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Abstract— Identifying and locating diseases in chest X-
rays are very challenging, due to the low visual contrast
between normal and abnormal regions, and distortions
caused by other overlapping tissues. An interesting phe-
nomenon is that there exist many similar structures in the
left and right parts of the chest, such as ribs, lung fields
and bronchial tubes. This kind of similarities can be used
to identify diseases in chest X-rays, according to the experi-
ence of broad-certificated radiologists. Aimed at improving
the performance of existing detection methods, we pro-
pose a deep end-to-end module to exploit the contralateral
context information for enhancing feature representations
of disease proposals. First of all, under the guidance of
the spine line, the spatial transformer network is employed
to extract local contralateral patches, which can provide
valuable context information for disease proposals. Then,
we build up a specific module, based on both additive
and subtractive operations, to fuse the features of the
disease proposal and the contralateral patch. Our method
can be integrated into both fully and weakly supervised
disease detection frameworks. It achieves 33.17 AP50 on
a carefully annotated private chest X-ray dataset which
contains 31,000 images. Experiments on the NIH chest X-
ray dataset indicate that our method achieves state-of-the-
art performance in weakly-supervised disease localization.

Index Terms— Chest X-ray, Disease Detection, Contralat-
eral Context, Deep Learning

I. INTRODUCTION

CHEST X-ray (CXR) is one of the most widely-used
examination tools for the diagnosis of thoracic diseases

such as lung nodules and pneumonia. Thanks to the develop-
ment of deep learning technologies, stupendous progress has
been achieved in automatic disease classification [1], [2] and
localization [3]–[5] for chest X-rays. Considering there exist
similar structures in the left and right parts of the chest, we
focus on exploring the contralateral context information for
both fully and weakly supervised disease detection.

The main challenges of disease identification in chest X-ray
images include low visual contrast between lesion regions and
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Fig. 1. For each disease proposal, we seek its initial contralateral patch
under the guidance of the spine line. Then its pose is automatically
adjusted to acquire a more appropriate patch to facilitate the final
classification and localization of the disease proposal.

other components, and distortions induced by other overlap-
ping tissues. Sometimes it is difficult for medical specialists
to recognize obscure diseases [6], [7]. Designing automatic
artificial intelligence systems is beneficial for guaranteeing
the diagnosis efficiency and accuracy. Previous deep learning
methods for chest X-ray diagnosis mainly concentrated on
disease classification [2], [7]–[9]. Recently, several literatures
researched on detecting disease regions under weak/limited
supervision. They can be grouped into two main categories:
the first category of methods [1], [3] resort to convolutional
neural networks (CNN) trained on the classification task and
output disease localization results through calculating category
activation maps [10]; the second kind of methods [4], [5]
use the multiple instance learning to directly yield categoric
probability maps which can be easily transformed into lesion
detections. However, the performance of these methods is still
far from practical clinical usage.

A mainstream pipeline of object detection is to screen out
potential proposals followed by identifying the class of propos-
als [11], [12]. Through stacking piles of convolutional layers,
CNN models are very advantageous at extracting surrounding
context information. However, distant relationships are still
hard to be exploited with convolutions which usually have
small kernels. Particularly for chest X-rays, the left and right
parts of the chest share lots of similar structures, such as ribs,
lung fields and bronchial tubes. Although the two halves of
the chest are not symmetrical (e.g., the left and right lung is
composed of 2 and 3 lobes respectively, and the heart resides
only in the left side of the chest), we are wondering whether
the similarity information can exert a positive influence on
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disease detection. As shown in Fig. 1, we devise a novel CNN-
based module, named Contralaterally Enhanced Networks, to
take advantage of such similarity information. First of all,
we employ existing methods to acquire a number of disease
proposals from the input image. For the sake of extracting
the similarity information from the contralateral part of the
chest, the spine line is used as the symmetrical axis to
obtain a reference patch for every disease proposal. Then,
with the help of the spatial transformer network [13], we
sample an appropriate patch from a relatively large region
enclosing the contralateral reference patch, to enhance the
feature representation of the disease proposal. Finally, a fusion
module is devised to aggregate the features of the disease
proposal and its contralateral reference patch. Our proposed
method can be plugged into both fully and weakly supervised
disease detection frameworks. The main contributions of this
paper can be summarized as follows.
• We build up a novel deep module, Contralaterally En-

hanced Networks, for facilitating the disease detection in
chest X-rays. We are the first to explicitly exploit the
contralateral context information between the left and
right parts of chest, to enhance the feature representations
of disease proposals.

• An effective method is proposed to seek contralateral
reference patches for disease proposals. A reference patch
is extracted for each disease proposal under the guidance
of the spine line and is further refined with the spatial
transformer network. And A novel feature fusion module
is devised to enhance the feature representation of a
disease proposal with its contralateral reference patch.

