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Abstract— We report the ability of two deep learning-
based decision systems to stratify non-small cell lung
cancer (NSCLC) patients treated with checkpoint inhibitor
therapy into two distinct survival groups. Both systems ana-
lyze functional and morphological properties of epithelial
regions in digital histopathology whole slide images stained
with the SP263 PD-L1 antibody. The first system learns to
replicate the pathologist assessment of the Tumor Cell (TC)
score with a cut-point for positivity at 25% for patient stratifi-
cation. The second system is free from assumptions related
to TC scoring and directly learns patient stratification from
the overall survival time and event information. Both sys-
tems are built on a novel unpaired domain adaptation deep
learning solution for epithelial region segmentation. This
approach significantly reduces the need for large pixel-
precise manually annotated datasets while superseding
serial sectioning or re-staining of slides to obtain ground

Manuscript received February 28, 2021; revised May 4, 2021; accepted
May 9, 2021. Date of publication May 18, 2021; date of current version
August 31, 2021. (Corresponding author: Ansh Kapil.)

This work involved human subjects or animals in its research. Approval
of all ethical and experimental procedures and protocols was granted
by Institutional Review Boards under Application No. NCT01693562,
and performed in line with the Declaration of Helsinki and good clinical
practice guidelines.

Ansh Kapil, Armin Meier, Katharina Nekolla, Tobias Wiestler,
Simon Lanzmich, and Günter Schmidt are with Astrazeneca
Computational Pathology GmbH, 80636 Munich, Germany (e-mail: ansh.
kapil@astrazeneca.com; armin.meier@astrazeneca.com; katharina.
nekolla@astrazeneca.com; tobias.wiestler@astrazeneca.com; simon.
lanzmich@astrazeneca.com; guenter.schmidt@astrazeneca.com).

Keith Steele was with the Early Oncology Translational Medicine,
Oncology Research and Development, AstraZeneca, Gaithersburg,
MD 20878 USA (e-mail: steeleke@comcast.net).

Marlon Rebelatto was with the Precision Medicine and
Biosamples, Oncology Research and Development, AstraZeneca,
Gaithersburg, MD 20878 USA. He is now with the Early Oncology
Translational Medicine, Oncology Research and Development,
AstraZeneca, Gaithersburg, MD 20878 USA (e-mail: marlon.rebelatto@
astrazeneca.com).

Alexander Haragan is with the Department of Molecular and Clinical
Cancer Medicine, Royal Liverpool University Hospital, Liverpool L7 8XP,
U.K. (e-mail: alex.haragan@nhs.net).

Abraham Silva, Aleksandra Zuraw, and Nicolas Brieu were with
Astrazeneca Computational Pathology GmbH/Definiens GmbH,
80636 Munich, Germany (e-mail: abrahamsilvac@gmail.com;
olkazuraw@gmail.com; nicolas.brieu@gmail.com).

Craig Barker and Marietta L. Scott are with the Precision Medicine
and Biosamples, Oncology Research and Development, AstraZeneca,
Cambridge CB2 0AA, U.K. (e-mail: craig.barker@astrazeneca.com;
marietta.scott@astrazeneca.com).

Digital Object Identifier 10.1109/TMI.2021.3081396

truth by cytokeratinstaining. The capacity of the first system
to replicate the TC scoring by pathologists is evaluated on
703 unseen cases, with an addition of 97 cases from an
independent cohort. Our results show Lin’s concordance
values of 0.93 and 0.96 against pathologist scoring, respec-
tively. The ability of the first and second system to stratify
anti-PD-L1 treated patients is evaluated on 151 clinical sam-
ples. Both systems show similar stratification powers (first
system: HR = 0.539, p = 0.004 and second system: HR =
0.525, p = 0.003) compared to TC scoring by pathologists
(HR = 0.574, p = 0.01).

Index Terms— Deep learning, digital pathology, domain
adaptation, oncology, PD-L1 biomarker.

I. INTRODUCTION

THE introduction of checkpoint inhibitor therapies in
immuno-oncology has significantly improved the life

expectancy of cancer patients. In particular in melanoma, non-
small cell lung cancer (NSCLC) and bladder cancer, the sur-
vival benefit provided by therapies targeting the cell death
protein (PD-1) or the programmed death ligand 1 (PD-L1)
has led to a number of drug approvals which have changed
the clinical routine. The human immunoglobulin G1 kappa
monoclonal antibody durvalumab targets the immune escape
of cancer by blocking the PD-L1 protein on tumor cells,
and thereby promoting T-cell mediated tumor killing [1], [2].
Based on this mechanism of action it was hypothesized that
the percentage of PD-L1 positive epithelial cells in tumor
tissue samples is associated with response to therapy and
overall survival. That hypothesis was confirmed in several
studies and led to the development of a predictive histopatho-
logical scoring system, the Tumor Cell (TC) scoring, using
PD-L1 stained tissue sections [3]. The definition of single
cell positivity is determined by pathologist assessment of
PD-L1 staining intensity on the membrane of the tumor
cell. On slide level, the negative or positive PD-L1 status is
determined by comparing the TC score to an assay specific
cut-off value [4]; a TC score above the cut-off being indicative
of cancers that are more likely to respond to therapy [5]. The
TC scoring is typically performed by a pathologist viewing
the PD-L1 stained histological tissue under a microscope.
However, scoring of PD-L1 stained tissue is a challenging
task [6]. The first challenge is that PD-L1 does not solely
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stain the membrane of neoplastic epithelial cells. Immune cells
(e.g. macrophages and lymphocytes), necrotic and stromal
regions may show positive PD-L1 staining, but should not
be included in the scoring. Also, regions showing tumor
epithelial cells with cytoplasmic, but no membrane staining
should be counted as negative. Another challenge associated
with visual assessment is the difficulty for the human observers
to estimate heterogeneous distributions of cell populations with
spatially intermixed positive and negative tumor regions [7].
In some instances, these challenges make the TC scoring
subject to variability among pathologists [7], which can lead
to subjectivity in the therapeutic decision process.

