrcn are the losses for reference gated
image branch and source gated image branch, respectively.
As illustrated in Figure 3, the pyramid feature maps from the
UNet’s decoder successively recover the original high-dose
signal from the low-dose signal, thus providing noise-reduced
feature representations at different levels. Then, the coarse-
to-fine pyramid features from the reference image and source
image are successively fused together and decoded to generate
features for predicting the transformation.

While each SP-Net generates features for predicting the
transformation between the reference low-dose image and
one of the source low-dose gated images, the adjacent
and non-adjacent SP-Net’s features can provide additional
non-local information, such as motion pattern in a full res-
piratory cycle, which can be potentially helpful for accurate

motion estimation over low-dose gated images. Recurrent
convolutional neural network, such as BiConvLSTM, is able
to learn the feature pattern among correlated data samples
over time. The cell state of BiConvLSTM allows temporal
feature from adjacent or non-adjacent frames to be transferred
along forward and backward temporal directions. Therefore,
we concatenate a 3D BiConvLSTM to the output features
of the SP-Nets to allow the temporal feature exchange from
different gate’s motion estimation features (TSP-Net). The
output features with 32 channels, as shown in Figure 2, are
then fed into convolutional layers with 3 channels of output
for predicting the transformation fields Tn over the gates.

For each gate, the spatial transformation layer [38] trans-
forms both the high-dose gated image Hn and the low-dose
gated image Ln with the predicted transformation field Tn from
the TSP-Net. The loss function for supervising the motion
estimation here can be written as:

Lreg =
�

n

Lregn =
�

n

�Lsimn + ιLsmoothn

�
(7)

with

Lsimn = 1

|H |
�

p

�
Href (p) − H̄n(p)

�2
(8)

= 1

|H |
�

p

�
Href (p) − [Tn ◦ Hn](p)

�2 (9)

Lsmoothn =
�

p

||�Tn(p)||2 (10)

where n is the index of the gates. H̄n is the transformed
Hn with transformation field Tn . Lsimn is the mean square
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error in image appearance, and Lsmoothn is a deformation
regularization that adopts a L2-norm of the gradient of the
transformation field Tn with a weighing term of ι. As sug-
gested in [9], we empirically set ι = 0.01 in our experiments.

2) Unified With Denoising Network: As mentioned above,
the spatial transformation layer simultaneously transforms the
low-dose gated image Ln with the predicted transformation
field Tn from TSP-Net. Then, a motion-compensated low-dose
gated image can be generated with:

L̄avg = 1

N

⎛
⎝Lre f +

�
n �=re f

Tn ◦ Ln

⎞
⎠ . (11)

where N = 6 for 6 gates setup in our experiments. While
L̄avg with 6 fold counts can significantly reduce the low-dose
image’s noise, we further reduce the image noise by feeding
L̄avg to a denoising network. As UNet [28] has demonstrated
outstanding performance in low-dose PET denoising [15],
we adapt UNet as our denoising network in this work. How-
ever, our denoising network is not limited to UNet and can be
substituted by other networks as well. The denoising loss can
be formulated as:

LDN = 1

|H |
�

p

�
Href (p) − H̄syn(p)

�2
(12)

= 1

|H |
�

p

�
Href (p) − G(L̄avg)(p)

�2
(13)

where G is our denoising network and H̄syn is the denoised
image generated from L̄avg. Moreover, we incorporate a patch
discriminator D for adversarial learning on the denoising
output [34]. To achieve stable adversarial training, we used
the LSGAN adversarial loss [41] that can be formulated as:

Ladv = �
D(Href ) − 1

�2 + �
D(G(L̄avg)

�2
(14)

Unifying the denoising network and the motion estima-
tion network allows the denoising supervised gradient to
back-propagate to the motion estimation network. As the
denoising result relies on an accurate motion estimation over
low-dose gated images and the alignment, the unified motion
estimation and denoising adversarial network can be mutually
beneficial. Therefore, the total loss for training our MDPET
can be written as:
Ltot = ιDNLDN +ιadvLadv +ιregLreg +ιS P

�
n

LS Pn (15)

where the weighting parameters are empirically set to
ιDN = 10, ιadv = 1, ιreg = 5, and ιS P = 0.2 for a balance
adversarial training.