• Our proposed method can improve existing object de-
tection baselines [11], [14]–[16] with large margins on a
chest X-ray dataset for fully supervised disease detection.
It also achieves state-of-the-art performance on the NIH
chest X-ray dataset [1] under the weakly supervised
setting.

II. RELATED WORK

A. Object Detection

Object detection is a widely-studied topic in both natural
and medical images. It aims at localizing object instances of
interest such as faces, pedestrians and disease lesions. The
most famous kind of deep learning approaches for object
detection is the R-CNN [17] family. The primitive R-CNN
extracts proposals through selective search [18], and then
predicts object bounding boxes and categories from convo-
lution features of these proposals. Fast R-CNN [19] adopts
a shared backbone network to extract proposal features via
RoI pooling. Faster R-CNN [11] automatically produces object
proposals from top-level features with the help of pre-defined
anchors. The above methods accomplish the detection pro-
cedure through two stages, including object proposal extrac-
tion, object recognition and localization. In [14], the feature
pyramid network is exploited to further improve the detection
performance of Fast R-CNN and Faster R-CNN with the help
of multi-scale feature maps. The other pipeline for object
detection implements object localization and identification in

single stage through simultaneous bounding box regression
and object classification, such as YOLO [20] and SSD [21].
The RetinaNet [15] is also built upon the feature pyramid
network, and uses dense box predictions during the training
stage. The focal loss is proposed to cope with the class
imbalance problem. Reference [22] presents an anchor-free
pipeline through detecting corners of bounding boxes. Despite
of corners, the center point is also explored to guarantee the
correctness of the obtained object boxes in CenterNet [16]. The
detection task has also attracted a large amount of research
interest in medical images, such as lesion detection in CT
scans [12] and cell detection in malaria images [23]. This
paper targets at detecting diseases in chest X-ray images.
Practically, we propose a Contralaterally Enhanced Networks
to exploit contralateral context information to enhance feature
representations of disease proposals.

B. Disease Detection in Chest X-ray Images

Accurately recognizing and localizing diseases in chest
X-Ray images is very challenging because of low textural
contrast, large anatomic variation across patients, and organ
overlapping. Previous works in this field mainly focus on
disease classification [1], [2], [6], [24], [25]. Recently, the
authors in [26] propose to transfer deep models pretrained
on the ImageNet dataset [27] for recognizing pneumonia in
chest X-ray images. In [28], the artificial ecosystem-based op-
timization algorithm is used to select the most relevant features
for tuberculosis recognition. Based on the category activation
map [10] which can be estimated with a disease recognition
network, researchers attempt to localize disease in a weakly
supervised manner [1], [3]. In [29], the triplet loss is used to
facilitate the training of the disease classification model, and
better performance is observed in class activation maps (CAM)
estimated by the trained model. In [4], [5], multiple instance
learning is employed to solve the disease localization problem.
In [30], a novel weakly supervised disease detection model is
devised on the basis of the DenseNet [31]. Two pooling layers
including a class-wise pooling layer and a spatial pooling layer
are used to transform 2-dimensional class attention maps into
the final prediction scores. The performance of these methods
is still far from practical usage in automatic diagnosis systems.
In [32], a novel pipeline is proposed to identify and search
potential lung diseases with the help of heuristic algorithms,
such as Moth-Flame and Ant Lion.

An interesting phenomenon is that there exist similar struc-
tures between the left and right halves of the chest, such as
the left and right parts of lungs. Such contralateral context
information can benefit the recognition of thoracic diseases
according to the experience of broad-certificated radiologists.
Reference [33] attempts to take advantage of the lung re-
gion symmetry when constructing hand-crafted features for
thoracic disease or abnormality identification. In this paper,
we devise a specific module to extract context information
from the contralateral structures for strengthening the feature
representations of disease proposals. The contralateral context
information can effectively improve the performance of exist-
ing fully and weakly supervised disease detection methods.



ZHAO et al.: CONTRALATERALLY ENHANCED NETWORKS FOR THORACIC DISEASE DETECTION 3

𝑥

𝑦

𝑊 − 1

𝐻 − 1

Input Image
𝑥

𝑦

𝑊 − 1

𝐻 − 1

𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎

Spine Line Preliminary Contralateral Patch

(𝒙𝒊, 𝒚𝒊) 𝒘𝒊

𝒉𝒊

(𝒙𝒊
′′, 𝒚𝒊

′′)

