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Abstract: Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will 

degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative 

scheme and performs in both image and manifold spaces. Because patch manifolds of medical images have low-

dimensional structures, we can build graphs from the manifolds. Then, we simultaneously leverage the spatial 

convolution to extract the local pixel-level features from the images and incorporate the graph convolution to analyze 

the nonlocal topological features in manifold space. The experiments show that our proposed method outperforms both 

the quantitative and qualitative aspects of state-of-the-art methods. In addition, aided by a projection loss component, 

our proposed method also demonstrates superior performance for semi-supervised learning. The network can remove 

most noise while maintaining the details of only 10% (40 slices) of the training data labeled. 
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1. Introduction 

Low-dose X-ray computed tomography (LDCT) can effectively reduce the risk of radiation exposure and thus 

plays an important role in radiology. The X-ray flux received by the patients can be reduced by switching the voltage 

or current of the X-ray tube. However, a lower-dose scan will degrade the signal-to-noise ratio (SNR) of the 

reconstructed images and compromise the diagnosis accuracy. It is very difficult to meet the diagnostic demands with 

LDCT images reconstructed via the classic analytical method, i.e., filtered back-projection (FBP) [1]. To balance the 

radiation dose and imaging quality, a number of algorithms have been developed for LDCT reconstruction. With the 

very recent technological innovations, these algorithms can generally be divided into two categories: 1) regularization-

based methods and 2) learning-based methods. 

The regularization-based methods formulate the prior knowledge into a reconstruction model. Appropriate prior 

information, which efficiently characterizes the target image, can maintain the critical details of the reconstructed result 

while eliminating unexpected noise and artifacts. At first, L2 norm regularizations, with good denoising abilities, were 

widely studied. In a typical investigation, the penalized weighted least squares (PWLS) algorithm was proposed by 

Fessler [2]. Wang et al. introduced the quadratic smoothness penalty-based PWLS into the Karhunen-Loève (KL) 

domain for LDCT reconstruction [3]. With the development of compressed sensing (CS) theory [4, 5], it was proven 

that the sparsity regularized by the L1 norm exhibited superior performance. Yu et al. [6] and Sidky et al. [7, 8] first 

utilized the sparsity of the discrete gradient, which can be formulated as the total variation (TV) for LDCT 

reconstruction. To alleviate the piecewise smoothness in clinical practice caused by the inadequate assumption of the 

TV, many methods have been proposed. Niu et al. introduced a higher order gradient and proposed the total generalized 

variation (TGV) reconstruction model for sparse-view computed tomography (CT) [9]. By learning a redundant 



dictionary, Xu et al. [10] more efficiently explored the sparsity of LDCT signals and provided promising results. Other 

representative methods include nonlocal means filtering [11, 12], tight wavelet frames [13], low-rank techniques [14], 

transform learning [15,16], convolutional sparse coding [17], etc. These algorithms usually achieve satisfactory results 

by employing artful handcrafted regularization terms and carefully determining the model parameters. However, both 

steps are empirical and laborious, which make it difficult to generalize to different images from different scanning 

protocols or parts of the human body. 

Inspired by the success of deep learning [18, 19] in many related fields, such as image processing and computer 

vision, learning-based methods have become the mainstream of medical imaging [20, 21]. These proposed methods 

can be roughly classified into two categories: 1) the image-to-image method and 2) the data-to-image method. The 

first belongs to the postprocessing method. These methods do not need to access the projection data, circumventing 

the encrypted data protocols imposed by the scanner manufacturers. A neural network is trained to map the LDCT 

image directly into the corresponding normal-dose CT (NDCT) image. The first work in this field is a three-layer 

convolutional neural network (CNN) proposed by Chen et al. [22]. However, due to the shallow network depth, the 

results indicate that some structures may be blurred. To recover more details, Kang et al. [23] performed a wavelet 

transform on the input LDCT image and fed the high frequency components into the U-Net [24]. By using skip 

connections, Chen et al. developed a residual encoder-decoder CNN (RED-CNN) for LDCT denoising [25]. Shan et 

al. compared a modularized CNN with typical iterative reconstruction methods from three well-known vendors and 

showed competitive performance for LDCT image reconstruction [26]. Han et al. [27] and Jin et al. [28] improved U-

Net to suppress the artifacts caused by undersampling. To make the predicted images obey the same statistical 

distribution as NDCT, a generative adversarial network (GAN) was introduced to LDCT [29, 30], and a discriminator 

network was employed to implement this constraint. Shan et al. [31] extended the pretrained 2D network to a 3D model 

with the help of transfer learning. In [32], the authors introduced the attention mechanism in both the plane and depth 

channels for 3D networks. These methods can obtain good results with fast computational speed. However, since these 

network models usually adopt a pseudo-inversion (such as FBP) algorithm as the input and neglect the relationship 

with the original measured projection data, the data consistency cannot be guaranteed. Therefore, this kind of method 

is criticized for its robustness. The second kind of method can partially address this challenge. In [33], the authors 

proposed a network model called AUTOMAP to simulate the imaging procedure directly from the measured data to 

the images. This method fully demonstrates the power of deep learning, but due to the high-dimensional data, the scale 

of the network is usually large, which significantly hampers its practical application. To mitigate the impact of the data 

dimension, [34] and [35] independently introduced imaging physics into this model and efficiently reduced the model 

scale. Inspired by the idea of sparse coding, unrolling the specific numerical scheme into a network is another popular 

way to integrate the imaging models into the reconstruction network. Chen et al. unrolled the steepest gradient descent 

algorithm and proposed the learned experts’ assessment-based reconstruction network (LEARN) for sparse-view CT 