B. Evaluation on Human Data

We included 28 pancreas 18F-FPDTBZ [42] PET/CT stud-
ies. All PET data were obtained in list mode using the
4-ring Siemens Biograph mCT scanners located at the Yale
PET Center. External respiratory motion was tracked using the
AZ-733V respiratory gating system (Anzai Medical, Tokyo,
Japan). The Anzai respiratory trace was recorded at 40 Hz for
all subjects. The averaged dose administered to the patients is

9.13±1.37 mCi. Our patient dataset consists of 15 healthy
patients and 13 Type-2 diabetic patients. All studies were
approved by the Institutional Review Board and Radiation
Safety Committee at Yale University. The total acquisition
time was 120 mins for each study. We used phase gating
to generate 6 gates for each study. To eliminate the mis-
match between the attenuation correction (AC) map and the
gated PET images, instead of using CT images to derive the
AC-map, we utilized the maximum likelihood estimation of
activity and attenuation (MLAA) [43] to generate AC-map
for each gated volume to ensure phase-matched attenuation
correction. The CT-derived AC-map was used as initial esti-
mation for MLAA iterations. The high-dose images were
reconstructed with 100% of the listmode data mimicking high
radiation dose data with a large amount of tracer injection.
Thus, each high-dose gated image was reconstructed with
about 16.67% of the listmode data. The low-dose images were
reconstructed with 1.5% of the listmode data with uniform
sampling. Thus, each low-dose gated image was reconstructed
with about 0.25% of the listmode data. Each dataset was
reconstructed into a 400×400×109 volume with voxel size of
2.032 × 2.032 × 2.027 mm3 using ordered subset expectation
maximization (OSEM) with 21 subsets and 1 iteration. The
central 200 × 200 × 109 voxels were cropped to remove most
voxels outside the human body contour. The resulted image
was then resized to 96 × 96 × 96 voxels. The end expiration
gate (typically Gate 4) was used as the reference gate since it
shows minimum intra-gate motion.

We performed four-fold cross validation with each fold
consisting of 7 studies. During each validation, 21 studies
were used for training and 7 studies were used for testing. The
evaluation was performed on all 28 studies with 6 gated images
in each study. For motion estimation evaluation, the trans-
formation fields estimated from low-dose gated images were
used to transform the corresponding high-dose gated images,
and then the Normalized Mean Absolute Error (NMAE) were
computed between the reference high-dose gated image and
the transformed high-dose gated images. For comparative
study, we compared our motion estimation results against
VoxelMorph (VM) [9], the previously proposed Siamese
Adversarial Network (SAN) [37], and a non-deep learning
based Non-Rigid B-spline Registration (NRB) implemented
in BioImage Suite [40]. VM is a deep learning based reg-
istration framework that exhibits top-performance in a wide
range of medical imaging applications. With NRB, we used
normalized mutual information as the similarity metric and
we set the parameter of control point spacing to be 15mm,
same as the optimized parameters demonstrated in [7]. For
denoising evaluation, we computed the Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index (SSIM), and NMAE
between our final synthetic high-dose image and the reference
high-dose gated image.

C. Implementation Details

We implemented our method using Pytorch [44]. We used
the ADAM optimizer [45] with a learning rate of 10−4.
We set the batch size to 1 with each training batch consisting
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Fig. 4. Low-dose gated image before and after deformation by our MDPET. The unregistered low-dose gated images Ln and the corresponding
averaged image Lavg are shown in the 1st row. The deformed low-dose gated image L̄n and the corresponding averaged image Lavg are shown
in the 2nd row. The predicted transformations are applied to the corresponding high-dose gated images Hn, where the difference of H between
reference gate and source gate are visualized. The difference of H before and after registration over all gates are shown in the 3rd and 4th row,
respectively. The motion blurred regions are indicated by gray arrows.

of gated images from one patient. We first pre-trained the
TSP-Net by setting ιDN = ιadv = 0. Then, we pre-trained
the denoising network using the predicted averaged images
from our pre-trained TSP-Net and its denoising ground-truth.
Finally, the pre-trained TSP-Net and denoising network were
loaded into MDPET to train in an end-to-end fashion. Our
model was trained on an NVIDIA Quadro RTX 8000 GPU for
200 epochs. To prevent overfitting, we also implemented ’on-
the-fly’ data augmentation for all the training steps. During
training, we first resized the image to 106 × 106 × 106
and performed 96 × 96 × 96 random cropping, and then
randomly rotated the images along the z-axis with angle
between −30 to 30 degrees.