𝑥

𝑦

𝑊 − 1

𝐻 − 1

𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎

𝑶𝒊

𝑶𝒊
′

𝒘𝒊
′′

𝒉𝒊
′′

𝑶𝒊
′′

𝑥

𝑦

𝑊 − 1

𝐻 − 1

𝒂𝒙 + 𝒃𝒚 + 𝒄 = 𝟎

𝑶𝒊

𝑶𝒊

ResNet18
𝑠𝑥cos(𝜃) −𝑠𝑦sin(𝜃) 𝑡𝑥
𝑠𝑥sin(𝜃) 𝑠𝑦cos(𝜃) 𝑡𝑦

Refined Contralateral Patch

Spatial Transformer Network

Fig. 2. Procedure of extracting the contralateral patch for each disease proposal. First the spine line is derived from the spine mask. For each
disease proposal Oi, a preliminary contralateral patch O′

i is retrieved under the guidance of the spine line. Then a spatial transformer network is
devised to acquire the final contralateral patch Ôi.
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Fig. 3. Feature fusion module. For the disease proposal Oi, ROI pool-
ing is directly used to extract the feature representation from the input
feature map F. For the contralateral patch Ôi, a specific feature map is
generated via bi-linear sampling, which is then used to produce a feature
representation using ROI pooling as well. The feature representations
of Oi and Ôi are fused, and then fed into two fully connected layers to
produce the final predictions.

III. CONTRALATERALLY ENHANCED NETWORKS

The target of this paper is to automatically locate various
thoracic diseases in chest X-rays. There exists a certain degree
of similarity between the left and right parts of the chest,
from high-level structures of organs, such as lungs, bones and
vessels, to low-level tissues. Based on this observation, we pro-
pose a feature enhancement module to exploit the contralateral
context information for enhancing the feature representations
of disease proposals. For every disease proposal extracted with
an existing disease detection method, a reference patch from
the contralateral location of the chest is acquired under the
guidance of the spine line at first. Then a transformer network
is devised to refine the pose of the reference patch, which is
used to complement the representation of the disease proposal
via an additive and subtractive feature fusion module. Our
proposed module can be easily integrated into both fully and
weakly supervised disease detection models. The technical
details are illustrated as below.

A. Contralateral Patch Extraction

Given a CXR image I with size of W ×H , we can screen
out n potential disease proposals {Oi|i = 1 · · ·n} with the
help of an existing disease/object detection method, such as the
fully-supervised method [11] or the weakly-supervised method
[5]. Oi is represented by a quad (xi, yi, wi, hi), indicating the
horizontal and vertical coordinate of the top-left corner, width,
and height, respectively. We denote the disease category of
Oi as li. Suppose the number of target disease categories is
m. Hence, li ∈ {1, · · · ,m}. The pipeline of extracting the

contralateral patch for each disease proposal is illustrated in
Fig. 2.

1) Preliminary Contralateral Patch: Considering the spine
is located at a relatively middle position of the chest, we
exploit the spine line to fetch the preliminary contralateral
patch for each disease proposal. The minimum circumscribed
quadrilateral enclosing the spine mask can be obtained as
in [34]. We regard the spine line bridged by the centers
of two short edges as the symmetric axis, which can be
expressed as ax + by + c = 0 (a, b and c are coefficients).
For a disease proposal Oi, its preliminary contralateral patch
O′i(= (x′i, y

′
i, wi, hi)) is located through solving the following

linear system,{
a
xi+x′i+wi−1

2 + b
yi+y′i+hi−1

2 + c = 0,

−b(xi − x′i) + a(yi − y′i) = 0.
(1)

The PSPNet proposed in [35] is chosen as our spine
segmentation model. We use ResNet50 [36] as the backbone
of PSPNet and modify the dimension of the final output into
1. The same settings as in [35] are adopted to optimize the
network parameters. Quantitative and qualitive experimental
results are reported in Section V-B.

2) Refined Contralateral Patch: To acquire a patch which
is more suitable for enhancing the feature representation of
the disease proposal, we further devise a spatial transformer
network (abbr. STN) to refine the pose of O′i. In details, we
set up STN on the basis of ResNet18 [36], through modifying
the output dimension of the ultimate fully connected layer into
6. We extend the borders of O′i by ∆x and ∆y pixels along
the horizontal and vertical axes respectively, resulting to a new
patch O′′i = (x′′i , y

′′
i , w

′′
i , h
′′
i ). x′′i = x′i −∆x, y′′i = y′i −∆y ,

w′′i = wi + 2∆x, and h′′i = hi + 2∆y . Empirically, we set
∆x = 0.25wi and ∆y = 0.25hi. Afterwards the original
disease proposal Oi is padded to have the same size as O′′i .
After being resized to a fixed size of w0 × h0, the padded
disease proposal and O′′i are concatenated and fed into the
STN, which gives rise to a tensor of 6 elements including two
rescaling parameters (sx and sy), two transition parameters
(tx and ty) and one rotation parameter (θ). These parameters
can be used to locate the refined symmetrical patch Ôi. Here,
w0 and h0 are both set as 64. For a point (xdst, ydst) in
Ôi, we can obtain its corresponding point (xsrc, ysrc) in the
original input image with a linear transformation operation,
[xdst, ydst]T = Ti[x

src, ysrc, 1]T. Ti can be calculated as the
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Fig. 4. Disease detection frameworks. The contralaterally enhanced networks can be integrated into both fully and weakly supervised methods.