The first contribution of this work is the introduction of
an automated image analysis (IA) based TC scoring system,
based on convolutional neural networks (CNN), that accurately
replicates the pathologist scoring. Our results show high con-
cordance between the IA algorithm and the pathologist scoring
with respect to (i) the continuous TC scoring, (ii) the binary
decision on the PD-L1 status at the 25% cut-point and (iii) the
identification of a patient subgroup with improved NSCLC
survival in the NCT01693562 clinical trial. We formulate
the IA based TC scoring task as a three class segmentation
problem - the three classes being (1) TC(+): PD-L1 positive
tumor epithelial regions ; (2) TC(−): PD-L1 negative tumor
epithelial regions; (3) Other: non-epithelial regions, which are
not considered in the TC scoring such as immune, stromal
and necrotic regions. This is followed by the calculation of
the TC score as the ratio of the pixel counts (i.e. surface
area) of the first regions to the union of the first and second
regions: T Cscore = |T C(+)| / |T C(+) ∪ T C(−)|. Designed
to reproduce the pathologist scoring, the proposed IA based
TC scoring algorithm builds on extensive prior hypotheses
such as a) the definition of cells that should be counted positive
(or negative, respectively), b) the definition of the TC score
from the segmented epithelial regions, and c) the cut-off value
used for determining the PD-L1 status to perform patient
stratification. While this system could assist the pathologists in
taking more robust therapeutic decisions, it does not enable the
discovery of novel stratification rules. This leads us towards
the second contribution of this work, that is the introduction of
a CNN-based survival analysis system to predict time-to-event
outcome from PD-L1 stained histology images. Following
the recent work by Mobadersany et al. [8], the proposed
system automatically identifies visual patterns as well as the
regions associated with low and high probability of being ‘at
risk’. Using hard attention (please refer to section II-B for
more details on hard attention) on automatically segmented
epithelial regions and patient-based stratified sampling, we are
able to bypass some of the constraints associated with previous
works on weakly supervised learning applied to histopathology
images [8]–[11]. We show that the modifications enable the
replication of TC score-based survival analysis without the
need of either a large tissue dataset [9], [11] or restriction of
the analysis to manually selected regions of interest (ROIs)
[8] or to preselected small tissue samples such as tissue micro
arrays (TMAs) [10]. Our approach enables, for the first time,
the retrospective analysis by deep survival learning of a small

clinical trial dataset consisting of needle biopsies and resected
tissue samples.

The two above contributions build on the automatic seg-
mentation of epithelial regions. For TC score replication,
the score can be derived from the three-class segmentation
problem. For survival analysis, it enables the attention to be
focused on regions a-priori known to be information-rich. The
aforementioned challenges associated with PD-L1 staining and
TC scoring, together with the demonstrated performance of
deep learning methods in digital pathology IA [9], [11]–[16]
leads us towards this set of methods, and more particu-
larly towards deep learning based semantic segmentation
networks [17], [18]. Semantic segmentation networks have
been successfully applied to a variety of histopathological
image analysis tasks, though mostly in the H&E domain. For
instance, Liu et al. [19] used Inception V3 network [20] to
perform a patch based classification on whole slide images to
produce course segmentation maps to detect cancer metastasis.
To obtain dense segmentation results, Scheurer et al. [21] used
a UNet network [18] with an efficient net B7 backbone [22] for
classification of cutaneous lymphoma and eczema. To incorpo-
rate more contextual information from large histopathological
images into the networks, Graham et al. [23] used multi-
scale network to perform instance-based nuclei segmentation.
Another idea to incorporate more contextual information was
proposed by Rijthoven et al. [24], where they proposed multi-
resolution networks to segment and classify various tissue
regions in non-small cell lung cancer and breast cancer sam-
ples. While these methods provide accurate results, training
of these networks requires, however, the use of large datasets
with pixel-precise labels. In practice, the generation of such
datasets is a manual process, and is therefore hampered by
the associated high costs of data procurement as well as by
the requirement of specialized expert annotators. To lower the
need for manual training annotations, Mahmood et al. [25]
proposed a method to synthesize H&E patches from segmen-
tation masks using adversarial methods followed by training
networks on them for nuclei segmentation. Chan et al. [26]
proposed a weakly supervised method for semantic segmen-
tation of histological tissue subtype.