IV. RESULTS

A. Motion Estimation

A sample set of low-dose gated PET images with and
without applying the deformation fields predicted by our
MDPET network is shown in Figure 4. The corresponding
averaged images are provided as well. To assist the evaluation,
difference images between the reference gate and each source
gate with and without applying the transformation fields were
calculated using the corresponding high-dose gated images.
As we can see from the first row of Figure 4, the low-dose
gated images with only 0.25% count level are noisy. Although
directly averaging the low-dose gated images reduced the
noise, important anatomical structure or pathological findings
were blurred. As shown in the second row of Figure 4, our
MDPET can accurately predict and deform each low-dose

gated image to the reference low-dose gated image (L4),
leading to sharper anatomic boundaries in the averaged image.
Moreover, without applying the predicted deformation fields,
significant amounts of misalignment can be observed between
the reference gate and Gate 1 / Gate 6 / Gate 2 due to the
position difference between expiration and inspiration motion
(Figure 4, third row). The bright and dark intensity difference
at the top and bottom of the kidney and liver indicated the
error caused by the inter-gate motion. On the other hand,
the position difference between the reference gate and Gate 3
/ Gate 5 was small because the expiration phase is relatively
long and steady. After applying the MDPET-predicted trans-
formation fields, as illustrated in the fourth row, the differences
in H were significantly reduced for the gates with large
position difference. Specifically, the bright and dark errors at
the top and bottom of the kidney and liver were reduced. The
remaining differences were largely due to the different amount
of intra-gate motion, which is larger for inspiration gates, i.e.
Gated 1 / Gate 6 / Gate 2 in our experiments.

The results of the proposed MDPET were compared with
those of VM [9], NRB [40], and SAN [37]. Similar to the third
and fourth rows of Figure 4, we used the difference image
between H with and without applying the deformation to
visualize the motion estimation errors (Figure 5). Two coronal
slices containing different organs of interest are provided to
assist the visual comparison. As we can see from the results
for Gate 1 and Gate 6 in which large motion displacement
was observed, even though VM and NRB were able to reduce
the position difference in the kidney, liver and pancreas, they
introduced additional misalignments in the spine regions that
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TABLE I
COMPARISON OF DIFFERENT MOTION ESTIMATION METHODS FOR DIFFERENT GATES. NMAE IS CALCULATED BASED ON THE H TRANSFORMED

BY THE PREDICTED T. THE RUN TIME OF EACH ALGORITHM ON CPU AND GPU IS SHOWN ON THE LAST TWO COLUMNS. ↓ AND ↑ MEAN THE

NMAE DECREASE AND INCREASE AS COMPARED TO BASELINE NMAE WITHOUT REGISTRATION, RESPECTIVELY. “∗” MEANS THE DIFFERENCE

TO THE BASELINE NMAE WITHOUT REGISTRATION ARE SIGNIFICANT AT p < 0.05, WHILE “†” MEANS NOT SIGNIFICANT

TABLE II
ABLATION STUDY ON OUR MDPET IN TERMS OF MOTION ESTIMATION. ± LSTM MEANS MDPET WITH OR WITHOUT BICONVLSTM

AND ± GAN MEANS MDPET WITH OR WITHOUT ADVERSARIAL LEARNING. “∗” MEANS THE DIFFERENCE TO THE

BASELINE (1ST ROW) ARE SIGNIFICANT AT p < 0.05

Fig. 5. Comparison of registration errors between previous registration
methods and our MDPET over Gate 1, Gate 3, and Gate 6 at kidney, liver,
and pancreas regions. From top to bottom: without registration, VM [9],
NRB [40], SAN [37], and our MDPET. Using NRB and VM, misalignment
errors can be found in spine region at gate 6 (red arrows), and additional
misalignment errors are introduced in kidney, liver and pancreas regions
at Gate 3 (blue arrows).

should remain unmoved over the scan. From the results of
Gate 3 with minimal motion displacement, VM and NRB
introduced additional misalignments. On the other hand, our
previously proposed method, SAN, was able to better align
the kidney, liver, and pancreas with less misalignments in
the spine region for Gates 1, 3 and 6. The MDPET net-
work further reduced the small residual misalignment errors
in SAN for all the gates, providing superior motion esti-
mation results as compared to other methods (Figure 5,
bottom row).