following formulation,

Ti =

[
w′′i −1
w0−1 0 x′′i

0
h′′i −1
h0−1 y′′i

]sx cos θ −sy sin θ tx
sx sin θ sy cos θ ty

0 0 1

 . (2)

B. Feature Fusion Module
The architecture of the module for fusing features of a

disease proposal and its contralateral patch is shown in Fig.
3. Given a feature map F extracted with a backbone network,
the RoI pooling operation [19] is adopted to extract feature
representation fi for the disease proposal Oi. A feature map
F̂i (w × h) is extracted for the contralateral patch Ôi. For
every point in Ôi, its coordinates are obtained according to
transformation matrix in (2), and its feature vector is sampled
from from F via bi-linear interpolation. Again RoI pooling is
used to aggregate F̂i into the feature representation f̂i for Ôi.
The spatial sizes of fi and f̂i are both set as 7×7. We directly
flatten fi and f̂i into 1-dimensional feature vectors. Every
element in fi or f̂i can be regarded as certain attribute factor
of Oi or Ôi. The addition between fi and f̂i can help highlight
attributes which have large responses in both Oi and Ôi. This
is beneficial to the identification of diseases striding across
the left and right parts of the chest. On the other hand, the
subtraction between fi and f̂i can provide contrast information
and suppress the responses of attributes which are irrelevant
to disease recognition and localization. Considering the above
issues, both addition and subtraction operations are used to
merge fi and f̂i. Two fully connected layers are employed to
transform the merged features into the final prediction. The
output dimension of the first fully connected layer is 512, and
that of the second fully connected layer depends on the length
of the final prediction.

For fully supervised disease detection, the output is an
m-dimensional category probability vector pi and 4 m-
dimensional bounding box offsets including dx

i , dy
i , dw

i and
dh
i . Following the parameterizations in [17], the updated

bounding box for Oi is as bellow,

x′i = wi ∗ dxi (j∗) + xi, y′i = hi ∗ dyi (j∗) + yi, (3)

w′i = wi ∗ ed
w
i (j∗), h′i = hi ∗ ed

h
i (j
∗), (4)

where j∗ = arg maxj pi(j). With the help of the above
parameterizations, our method can resize the bounding box
and translate the top-left corner of the disease proposal.

For weakly supervised disease detection, our method only
rectifies the category prediction, and the final output is an
m-dimensional category probability vector pi.

IV. DISEASE DETECTION FRAMEWORK

The overall pipeline for fully and weakly supervised dis-
ease detection frameworks is summarized in Fig. 4. Without
specification, ResNet50 is used as the backbone of disease
detection networks.

A. Fully Supervised Disease Detection
Our method can be incorporated into existing fully su-

pervised disease detection frameworks, including both two-
stage methods such as Faster R-CNN [11] and Faster R-CNN
FPN [14], and one-stage methods such as RetinaNet [15] and
CenterNet [16]. For two-stage methods, we directly replace the
head for predicting the category and bounding box with our
contralaterally enhanced networks. It is implemented through
feeding the feature map produced by the backbone and class-
agnostic disease proposals produced by the region proposal
network into our proposed module. When incorporated with
one-stage methods, we use the original detection models to
produce disease proposals, ignoring the categorical informa-
tion. Then, our module is adopted to predict the final disease
class and rectify the bounding box for every disease proposal.
The corresponding feature map which directly induces to the
disease proposal is chosen to compute the feature representa-
tion for it and its contralateral patch. For the primitive version
of Faster R-CNN, the output of the 4-th convolution block
(abbr. C4) is adopted as the input feature map of the con-
tralaterally enhanced networks; for models using backbones
with pyramid architectures (including Faster R-CNN FPN and
RetinaNet), the exact feature map which gives rise to the
disease proposal is chosen; for CenterNet, the output of the
penultimate convolution layer is used as the input feature map.

We follow the loss function and the training algorithm in
[11] to optimize our improved disease detection networks.
The loss functions for training the object detection networks
During the testing stage, 100 boxes with the highest confi-
dences are selected as disease proposals, and non-maximum
suppression with an IoU threshold of 0.7 is used to filter
out severely overlapped boxes. The final predictions are post-
processed with the non-maximum suppression again. The IoU
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TABLE I
CHEST X-RAY DATASET FOR FULLY SUPERVISED DISEASE DETECTION.