Keeping the requirement of lowering the demand for manual
annotations, we propose to automatically generate artificial
training annotations using slides stained with the epithelial
marker Pan-Cytokeratin (PanCK). PanCK is a pan-epithelial
marker and has a good specificity of staining on different types
of epithelium. Availability of PanCK stain enables easy and
fast segmentation of epithelial regions using computer-based
heuristics (Color deconvolution, Otsu thresholding followed
by morphological operations). Human input is minimal on
the PanCK sections, it being limited to a rough removal of
macroscopic regions showing staining not specific to epithelial
regions. The time consuming task of pixel precise labeling
of the epithelium regions solely relies on computer-based
heuristics, and thus large amounts of precise epithelial labels
can be collected with relatively low effort. Therefore usage
of PanCK as a helper stain for epithelial segmentation in
this study was a natural choice. While the idea of using a



KAPIL et al.: DOMAIN ADAPTATION-BASED DEEP LEARNING 2515

helper stain to generate training labels has been previously
described [27]–[29], the methods relied on a training cohort
designed such that the target stain (PD-L1) and the helper
stain (PanCK) are both available on the same cases, either
through the registration of consecutive slides [28] or the
consecutive staining of the same slide [27], [29]. To bypass
the need for either serial sections or subsequent staining,
we exploit recent advances in deep generative adversarial net-
works (GANs), especially in unpaired image-to-image trans-
lation using CycleGAN [25], [30], [31]. We introduce an
end-to-end trainable network (cf. Fig. 2c) named DASGAN
(Domain Adaptation and Segmentation Generative Adversarial
Network) that (i) jointly performs unpaired image-to-image
translation and semantic segmentation and (ii) can leverage
training annotations simultaneously from both the PanCK and
PD-L1 stain domains despite a conflicting number of classes.
The latter is a key characteristic of the proposed method:
while PanCK staining provides unpaired cues for the two-class
problem of epithelial segmentation, the automatic TC scoring
algorithm additionally requires the classification of epithelial
regions into PD-L1 positive or PD-L1 negative, yielding a
three-class segmentation task.

II. MATERIALS AND METHODS

This work introduces two novel deep learning-based image
analysis (IA) methodologies. First the DASGAN network,
which is an extension of the CycleGAN architecture [30]
towards an end-to-end network for joint domain adaptation
and segmentation. Second, an extension of the deep survival
learning methodology [8] with hard-attention on epithelial
regions.

A. The DASGAN Network

The DASGAN model builds on the existing CycleGAN
model [30], which we recall here for completeness purposes.
Two generators G B A : XB → X ′

A and G AB : XA → X ′
B are

trained to synthesize samples in domain A (PD-L1) from real
samples in domain B (PanCK) and vice versa. Two discrimina-
tors DA and DB are trained in opposition to identify synthetic
from real samples in the two domains. The parameters of the
two discriminator and two generator networks are learned in
an adversarial manner following a minimax game on the two
adversarial losses LAB

G AN and LB A
G AN :

min
G AB

max
DB

LAB
G AN : = ExB∼XB log(DB(xB))

+ ExA∼XA log(1 − DB(G AB(x A))) (1)

min
G B A

max
DA

LB A
G AN : = ExA∼XA log(DA(x A))

+ ExB∼XB log(1 − DA(G B A(xB))) (2)

The necessity of having image pairs for image translation
between A and B is bypassed using a cycle consistent loss
Lcycle [30]. The cycle loss is defined to prevent mode collapse
of the two GAN models and to constrain the invertibility of the
translated domains, based on the translation of the synthesized

samples x ′
B = G AB(x A) and x ′

A = G B A(xB) back to their
original domains A and B:

Lcycle := ExA∼XA

∥∥x A − G B A(x ′
B)

∥∥
1

+ ExB∼XB

∥∥xB − G AB (x ′
A)

∥∥
1 (3)

Following the auxiliary classifier generative adversarial net-
work (AC-GAN) [32], we extend the CycleGAN model [30]
to obtain segmentation maps as auxiliary from the two dis-
criminator networks DA and DB operating on the domain A
(PD-L1) and the domain B (PanCK). The proposed network
is illustrated in Fig. 2. We condition the input images of
the two generator networks G AB and G B A, which transform
real PD-L1 images into translated PanCK images and real
PanCK images into translated PD-L1 images, respectively,
with the respective ground truth segmentation masks. To this
end, the segmentation mask is concatenated with the original
RGB image layers across the input image channel axis.
The respective concatenated volumes go through a series
of transformations by generators G AB and G B A to produce
synthetic images in the respective target stain domains B
and A. As a second extension, the two discriminator net-
works DA and DB are extended to predict pixel-wise class
probability maps in addition to predicting the correct source
of image. To this end, and to propagate the class specific
information to the generator, a segmentation loss is introduced
to the discriminator in addition to the original adversarial
loss:

Lseg := LC E (ytrue
A , y pred

A ) + LC E (ytrue
B , y pred

B ) (4)

where LC E (ytrue, y pred ) = − ∑
ytrue log(y pred ) denotes the

categorical cross-entropy loss and ytrue and y pred correspond
to the ground truth and the predicted label maps, respectively.
This results in the following loss for training the proposed
DASGAN network:

L := LAB
G AN + LB A

G AN + λ1Lcycle + λ2Lseg (5)

with LAB
G AN , LB A

G AN and Lcycle denoting the two adversarial
and the cycle consistency losses [30] and λ1 = 10, λ2 =
1 weighting the losses associated with the cycle constraint
and the segmentation auxiliary task, respectively. Only the
discriminator DA is employed at time of prediction but the
use of a symmetric discriminator DB ensures the balancing of
the two counter-playing GAN networks.