The quantitative results are summarized in Table I. Similar
to the assessment in Figure 5, we used the transformation field

Tn estimated from low-dose gated images Ln to transform
the corresponding high-dose gated images Hn to minimize the
impact of noise on motion vector evaluation, and calculated the
NMAE between the reference high-dose gated image Href and
the transformed high-dose gated images H̄n. For Gate 1 and
Gate 6 with large intra-gate motion, our MDPET was able to
significantly reduce the NMAE from 0.185 to 0.110 for Gate
1 and from 0.136 to 0.091 for Gate 6, demonstrating superior
motion estimation performance than SAN, VM and NRB. For
gates with small or no intra-gate motion, such as Gate 3, our
MDPET could maintain the overall alignment and finely adjust
the small misalignment in local regions. Thus, we observed
small NMAE reduction for Gate 2, Gate 3 and Gate 5 when
using our MDPET. In contrast, NRB and VM both led to
degradation of NMAE for Gate 2, Gate 3, and Gate 5. The
results were even worse than those without applying motion
estimation. For example, NRB increased NMAE from 0.065
to 0.121 at gate 3. Previous methods of VM and NRB are
limited for accurate registration in the low-dose gated images,
and our MDPET can generate reasonable registration across all
the gates. The run time analysis is summarized in the last two
columns of Table I. NRB with iterative optimization required
the longest run time, about 1489 seconds on average using
CPU. On the other hand, deep learning based VM and SAN
could directly infer the transformation once the models are
trained, thus requiring much shorter run time on CPU or GPU.
Unlike VM and SAN that required 5 times of inference over
different gates, our MDPET used all the gated images at once,
thus further reducing the GPU run time to 0.54 seconds on
average.

We also performed ablation study on motion estimation
for our MDPET. The results are summarized in Table II.
As we can see, the BiConvLSTM in our TSP-Net
could improve the motion estimation performance. The
performance was slightly further boosted by the addi-
tional adversarial learning. However, adding BiConvLSTM
slightly increased the GPU run time from 0.38 seconds to
0.54 seconds.
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Fig. 6. Comparison of denoising results. The averaged low-dose gated image generated from different motion estimation methods are shown in
the 1st row. The corresponding denoised images are shown in the 2rd row. From left to right: ground truth, UNet denoising from the averaged image
without any deformation, UNet denoising on the averaged image based on NRB-derived deformation fields, UNet denoising on the averaged image
based on VM-derived deformation fields, UNet denoising on the averaged image based on SAN-derived deformation fields, and the end-to-end
output from our MDPET. Our MDPET can reduce the motion blurring between the liver and kidney (gray box), as well as improving the visualization
of small anatomic structures, such as portal veins (blue arrows).

B. Denoising Different Motion-Compensated Images

After motion prediction, the averaged image of the trans-
formed low-dose gated images was inputted into the denoising
network to further reduce the noise. In Figure 6, we compared
our MDPET results with other two-stage processing methods,
including UNet denoising on the averaged image based on
the NRB-derived transformation fields (NRB+UNet), UNet
denoising on the averaged image based on the VM-predicted
transformation fields (VM+UNet), and UNet denoising on the
averaged image based on the SAN-predicted transformation
fields (SAN+UNet). In NRB+UNet, the UNet was inde-
pendently trained with paired motion-compensated averaged
images from NRB and the ground truth high-dose image.
The same UNet training protocol was used in VM+UNet
and SAN+UNet. As observed in the figure, NRB+UNet
and VM+UNet could reduce the global noise level. Subtle
anatomic details, such as liver veins, were hard to observe
for these two methods given the signal could have already
been blurred out by motion in the input averaged image.
On the other hand, in addition to reducing the global noise
level, both SAN+UNet and our MDPET can better preserve
anatomical details in the final image by efficiently reducing the
motion blurring in the input averaged image. Our MDPET can
generate anatomic details that best match with the ground-truth
in terms of shape and intensity.