Disease aorta widen aorta calcification papilla multiple nodules foreign matter diffusive nodule
Images/Boxes 1,800/6,635 1,123/5,144 1,210/5,431 1,450/4,990 1,397/5,127 1,240/4,812

Disease cardiomegaly pneumothorax hydropneumothorax subcutaneous emphysema cavity fibrosis
Images/Boxes 1,130/3,125 1,120/6,147 1,370/6,000 1,700/7,101 1,100/6,113 1,700/8,100

Disease widened mediastinal nodule rib abnormity rib absence shoulder abnormal atelectasis
Images/Boxes 1,640/6,135 1,200/4,700 1,500/5,000 1,400/6,100 1,727/6,237 1,124/4,716

Disease consolidation emphysema pulmonary tuberculosis hilum increase mass effusion
Images/Boxes 1,175/5,764 1,034/4,100 1,204/6,257 1,027/6,131 810/3,102 910/4,105

Disease pleural thickening scoliosis subphrenic air diaphragm abnormity calcification rib fracture
Images/Boxes 2,130/8,170 814/3,204 805/4,017 827/3,015 723/2,113 1,240/7,154

(a) Vanilla (b) Ours

Fig. 5. Confusion matrices of disease detection on our private chest X-ray dataset: (a) vanilla Faster RCNN FPN; (b) the variant of Faster RCNN
FPN improved by our method. A prediction successfully hits a ground-truth annotation if their classes are consistent and the IoU is larger than 0.5.
It is clearly observed that our method significantly reduces false detections.

threshold is set as 0.5. Boxes with confidences larger than
0.05 are considered as positive detections and the maximum
number of boxes is set to 20.

B. Weakly Supervised Disease Detection

We can also integrate the contralaterally enhanced networks
into the weakly supervised disease framework [5] which is
trained with multiple instance learning (abbr. MIL). A prob-
ability map P with size of H

32 ×
W
32 is produced. The vector

at position (x, y) in P indicate the probabilities of the patch
(32x, 32y, 32, 32) with respect to disease categories. Hence,
we select top 10 patches as disease proposals and use the
output of the penultimate convolutional layer as the feature
map which is a tensor having spatial size of H

32×
W
32 . They are

fed into the contralaterally enhanced networks, producing new
category probabilities. During the training stage, the other MIL
loss function is imposed on the new category probabilities.
In the inference phase, the threshold value is set as 0.5 to
select the disease proposals from the probability map, and
determine the final detection results according to the output
of the contralaterally enhanced networks.

V. EXPERIMENTS

A. Datasets & Evaluation Metrics
Fully Supervised Dataset We collect a private dataset to val-
idate fully supervised disease detection methods. The dataset
includes 31,000 frontal-view X-ray images which belong to 30
disease classes. 155,000 lesions indicated by bounding boxes
are carefully annotated by broad-certificated radiologists. In
average, there are 5 bounding boxes per image and 5,100
bounding boxes per disease category. The distributions of dis-
ease with respect to images and bounding boxes are presented
in Table I. The dataset is split into a training set of 27,000
images, a testing set of 2,100 images, and a validation set of
1,900 images. Three metrics based on average precision (AP)
are utilized to evaluate the disease detection methods.

1. AP-center: If the center of the predicted box is located
inside certain ground-truth box having the same disease
category, the box is a true positive; otherwise, it is a false
positive.

2. AP50: If the IoU between the predicted box and the
ground-truth box is larger than 50%, the box is a true
positive; otherwise, it is a false positive.
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Framework Version AP-center AP50 AP75 Para(MB) FPS

Faster R-CNN C4 Vanilla 35.76 26.11 7.57 130 7.0
Ours 39.40 29.17 9.82 160 5.1

Faster R-CNN FPN Vanilla 37.57 28.20 8.60 160 9.5
Ours 40.01 32.00 11.12 210 7.5

RetinaNet Vanilla 38.02 28.93 10.01 145 9.2
Ours 40.91 32.16 11.87 195 7.1

CenterNet Vanilla 38.19 29.02 10.11 800 3.7
Ours 41.02 33.17 12.34 830 2.9

TABLE II
COMPARISON WITH BASELINE DETECTION MODELS ON THE FULLY

SUPERVISED DATASET. OUR METHOD CAN SIGNIFICANTLY IMPROVE 4
EXISTING BASELINE MODELS WITHOUT LOSING MUCH COMPUTATION

EFFICIENCY.

Proposal STN Fusion AP-center AP50 AP75

C4

w/o w/o 35.76 26.11 7.57
w/o w/ CIA 36.01 27.32 8.83
w w/ CIA 37.20 28.27 9.46
w/o w/ AF 36.12 26.47 8.69
w/ w/ AF 37.11 27.14 9.13
w/o w/ ASF 36.70 27.92 9.05
w/ w/ ASF 39.40 29.17 9.82

FPN

w/o w/o 37.57 28.20 8.60
w/o w/ CIA 38.14 30.21 9.54
w/ w/ CIA 39.01 31.17 10.43
w/o w/ AF 38.65 30.11 9.27
w/ w/ AF 39.21 31.28 10.36
w/o w/ ASF 38.73 30.45 9.97
w/ w/ ASF 40.01 32.00 11.12