The architectures of the two generators in the proposed
DASGAN are similar to that in the original CycleGAN
paper [30]. We included the following modifications. First,
the input images and the segmentation mask are concatenated.
Second, for the two discriminators, weights between the pre-
diction of the source distribution and of the semantic segmen-
tation posterior maps are shared in the first three convolutional
layers and the branch for semantic segmentation extended to
include three resnet blocks and three deconvolutional layers.
Spectral normalization [33] and self-attention blocks [34]
are added in the discriminators and generators to increase
training stability and to model long structural dependencies
respectively.

The resulting DASGAN network makes it possible to com-
bine, at training time, annotations from any two stain domains
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Fig. 1. Three examples of regions with different PD-L1 TC scores according to pathologist assessment. a) shows no PD-L1 staining in tumor cells,
staining is only seen in macrophages which are not counted in the TC scoring b) shows a heterogeneous tumor staining in ≈35% of tumor cells
and c) shows staining in ≈100% of tumor cells. In this work, we automate the scoring pipeline using novel domain-adaptation based deep learning
method.

Fig. 2. Synthetic (a) and real (b) PD-L1 datasets generated from the semi-automated segmentation of PanCK images and manual annotations,
respectively. (c) DASGAN model for joint domain adaptation and semantic segmentation. NB: the two cycle losses between the real and the cyclic
images are not displayed for clarity purposes.

and independent cohorts. Given a dataset of PanCK stained
images, large amounts of dense and pixel-precise ground
truth data are created with a limited cost and burden of
manual annotations. The above DASGAN network enables
the binary segmentation of epithelial vs. other regions on
PD-L1 images. To further differentiate between PD-L1 posi-
tive and PD-L1 negative epithelial regions, a three-class pixel-
wise mask conditioning is introduced to DASGAN. Each
PanCK binary segmentation mask is transformed into two
examples of (i) a PD-L1 positive and (ii) a PD-L1 nega-
tive epithelial masks. After domain adaptation through G B A,
this results in two synthetic PD-L1 image versions of the
same PanCK image (c.f. Fig. 2(a)): the first stained with
PD-L1, the second not. Given a PanCK binary segmentation
mask, a PD-L1 negative epithelial mask is built by giving

the labels 0 and 1 to the non-epithelial and the epithelial
regions, respectively. This conditions G B A to yield a PD-L1
negative image. Similarly, a PD-L1 positive epithelial mask is
generated from the same PanCK mask by giving the respective
labels 0 and 2 instead, respectively. This conditions G B A

to yield a PD-L1 positive image from the same PanCK
image.

To show the effectiveness of the proposed method, the
segmentation network of DASGAN i.e. the discriminator’s
segmentation head is also trained as a standalone network
(called “Segnet” is Fig.4 and Fig.5) and used as a baseline
in results. The architectures have been kept exactly the same
for fair comparison.

1) Dataset Description: The complete dataset was divided
into three parts: 1) The training set used for model training,
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2) the validation dataset used for model selection and 3) the
unseen test dataset used to report performance.

The training set consists of NPanC K = 56 PanCK
(AE1/AE3 clone, Ventana [35]) stained WSIs of NSCLC
samples and of NP D−L1 = 69 WSIs of the same indication
and stained with the SP263 PD-L1 clone. The PanCK images
and the PD-L1 images are unpaired and come from two
independent patient cohorts. The good specificity of PanCK
staining makes it possible to obtain a reliable semi-automatic
segmentation of epithelial regions in PanCK images. More
precisely this is done by using heuristics: color deconvolu-
tion, Otsu thresholding, and closing morphological operations
(cf. Fig. 2a). Some human supervision is used in addition to
discard macroscopic regions that are non-specifically stained
(e.g. necrosis) or that are outside of the tumor regions (e.g.
benign epithelium), thereby ensuring the purity of PanCK
based training samples for epithelial regions. 194k patches
were uniformly sampled from the PanCK images. ROIs
on PD-L1 sections were manually annotated for the three
classes of interest by pathologists - class 0: Non epithelial
regions (including stroma, macrophages, immune cell clusters,
necrotic regions etc.), class 1: PD-L1 unstained epithelial
regions (T C(−)) and class 2: PD-L1 positively stained epithe-
lium regions (T C(+)). For two class epithelial segmentation,
class 1 (T C(−)) and class 2 (T C(+)) in the aforementioned
ROI labels were combined. To study the impact of NP D−L1
on the segmentation accuracy, we report results with three
different configurations for the training and validation sets:
(i) 44K patches from NP D−L1 = 22 slides, (ii) 103K patches
from NP D−L1 = 49 slides and (iii) 149K patches from
NP D−L1 = 69 slides, all patches from (i) being included
in (ii) and those of (ii) in (iii). All patches were 128 × 128
pixels sampled at 10× resolution (1μm/px). The PanCK-based
training set, as well as PD-L1 validation and test set remain
unchanged in these experiments.