The quantitative results are summarized in Table III. In addi-
tion to UNet, we also explored the application of GAN with
the same UNet generator in the two-stage methods, since
adversarial learning is also implemented in our MDPET.
Therefore, the quantitative results of our MDPET were com-
pared not only with those of NRB+UNet / VM+UNet /
SAN+UNet, but also with those of NRB+GAN / VM+GAN
/ SAN+GAN. As we can see, the evaluated image quality
metrics were slightly improved while applying any of the
two-stage processing methods, regardless of the incorporated
image denoising network. The two-stage processing methods
can reduce the NMAE from 0.17 to about 0.08. However,
in the two-stage processing methods, changing the denoising
network from UNet to GAN does not lead to significant

TABLE III
COMPARISON OF DENOISING PERFORMANCE ON DIFFERENT

MOTION-COMPENSATED IMAGES. OUR MDPET IS COMPARED WITH

1) SAN AND 2) TWO-STAGE PROCESSING METHODS THAT CONSIST

OF MOTION ESTIMATION AND DENOISING (DN). ✓AND ✗DENOTE USE

OR NOT USE OF A SPECIFIC PROCESSING STAGE. FOR EXAMPLE,
✓NRB+✗DN MEANS NRB IS USED FOR ESTIMATING THE MOTION

AND GENERATING THE AVERAGED IMAGE, BUT NO DENOISING

STEP IS APPLIED. THE CORRESPONDING BOXPLOT

COMPARISON RESULTS WITH STATISTICAL

ANALYSIS ARE SHOWN IN FIGURE 7

improvements. On the other hand, our MDPET unifying
motion estimation and denoising demonstrated the superior
performance with mean NMAE=0.088, SSIM=0.966, and
PSNR=32.28. Note that the image quality metrics for our
MEPET’s averaged image (✓Ours+✗DN) were worse than
those for NRB’s averaged image (✓NRB+✗DN) and VM’s
averaged image (✓VM+✗DN). However, the denoising results
based on our MDPET’s averaged image demonstrated the
best performance. This is caused by the fact that NRB and
VM register the image merely based on the image appearance,
including anatomical structure and noise. Registering the noise
will result in smoother averaged image, thus generating better
image quality metrics for NRB and VM. Our MDPET reg-
istration can mitigate the impact from noise, thus providing
averaged image with better anatomic details for denoising.
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Fig. 7. The boxplot results of all denoising testing images, where “∗” means the difference are significant at p < 0.05, while “N.S” means not
significant.

Fig. 8. Three subjects with low-dose gated PET. The averaged images L
and the corresponding denoised image from different MDPET configura-
tions are shown in the 1st row and 2rd row in each patient’s image group.
Motion blurred anatomic structure are recovered using our MDPET (blue
arrows).

The boxplot of our comparison results along with statistical
analysis are summarized in Figure 7.

We also performed ablation study on denoising for our
MDPET. The results are summarized in Table IV. According
to Table II in the previous section, incorporating BiConvL-
STM could improve the motion estimation performance thus

TABLE IV
ABLATION STUDY ON OUR MDPET IN TERMS OF DENOISING.
± LSTM MEANS MDPET WITH OR WITHOUT BICONVLSTM

AND ± GAN MEANS MDPET WITH OR WITHOUT ADVERSARIAL

LEARNING. “∗” MEANS THE DIFFERENCE TO THE

BASELINE (1ST ROW) ARE SIGNIFICANT AT p < 0.05

generating sharper averaged image for denoising. Therefore,
as we can observe from Table IV, adding BiConvLSTM could
produce better image quality over the baseline MDPET. More-
over, adding adversarial learning could further improve the
denoising performance. Three human subjects are illustrated
in Figure 8. Overall, our MDPET with both BiConvLSTM and
adversarial learning achieved the best motion estimation and
denoising performance.

V. DISCUSSION AND CONCLUSION

In this work, we proposed a unified motion estimation and
denoising adversarial network, called MDPET, for generating
motion-compensated low-noise PET image from low-dose
respiratory gated PET. First, we developed a motion estima-
tion module, TSP-Net, that can reliably estimate the motion
from the low-dose gated images, which also incorporates the
temporal motion features to improve the motion estimation.
The basic unit of SP-Net in TSP-Net utilizes the denoised
coarse-to-fine pyramid features to generate the motion features
for each gate. Our TSP-Net then takes the motion features
from each SP-Net into a recurrent layer to learn the temporal
motion relationship over the gates, thus generating accurate
motion estimation for all gates at once. Second, we unify
the motion estimation network with a denoising network to
directly generate motion-compensated low-noise PET images.
Specifically, the gated images are deformed using the transfor-
mation fields predicted by TSP-Net and averaged such that all
the counts in low-dose scan can be utilized to reduce the noise.
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Then, the averaged image is fed into a denoising network
to further reduce the noise. A discriminator is added to the
denoising output to enable adversarial learning for both motion
estimation and denoising in our MDPET.