TABLE III
ABLATION STUDY ON THE FULLY SUPERVISED DATASET. CORE

COMPONENTS IN OUR METHOD, INCLUDING A SPATIAL TRANSFORMER

NETWORK (STN) AND OUR PROPOSED ADDITIVE AND SUBTRACTIVE

FUSION (ASF), ARE BENEFICIAL FOR IDENTIFICATION AND

LOCALIZATION OF DISEASES. CIA INDICATES THE FEATURES OF

DISEASE PROPOSALS AND THEIR CONTRALATERAL PATCHES ARE

FUSED WITH THE CONTRAST INDUCED ATTENTION [5]. AF MEANS ONLY

THE ADDITION OPERATION IS USED FOR FEATURE FUSION.

3. AP75: If the IoU between the predicted box and the
ground-truth box is larger than 75%, the box is a true
positive; otherwise, it is a false positive.

Weakly Supervised Dataset The NIH chest X-ray dataset [1]
is used for weakly supervised disease detection. It contains
112,120 frontal-view X-ray images with 14 disease classes.
Bounding box annotations are provided for 880 images. In this
paper, we use images with class annotations during the training
stage, while the 880 images with bounding box annotations
are used for testing. We evaluate the performance of disease
detection, following the metrics in [1], [4], [5]. The threshold
of IoU for identifying true positive detections varies from 0.1
to 0.7, in step of 0.2.

B. Fully Supervised Disease Detection
Spine Segmentation For training the spine segmentation net-
work, the spine regions of 8000 images are carefully annotated
by radiologists. These images are randomly split into 10
folds. Cross validation is conducted to validate the segmen-
tation performance. The Dice similarity coefficient (DSC) and
three other metrics including pixel accuray (P.ACC), mean
accuracy (M.ACC), mean IU (M.IU) and frequency weighted

Fig. 6. We generate a critical difference diagram to make comparisons
between pairs weakly supervised disease detection methods, based
on the Wilcoxon-Holm method. These thick horizontal lines means the
linked methods are not significantly different.

IU (F.W.IU) proposed in [37] are used for evaluation. The
experimental results are presented in Table V
Disease Detection The four baseline models, including ‘Faster
R-CNN C4’, ‘Faster R-CNN FPN’, RetinaNet and CenterNet,
are re-implemented using our fully supervised dataset. We
attempt to incorporate our proposed module into all of them as
introduced in Section IV-A. The quantitative comparisons are
presented in Table II. The proposed module can significantly
improve the four baseline models. The improvement of AP-
center brought by our method is 3.64% (from 35.76% to
39.40%) or 2.44% (from 37.57% to 40.01%), when employing
‘Faster RCNN C4’ or ‘Faster RCNN FPN’ to produce disease
proposals. Under metrics AP50 and AP75, our method can also
outperform all compared methods. For example, the variant
of our method equipped with ‘Faster R-CNN C4’ achieves
29.17% AP50 and 9.82% AP75 which is 3.06 and 2.25 higher
than the results of original ‘Faster R-CNN C4’ respectively.
The improvements brought by our method are 3.80 (AP50)
and 2.52 (AP75) when using the baseline of ‘Faster R-CNN
FPN’. The confusion matrices 1 of ‘Faster R-CNN FPN’and
its variant improved by our method are presented in Fig. 5.

Results of disease detection in 4 CXRs are visualized in
Fig. 7. From top to down are original images, results of
the original ‘Faster R-CNN C4’, and results of the variant
of ‘Faster R-CNN C4’ which is improved by our module.
The green, blue and red boxes stand for ground-truths, true
positives and false positives, respectively. The experimental
results demonstrate that the contralateral context information
extracted by our proposed module is beneficial to the detection
of diseases in CXRs.

C. Weakly Supervised Disease Detection

In this task, we adopt images with only image-level labels
for training, and images with both bounding box and class
annotations for testing. We compare our method against vari-
ous existing methods proposed in [1], [3]–[5], [29], [30]. As
shown in Table IV, our method achieves the best performance
in overall. Compared to the baseline model [5], our method
achieves consistently higher accuracy under all IoU thresholds.
For example, in case of using 0.3 as IoU threshold, it produces
results with accuracy of 0.48, surpassing [5] by 0.02. When
threshold of IoU is set as 0.5 and 0.7, our approach achieves
accuracy of 0.36 and 0.21, with a lead of 0.01 and 0.02
over [5], respectively. In Fig. 8, we illustrate disease detection
results of several cases under the condition of the weak

1https://github.com/kaanakan/object detection confusion matrix

https://github.com/kaanakan/object_detection_confusion_matrix
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Fig. 7. Visualization of fully supervised disease detection. The original images, results produced by ‘Faster R-CNN C4’ [11], and results improved
by our method are shown from top to bottom. Green, blue and red boxes represents ground-truths, true positive predictions, and false positive
predictions, respectively. We can see that our approach can produce more accurate localizations.

supervision. From top to down are original images, results
of [5], and results produced by our method. The green boxes
stand for ground-truths and blue regions indicate predictions
inferred by disease localization models. The results verify
the effectiveness of our method in weakly supervised disease
detection. Following [38], we generate a critical difference
diagram for comparing our method against other weakly
supervised methods, based on the Wilcoxon-Holm method 2.
The mean accuracies under different IoUs are used as the
input. As shown in Fig. 6, our proposed method achieves the
best rank.