The validation set is similarly generated from another
NP D−L1 = 28 partially annotated PD-L1 stained WSIs. The
samples in the validation set are not used for model training,
instead solely used for tuning the training hyper-parameters
(e.g. learning rate, batch size) and for selection of the best
model. The latter more precisely works as follows: (1) At the
end of each training epoch, the model is recorded together with
the corresponding accuracy metric (segmentation F1 score)
computed on the validation set; (2) this leads, at the end of
training, to a collection of model candidates and associated
metrics; (3) the best model is selected among this collection of
model candidates as the one maximizing the recorded metric.
The selected best model is then applied on the unseen test set
to report the final segmentation performance.

The test set for epithelial segmentation consisted of 106
regions of interest (ROI) of 500×500μm selected from 25 test
whole slide images (WSIs) stained for PD-L1 with Ventana
SP263 antibody. Similar to the training and validation sets,
these ROIs were manually annotated for the three classes of
interest by pathologists. The ROIs were selected to cover a
high variability of different NSCLC sub-types (adeno, squa-
mous), growth patterns (acinar, papillary and solid) and sample
types (needle biopsies and resectates). The test WSIs were

exclusively employed for evaluation purposes and were used
neither for training the network nor selecting the best model
hyper-parameters. The segmentation accuracy was measured
for each class of interest on the unseen test set with the
aggregated f1 score, which is defined as the harmonic mean
between the aggregated precision and recall.

2) Network Training: Training and inference were performed
using the TensorFlow library. All models were trained on a
single NVIDIA V100 GPU with 32GB of memory and Adam
optimization performed for both the generators (lr = 1e-4,
beta1 = 0.5) and the discriminators (lr = 5e-4, beta1 = 0.5) for
150k iterations. Because the same architecture DA is used by
all networks for segmentation, the prediction time is the same
for all networks: 0.08 sec for 512 × 512 pixels is measured
on NVIDIA K80 GPU.

B. Deep Survival Learning
Deep survival learning is a paradigm of learning ‘at risk’

visual patterns in images directly from the time and event
survival information using a CNN. To enable training of
a neural network by back-propagation and handle survival
data, Faraggi et al. [36] proposed a neural network based
method to implement the Cox model in a loss function.
Mobadersany et al. [8] recently extended on the idea proposed
by Faraggi et al. [36] and use CNNs to compute the negative
partial log likelihood associated with Cox model directly from
images. Our work builds on this work, which we recall here
for completeness. A patch based CNN is trained to predict ‘at
risk’ value βT X derived from a Cox model, where X denote
the realized values of the different covariates and β is a vector
of linear coefficients. The CNN is trained by back-propagation
to minimize the following negative partial log likelihood:

L(β, X) =
∑
i∈U

⎛
⎝βT Xi − log

∑
j∈�i

exp(βT X j )

⎞
⎠ (6)

where U is the set of samples with event and �i is the set
of samples with overall survival time higher than of the i th

sample. The loss is computed over all ROIs sampled from
all cases [10], thereby the time and event information being
propagated from the patient to each of its constituting ROI.

Survival learning in its original form, just like other deep
learning applications, requires large datasets to learn mean-
ingful ‘at risk’ patterns that can lead to robust predictions
of high or low survivor groups. In case of smaller datasets,
the problem of overfitting the model parameters to the data is
often encountered. Also, since it is unlikely that every region in
an image encodes information about the patient being ‘at risk’,
propagating time and event indifferently to all possible ROIs
yields training patches with low signal-to-noise ratio. To avoid
the manual selection of ROIs, we employ a region-focused
survival analysis, where the training ROIs are automatically
sampled from the previously segmented regions of interest.
This process of focusing the survival learning only on certain
pre-selected regions, in this case epithelial regions, we refer to
as “hard attention”. To avoid a disproportionately large number
of patches coming from tissue resections versus smaller needle
biopsies during training, we introduce a stratified sampling
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Fig. 3. The overview of region focused survival CNN workflow. a) Densely sample ROIs from DASGAN-detected epithelial regions and label each
sample with patient overall survival information {time + event}. b) Train a CNN using Cox survival loss [8]. c) Generate a risk map for each patient
by predicting with the trained network using a sliding window approach and z-score standardization of the resulting risk values. d) For each patient,
aggregate the normalized risk map into a single risk score by averaging the individual normalized risk values of all ROIs in epithelial regions. Stratify
the patients by the median of their aggregated risk scores.

scheme where a random subset of up to 10k patches are
sampled per image. The training procedure remains otherwise
similar to that of the original survival model. The resolution
of the input patches is standardized to a magnification of 10×
i.e. 1μ/px . The details of the approach are shown in Fig. 3.

The network used in this work is relatively shallow and
consists of three convolutional blocks. Each block is built
of a 3 convolutional layer (with 2, 4, 8 filters, respectively)
interleaved with a batch normalization layer, a ReLu activation
and a 2 × 2 maximum pooling layer. These are followed by
a fully connected layer of 8 nodes, a dropout layer (r =
0.4) and a linear activation layer. Input patches are 58 × 58
pixels and are augmented for brightness, saturation and gamma
correction. The system was applied in a two-fold procedure,
the first model trained the first fold being applied on the second
fold and the second model trained on the second fold being
applied on the first fold. For both folds, training was performed
using the adam optimizer (lr = 1e−5, β1 = 0.5, β2 = 0.9) for
200 epochs. The split between the first and the second folds
was provided externally to this analysis. The network was
applied on the respective other fold using a sliding window
approach, thereby generating low resolution risk score maps
for each patient.