We demonstrated successful application on low-dose respi-
ratory gated PET with evaluations on both motion estimation
and denoising. For motion estimation, we compared with
other previous motion estimation methods, including NRB,
VM, and SAN. NRB and VM are not robust to noise in the
low-dose gated images, thus leading to significant increases in
registration errors in Gate 2 / Gate 3 / Gate 5, as illustrated
in Table I. SAN with denoising first then motion estima-
tion leads to better motion estimation as the noise in the
low-dose gated images was first suppressed. However, SAN
requires two-steps processing and requires 5 times inference
for each study. On the other hand, our MDPET was able
to generate superior motion estimation over all respiratory
gates with the shortest inference time of 0.5 seconds. Ablation
studies also demonstrated that adding the recurrent layer
for temporal motion feature learning allows our MDPET to
generate better motion estimation. For denoising, we compared
our end-to-end denoising output with conventional two-stage
processing methods, i.e. motion estimation then denoising.
Because the motion estimation of NRB and VM are prone
to error due to high noise level in the low-dose gated images,
their averaged image may have already suffered from residual
motion blurring and the denoising network cannot recover the
motion blurred signals. The denoising results from SAN’s
averaged images are more reasonable as SAN can better
align the low-dose gated images. However, the motion esti-
mation and final denoising are in two separate stages. The
denoising network trained separately may not be able to
correct the residual motion blurring in the averaged image.
In this case, our MDPET is an end-to-end framework and the
denoising output based on our motion-compensated averaged
image provides the best reconstructed image quality with
PSNR = 32.28.

The presented work also has potential limitations. First
of all, the denoising result is still not as distinct as the
ground truth from high-dose gated image. In our current
MDPET implementation, we use UNet as our denoising
network because its efficiency has been extensively studied
and demonstrated in literature [15]. However, the denoising
network in our MDPET is interchangeable with other advanced
denoising networks [13], [17], [46], [47] to potentially further
improve the image quality. Moreover, perceptual loss [17]
could also be incorporated into the MDPET to help further
recover the image details. However, perceptual loss is currently
only available for 2D image but not 3D imaging data as in
our work. In addition, more patient data could be collected
for training our MDPET in the future for further improving
the performance. Secondly, our work only addressed the
inter-gate motion (motion between gates) but not the intra-gate
motion (motion within each gate) for low-dose gated PET.
The gated images may already suffer from intra-gate motion
blurring, potentially affecting our inter-gate motion estimation
and the subsequent denoising. Although we have chosen the
end-expiration gate image with the least intra-gate motion

as the ground truth for supervising the MDPET’s output to
mitigate the impact, future work could also consider event-
by-event listmode based correction to further limit the amount
of intra-gate motion in each gate. Finally, current image
reconstructions were based OSEM with 1 iteration. Additional
iteration numbers and filtering settings need to be investigated
in our future work.

Our MDPET also suggests several potential clinical appli-
cations for our future studies. First of all, since MDPET could
generate high-quality motion compensated PET image under
low-dose injection protocol, our generated image is poten-
tially useful for diagnosis purposes, especially for abdominal
regions where respiratory motion is inevitable. Second, our
MDPET is also potentially useful for registering continuous
bed motion (CBM) multi-pass for whole body dynamic PET.
To elaborate, each CBM pass is scanned with a short time
period (2-5 min) that contains a high noise level, similar to
low-dose gated PET. The respiratory motion is inevitable in a
CBM acquisition. Thus, our method can potentially apply to
CBM inter-pass and intra-pass motion correction. Lastly, our
method could potentially be adapted to deviceless low-dose
gating reconstruction as well.

In conclusion, we proposed a unified motion estima-
tion and denoising adversarial network for low-dose gated
PET. The experimental results using human data show
that our MDPET can accurately estimate the motion over
the noisy low-dose gated images and simultaneously pro-
duce high-quality motion-compensated denoised PET image.
Future work would also investigate the potential of fur-
ther improving the performance of MDPET by substituting
our current MDPET framework with different state-of-the-art
motion estimation and denoising sub-networks on different
applications.
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