D. Ablation Study

Ablation studies are conducted to discuss the effectiveness
of core modules in our method. Both ‘Faster R-CNN C4’
and ‘Faster R-CNN FPN’ are used as baseline models. To
validate the effectiveness of the STN, a variant of our method
without STN, which uses the preliminary contralateral patches
to enhance the features of disease proposals, is implemented.
In contrast to our proposed additive and subtractive fusion
(ASF) strategy, we also apply a counterpart of our feature

2https://github.com/hfawaz/cd-diagram/

module with only additive operation (AF) or the contrast
induced attention (CIA) [5] which is based on the subtractive
operation to fuse features of each disease proposal and its
contralateral patch. As we can see in III, compared to the
baseline models, the usage of preliminary contralateral patches
can give rise to marginally better performance. The adoption of
STN is capable of improving all detection evaluation metrics
in all settings. For example, the value of AP-center is promoted
from 36.70 to 39.40, once STN is adopted in the variant of
‘Faster R-CNN C4’ with ASF. For feature fusion strategies,
our proposed ASF outperforms CIA under all conditions. For
example, ASF induces detection results with 2.20 (39.40 vs
37.20) or 1.00 (40.01 vs 39.01) higher AP-center than the
results of CIA when using ‘Faster R-CNN C4’ or ‘Faster R-
CNN FPN’ as the baseline model, respectively. Besides, the
detection performance is degraded without using any of the
additive and subtractive operations. It indicates that the two
operations can complement each other. In summary, exhaustive
ablation studies demonstrate the superiorities of core modules
devised in this paper.

E. Performance in Individual Disease Categories

https://github.com/hfawaz/cd-diagram/
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T (IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1

CAM [1] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57
AdapDenseNet [30] 0.43 0.97 0.69 0.82 0.55 0.22 0.78 0.33 0.60

IAM [3] 0.68 0.97 0.65 0.52 0.56 0.46 0.65 0.43 0.62
MIL [4] 0.59 0.81 0.72 0.84 0.68 0.28 0.22 0.37 0.57

MIL? [4], [5] 0.43 0.82 0.72 0.72 0.52 0.42 0.20 0.70 0.57
DLRV [29] 0.59 0.99 0.85 0.76 0.61 0.23 0.68 0.49 0.65

CIAN [5] 0.67 0.86 0.71 0.83 0.77 0.45 0.29 0.40 0.62
CIAN-CEN 0.71 0.91 0.74 0.85 0.79 0.47 0.40 0.50 0.67

0.3
CAM [1] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22

AdapDenseNet [30] 0.16 0.92 0.33 0.54 0.18 0.14 0.50 0.14 0.36
IAM [3] 0.33 0.85 0.34 0.28 0.33 0.11 0.39 0.16 0.35

MIL? [4], [5] 0.24 0.75 0.47 0.60 0.30 0.05 0.21 0.33 0.37
DLRV [29] 0.51 0.96 0.56 0.67 0.45 0.16 0.43 0.21 0.50

CIAN [5] 0.45 0.73 0.51 0.74 0.61 0.19 0.17 0.26 0.46
CIAN-CEN 0.47 0.75 0.55 0.76 0.62 0.21 0.19 0.29 0.48

0.5
CAM [1] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06

AdapDenseNet [30] 0.06 0.78 0.23 0.28 0.08 0.14 0.21 0.05 0.23
IAM [3] 0.11 0.60 0.10 0.12 0.07 0.03 0.17 0.08 0.16

MIL? [4], [5] 0.15 0.67 0.30 0.41 0.22 0.02 0.14 0.12 0.25
DLRV [29] 0.20 0.92 0.19 0.39 0.20 0.06 0.18 0.04 0.27

CIAN [5] 0.31 0.65 0.37 0.59 0.48 0.07 0.09 0.20 0.35
CIAN-CEN 0.32 0.68 0.39 0.61 0.49 0.07 0.15 0.21 0.36

0.7
CAM [1] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01

AdapDenseNet [30] 0.02 0.23 0.22 0.11 0.04 0.14 0.08 0.01 0.11
IAM [3] 0.01 0.17 0.01 0.02 0.01 0.00 0.02 0.02 0.03