For each fold independently, the risk score values were
z-score standardized to zero mean and unit standard deviation.
This standardization allowed us to standardize survival risk
values between the two analysis folds. For each patient,
the obtained standardized risk score values within the detected
epithelium regions were finally averaged, yielding one risk
score per patient. Patients are finally split based on the cohort
median of their aggregated risk scores into low and high risk
subgroups, respectively. For the baseline comparison, the same

steps are repeated without considering the hard attention on
epithelial regions. Cox regression analysis is performed on the
resulting stratification.

III. RESULTS

A. Epithelial Segmentation

The segmentation accuracy was studied as a function
of the availability of manually annotated PD-L1 images
for training. With a limited number of manual annotations
(cf. Fig. 4a), the proposed DASGAN model outperformed
all the baseline models, i.e. (i) the semantic segmentation
model trained solely on real and manually annotated PD-L1
images; (ii) the semantic segmentation model trained solely
on the PD-L1-translated and automatically annotated PanCK
images; and (iii) the two-step domain adaptation and semantic
segmentation model trained on the real PD-L1 images and on
the PD-L1-translated PanCK images. The DASGAN and the
three baseline models are detailed in the Methods (section II)
sections.

1) Two Class - Epithelial vs Non-Epithelial Segmentation:
Mean f1 score of f1 = 0.886 is reported for the proposed
network. The two-step model did not improve the segmenta-
tion results ( f1 = 0.805) compared to the training on sole real
PD-L1 images ( f1 = 0.807). Training on PD-L1-translated
PanCK images only did not yield accurate segmentation results
( f1 = 0.548). As shown in Fig. 5a, the more manual anno-
tations were available for training, the more the difference
between the DASGAN and the best of the three baseline
models decreases. In case of highest data availability, f1 scores
of f1 = 0.894 and f1 = 0.916 were achieved by the baseline
and the DASGAN models, respectively.
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Fig. 4. Segmentation accuracy on the unseen test ROIs (N = 106), for
the three baseline models (in gray, blue and yellow) and for the proposed
DASGAN (in orange) under the condition (i) of low availability of manual
annotations on real PD-L1 images. F1 scores are reported for each class
of interest - epithelial (TC), epithelial positive (TC(+)), epithelial negative
(TC(−)) and non-epithelial regions (Other), together with their average
score Avg. in both scenarios of (a) epithelial detection and (b) replication
of TC score.

2) Three-Class Segmentation: In this three-class configura-
tion, DASGAN enables the segmentation of PD-L1 positive
and PD-L1 negative epithelial regions. We used the same test
ROIs as mentioned above, with the T C(+) and T C(−) regions
given different classification labels. In case of relative shortage
of manual annotations, DASGAN yielded a segmentation
f1 score of f1 = 0.850 averaged over the three classes of
interest, i.e. here (i) PD-L1 positive epithelial (TC(+)) vs.
(ii) PD-L1 negative epithelial (TC(-)) vs. (iii) non-epithelial
regions. F1 scores of f1 = 0.805 and f1 = 0.807 were
reported for the two-step and the PD-L1 baseline methods,
respectively (cf. Fig. 4b). As above, DASGAN systemati-
cally outperformed the best of the baseline approaches across
increasing availability of labeled PD-L1 training images,
reaching a maximum of f1 = 0.899 (cf. Fig. 5b). Fig. 6
provides a qualitative example of epithelial segmentation pro-
duced by DASGAN.

B. Tumor Cell Scoring

In addition to the above analytical study, we quantitatively
assessed the clinical relevance of the proposed IA based TC
scoring methodology on a set of 703 PD-L1 stained WSIs
that, similarly to the above test WSIs, were neither used for
training nor model selection nor hyper-parameter optimiza-
tion. The n = 703 slides comprises of 3 patient cohorts,
two of them (with n = 434 and n = 118 unseen samples,
respectively) consists of patients that received standard of
care (SOC) treatment and one cohort (with n = 151 unseen
samples) consists of Durvalumab treated patients. Because this
clinical test set originated from the same three patient cohorts

Fig. 5. Segmentation accuracy (avg. f1-score) on the unseen test
ROIs (N=106), for the best of the baseline models trained only on real
PD-L1 samples (blue) and the proposed DASGAN model trained on
both real and PD-L1-translated PanCK samples (orange), for increasing
availability (i)-(ii)-(iii) of manual annotations on real PD-L1 images. Both
scenarios of (a) epithelial detection and (b) replication of TC score are
reported.

Fig. 6. Example of PD-L1 negative (green) and PD-L1 positive (red)
epithelial regions segmented by the proposed DASGAN model. Notice
the PD-L1 positively stained macrophage clusters (top row) and the
PD-L1 positively stained necrotic regions (bottom row) are excluded from
analysis automatically by the DASGAN model, and hence excluded from
TC scoring.

as the PD-L1 WSIs used for training and hyper-parameter
optimization, an independent clinical validation cohort with
97 PD-L1 stained slides was acquired after freezing of the
developed TC scoring algorithm. This set consisted of mostly
resectates obtained from patients that received standard of
care treatment (chemo/radio therapy followed by surgery)
treatment. Results on this independent cohort provided an
unbiased performance estimate of the proposed image-based
TC scoring algorithm. Fig. 7 shows the bar plot of mean and
standard deviation of the image analysis TC scores against
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TABLE I
VALIDATION OF AUTOMATED PD-L1 TC SCORES AGAINST PATHOLOGIST TC SCORES

Fig. 7. Bar plot showing, on the first validation set (N = 703), the mean
and standard deviation of the DASGAN based TC scores. The inverted
histogram at the top shows the relative distribution of cases with respect
to the pathologist based TC score. The dotted blue line is the regression
line showing the overall trend of image analysis based TC score to the
pathologist based TC score. The vertical and horizontal lines illustrate
the 25% cut-off deciding on the PD-L1 positive or PD-L1 negative status.
Resulting true and false positive classifications as well as true and false
negative classifications are reported between the image based algorithm
and the pathologist based TC scores.

the pathologist-based TC scores on the first clinical image
set. Lin’s concordance coefficient of Lcc = 0.93, Pearson
correlation coefficient of Pcc = 0.94 and mean absolute error
of M AE = 7.30 are reported between the estimated and the
true TC score values. Applying the cut-off value of 25% on
the respective TC scores, we obtained an Overall Predictive
Agreement of O P A = 0.92, a Positive Predictive Agreement
of P P A = 0.91 and a Negative Predictive Agreement of
N P A = 0.93. Fig. 8 displays the scatter plot of the IA
based and the pathologist based TC scores on the independent
clinical validation cohort. We found a similarly high concor-
dance between the pathologist and the algorithm, with a Lin’s
concordance coefficient of Lcc = 0.96, a Pearson correlation
coefficient of Pcc = 0.96, a mean absolute error value of
M AE = 6.24, and the following agreement values on the
PD-L1 status: P P A = 0.88, N P A = 1.0 and O P A = 0.95.
Table I summarizes these results.

C. Survival Analysis

Rebelatto et al. [5] showed that a cut-off of 25% of tumor
cells with PD-L1 membrane staining of any intensity best
discriminated responders from non-responders. We apply the
same criteria for determining the PD-L1 status with automated

Fig. 8. Scatter plot (orange dots) between the pathologist based and the
DASGAN based TC scores on a second and independent dataset (N =
97). The dotted blue line is the regression line showing the overall trend
of image analysis based TC score to the pathologist based TC score.
The vertical and horizontal lines illustrate the 25% cut-off deciding on
the PD-L1 positive or PD-L1 negative status. The bars (with blue centers)
show the mean and standard deviation of the DASGAN based TC scores.
Resulting true and false positive classifications as well as true and false
negative classifications are reported between the image based algorithm
and the pathologist based TC scores.

PD-L1 scoring by DASGAN. Survival information for Overall
Survival (OS) was available for one of the three initial patient
cohorts, more precisely on the set of (N = 163) core needle
biopsies and tissue resections from the NCT01693562 clinical
trial (NSCLC). Survival analysis was performed solely on the
subset of patients, whose tissue samples remained unseen to
the training of DASGAN model (N = 151). Patients were
stratified using the 25% cut-off value on the pathologist based
TC score and the DASGAN based TC score. Performing a Cox
regression analysis resulted in hazard ratios and associated
p-values of H R = 0.574, p = 0.01 and H R = 0.539,
p = 0.004, respectively. Here, the hazard ratios significantly
smaller than 1 relate to a reduced risk of seeing an event
(Event = Death in case of Overall Survival) in the biomarker
positive cases as compared to the biomarker negative ones.
Applying the proposed end-to-end survival learning method-
ology without hard attention on epithelial regions resulted in
a hazard ratio of H R = 0.762 and p-value of p = 0.199.
Applying the same end-to-end survival learning methodology
with hard attention on the DASGAN-segmented epithelial
regions resulted into H R = 0.525 and p = 0.003. These
values are summarized in Table II. Associated Kaplan-Meier
curves are displayed in Fig. 9. Figures 9 e),f) show comparison
of automated TC scores from DASGAN and automated risk
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TABLE II
SURVIVAL ANALYSIS FOR OS RESULTS USING THE TC SCORE BASED METHODS (MANUAL PATHOLOGY BASED AND AUTOMATED) AND DEEP

SURVIVAL LEARNING BASED (NON-FOCUSED AND FOCUSED). ** SPECIFIES SIGNIFICANCE (HR P-VALUE ≤ 0.01)

Fig. 9. Kaplan-Meier curves with low and high surviving groups for OS obtained by a) pathologist-based TC scoring b) automated TC scoring
c) non-focused survival learning and d) newly proposed region-focused survival learning. We show that the IA based survival analysis, both automated
TC score based as well using region-focused survival analysis, gives patient stratification as good as obtained from assessment by pathologists.
e), f) show comparison of automated TC scores from DASGAN and automated risk scores from region-focused survival net in grouping patients
suitable for anti PD-L1 treatment.

scores from region-focused survival net in grouping patients
suitable for anti PD-L1 treatment. We can clearly see that low
TC score corresponds to high risk scores and vice versa. For
instance, in e) the group Low TC*Low TC corresponds to
the group where both the automated TC scores as well as the
median pathologist scores suggests that the patient belongs to
the group showing low PD-L1 expression. A similar group can
be seen in f) with high risk and low median TC scores by the
pathologists. Both groups correspond to the group of patients
that are less likely to respond to anti PD-L1 therapy. Objective
metrics like OPA (O P AT C = 0.8874, O P ARisk = 0.8675),
PPA (P P AT C = 0.9041, P P ARisk = 0.8767) and NPA
(N P AT C = 0.8717, P P ARisk = 0.8589) shows the similarity
in the groups obtained by both TC score based and risk score
based methods, respectively.