MIL? [4], [5] 0.03 0.57 0.08 0.04 0.1 0.02 0.06 0.10 0.10
DLRV [29] 0.04 0.72 0.03 0.15 0.02 0.00 0.03 0.01 0.13

CIAN [5] 0.11 0.53 0.18 0.27 0.26 0.03 0.04 0.16 0.19
CIAN-CEN 0.13 0.54 0.19 0.27 0.27 0.04 0.05 0.17 0.21

TABLE IV
COMPARISON WITH OTHER WEAKLY SUPERVISED DISEASE DETECTION METHODS ON NIH CHEST X-RAY DATASET. T(IOU) MEANS THE THRESHOLD

VALUE OF IOU USED TO MATCH PREDICTED RESULTS AND GROUND-TRUTHS. DISEASE LOCALIZATION ACCURACY ARE EVALUATED AT T(IOU)-S IN

{0.1, 0.3, 0.5, 0.7}. ‘MIL? ’ INDICATES THE RESULTS OF [4] WHICH ARE RE-IMPLEMENTED BY [5].

Fig. 8. Visualization of weakly supervised disease detection. The original images are presented in the first row. Results produced by [5] and our
method are visualized in the second and third row respectively. Green boxes stand for ground-truths and blue regions indicate predicted results. We
can see that our approach can output more accurate localization results.
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Fig. 9. The AP50 metric values of 30 disease categories. ‘Faster R-CNN C4’ is used to extract disease proposals in our method. The incorporation
of contralateral patches is beneficial for improving the detection performance of most diseases.

DICE P.ACC M.ACC M.IU F.W.IU
96.4% 97.1% 80.4% 64.2% 89.2%

TABLE V
THE PERFORMANCE OF PSPNET IN THE SPINE SEGMENTATION TASK.

DICE SIMILARITY COEFFICIENT (DSC), PIXEL ACCURACY (P.ACC),
MEAN ACCURACY (M.ACC), MEAN IU (M.IU), FREQUENCY WEIGHTED

IU (F.W.IU) ARE USED FOR EVALUATION.

The AP50 metric values of 30 disease categories produced
by ‘Faster R-CNN C4’ and our proposed method are presented
in Fig. 9. Compared with the baseline ‘Faster R-CNN C4’, our
proposed method achieves better results in the detection of
most disease categories. Our method is particularly advanta-
geous at detecting abnormalities residing in structures having
similar counterparts in the contralateral side of the chest, such
as lungs and ribs. Especially, the AP-50 of rib abnormality
detection is improved from around 20% to 50% after incor-
porating our method into ‘Faster R-CNN C4’. For diseases of
organs which only exist in single half of the chest, such as
cardiomegaly, our method can still improve the identification
performance, since the contralateral context information can
also be used to ignore overlapping or surrounding distortion
signals.

For statistical analysis, the Wilcoxon signed-rank test 3

is conducted to compare the distributions of AP50 across
diseases, produced by the original ‘Faster R-CNN C4’ and

3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.
html

its improved variant. The sum of the ranks of the differences
is 41.5, and the p-value for the test is 0.00039. Hence, we
would reject the null hypothesis that the two groups of AP50
are from the same distribution under a confidence level of 5%.

The above experiments demonstrate that, the retrieved con-
tralateral patches are able to strengthen the feature representa-
tions of proposals when identifying and locating most disease
lesions.

VI. CONCLUSION

We propose a novel module, Contralaterally Enhanced
Networks, for disease localization in chest X-ray images. Our
method aims at taking advantage of the thoracic contralateral
context information to enhance the feature representations of
disease proposals. The spine line is regarded as the symmetry
axis to obtain an initial contralateral patch for each disease
proposal. Then a spatial transformer network is devised to
refine the pose of the initial contralateral patch. The disease
proposal and its retrieved contralateral patch are fused to pre-
dict final disease classification and localization. Experiments
on a carefully annotated dataset demonstrate our proposed
module improves existing two-stage and one-stage detection
methods, Faster R-CNN C4, Faster R-CNN RPN, RetinaNet
and CenterNet, by 3.06, 3,80, 3.23 and 4.15 on the AP50
metric, respectively. Our method can also be applied in weakly
supervised disease localization and achieves state-of-the-art
performance on the NIH chest X-ray dataset.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html


10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

VII. FUTURE WORK

As discussed above, the contralaterally enhanced networks
can effectively improve the disease performance in both fully
and weakly supervised disease localization in chest X-ray
images. The limitations of our method are as follows: 1)
The retrieval of the contralateral patches is dependent to the
localization of the spine line; 2) The disease regions ne-
glected by the proposal extraction model can not be recovered.
To settle these issues, it deserves further study to design
more efficient module to explore the contralateral contextual
information. Furthermore, the replication of small thoracic
structures exists in the same side of the chest. Thus, how
to exploit such relationships for disease detection is also an
interesting research topic.
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