IV. DISCUSSION

We confirm that the IA based PD-L1 TC scoring system
matches the predictive ability of the pathologist TC scoring.
The concordance was shown on a large number of slides
(Table I) that suggests the robustness of the proposed system.

We also show that similar predictive ability can be achieved
by training a shallow CNN in an end-to-end manner directly
on the overall survival information with the condition that
the attention of this CNN is focused on epithelial regions
only. While this latter finding should still be confirmed on
an independent cohort, the current results show the abil-
ity of the proposed hard-attention methodology to perform
further hypothesis-free exploratory analysis of small clinical
datasets, with the potential of discovering novel predictive
biomarkers.

A natural extension to the region focused survival CNNs
would be to perform a study to find region-focused hypothesis-
free biomarkers from other tissue areas e.g. in tumor-
associated stroma. This would give us more insights about
the role different immune cell populations have on survival
which would be complementary to the features that we derive
from epithelial regions. The applicability of this method is not
limited to lung cancer, but can be applied to various cancer
types and stains which allow for the creation of new bio-
logical insights as well as suggestions for therapeutic targets.
In addition to the image data, other clinical variables like age,



2522 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 9, SEPTEMBER 2021

smoking status and other omics data could be integrated into
the CNN.

There are certain limitations to the proposed DASGAN
method in this study which we would like to address in the
future. In the current setup, the concordance of automated
TC score is shown against only one pathologist for both
development and validation cohorts. An interesting direction
of work will be to compare the inter-observer variability of
the PD-L1 TC scoring in a multi-pathologist setting where
multiple pathologists will score the same slides. This will help
us understand in which samples pathologists are more likely
to agree/disagree on TC scoring. As also mentioned in the
introduction and motivation of this work, the heterogeneous
distributions of cell populations with spatially intermixed pos-
itively and negatively stained tumor regions are often difficult
to score and lead subjectivity in the scoring [7]. A slight trend
for this observation can be seen in the mid TC score range
(25%-75%) where automated scoring has the most standard
deviation against the pathologist scoring. These cases are more
likely to be heterogeneous in terms of spatial distribution of
PD-L1 stained tumor cells. Another limitation of the study
is that the DASGAN model for epithelium segmentation
segments all kinds of epithelium i.e. there is no differentiation
between malignant and benign epithelium compartments. Due
to this limitation, imprecision in the reported TC scores might
occur, especially in the cases where the benign epithelium
shows different staining than malignant epithelium. This dis-
cordance is more likely to happen in resections since there are
chances of having more benign epithelium than biopsies where
the amount of benign epithelium is relatively low (<10%).
This limitation can either be solved by manually delineating
malignant cancerous “tumor core” regions or by extending the
model to automatically separate the benign epithelium from
the malignant ones. The latter can be done using helper stain
for benign epithelium in conjunction with PanCK.

In this study, the DASGAN as well as the region-
focused survival net were developed and validated on PD-L1
SP263 assay. We would expect that the proposed method could
be applied to other PD-L1 assays as well, like the 22C3 and
28-8 Dako PD-L1 assays. Currently we do not have any data to
support this claim. We expect so because, first, the estimation
of the PD-L1 status in these clones also depends solely on
estimating the PD-L1 expression on tumor cells and second,
because these two assays appear relatively similar in staining
pattern with the SP263 assay [37]. However, since each PD-L1
clone is associated with a different clinically relevant cut-off
value, the determination of the patient status would have to
be adapted according to their respective guidelines. For the
Ventana SP142 clone, the methodology in the current form
would not be directly applicable since i) staining of tumor
cells with the Ventana SP142 assay has been shown to be less
concordant [37] (e.g. to stain fewer tumor cells) and ii) the
decision on the PD-L1 status is not solely based on TC score
but also on the percentage of tumor area occupied by PD-L1
expressing tumor-infiltrating immune cells [38].

The applicability of DASGAN is not limited to PanCK
helper stain. The same methodology can be used with
other helper stains CD3/CD8/CD20 (for lymphocyte cell

populations), CD68 (for macrophage population). Further-
more, DASGAN can be used with different histopatho-
logical image modalities (e.g. H&E and multiplexed
immunofluorescene).

The advantage of using such a system is that the results
are always reproducible as compared to a human rating
which might be subjective. Additionally, the segmentation
results might be used as an assistance to the pathologists
to make a more informed diagnosis. With further validation
of the proposed DASGAN for PD-L1 TC scoring and the
future extensions that takes into account automatic removal of
benign epithelium from TC scoring, this system can potentially
become a companion diagnostic (CDx) to prospectively select
patients that might benefit from PD-L1 checkpoint inhibitor
therapy.
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