[36]. Adler and Öktem generalized the primal-dual hybrid gradient (PDHG) algorithm by replacing both the primal 

and dual proximal operators with learned operators, which were implemented by a trained CNN [37]. Similarly, the 

authors in [38] substituted the projector in the projected gradient descent algorithm with a CNN and imposed the 

measurement consistency into the unrolled network. With the idea of plug-and-play [39], He et al. performed 

convolutions in the image domain as learned regularization terms and plugged the intermediate result back to the 

alternating direction method of multipliers (ADMM) framework [40]. Since this kind of method involves a projection 

to correct the intermediate image in each iteration block, the results usually have a higher reconstruction accuracy, 

which is of great clinical importance for medical diagnosis. However, as mentioned in [32], spatial convolution is a 

local operator only focused on adjacent pixels, ignoring the fact that CT image data are located on a low-dimensional 

manifold, which accommodates rich topological structure information [41, 42]. 

In this paper, to simultaneously extract the pixel-level and topological features of LDCT data, we propose a 

manifold and graph integrative convolutional (MAGIC) network that performs in both image and manifold spaces for 



LDCT reconstruction. First, we unroll the steepest gradient descent algorithm into a neural network and use a CNN 

module to replace the handcrafted regularization terms. Then, to introduce the low-dimensional manifold features, 

overlapped patches with a small size are extracted from the image to form a patch set. This operation is based on a 

well-accepted assumption that the patch set is located on a low-dimensional smooth manifold referred to as a patch 

manifold [41-44]. Since spatial convolution cannot process such data, inspired by the success of a graph convolution 

[45], we construct a graph using the points sampled from the patch manifold, and a graph convolution is applied to 

extract the topological features from the graph. In addition, since it is difficult to obtain a large amount of paired low-

dose and normal-dose data in clinical practice, our proposed method alleviates this drawback by introducing a 

projection loss, which enables our semi-supervised learning model. 

The remainder of this paper is organized as follows. In the next section, the details of our proposed method are 

elaborated. In the third section, the experimental results are presented. The last section provides the discussion and 

conclusion. 

 

2. Methodology 

A. LEARN network for CT reconstruction 

Different numerical schemes can be unrolled into a neural network. For simplicity, the gradient decent-based 

LEARN model is chosen as the backbone of our proposed method. To make this paper self-contained, in this section, 

we briefly introduce LEARN [36]. A general model for regularized reconstruction is as follows: 

min
𝑥

1

2
‖𝐴𝒙 − 𝒚‖2

2 + 𝜆𝑅(𝒙) , (1) 

where 𝒙 ∈ 𝐑𝑀2  denotes the vectorization of image 𝑓 ∈ 𝐑𝑚×𝑛  (𝑀2 = 𝑚 × 𝑛), 𝒚 ∈ 𝐑𝑀1  represents the measured 

projection data, and 𝐴 ∈ 𝐑𝑀1×𝑀2 is the system matrix, in which each element 𝑎𝑖,𝑗 stands for the contribution to the 

i-th projection of the j-th pixel. 𝑅(𝒙) denotes the regularization term reflecting the prior knowledge of the image to 

reconstruct, and 𝜆 is a weight to balance the measurement and regularization term. To incorporate the model into the 

deep learning technique framework, a generalized regularization term, referred to as the field of experts (FoE) [46], is 

introduced as 

𝑅(𝒙) = ∑ 𝜓𝑘(𝜑𝑘𝒙)

𝐾

𝑘=1

, (2) 

where 𝜑𝑘  and 𝜓𝑘  denote the regularization operator and potential function, respectively, both of which can be 

learned from the existing dataset. Then, we can obtain 𝒙 by solving the model, 

𝒙 = arg min
𝒙

1

2
‖𝐴𝒙 − 𝒚‖2

2 + ∑ 𝜆𝑘𝜓𝑘(𝜑𝑘𝒙)

𝐾

𝑘=1

. (3) 

A simple steepest gradient descent algorithm can be applied to Eq. (3): 

𝒙𝑡+1 = 𝒙𝑡 − 𝛼 [(𝐴𝒙𝑡 − 𝒚) + ∑ 𝜆𝑘𝜑𝑘
∗ 𝜓𝑘

′ (𝜑𝑘𝒙𝑡)

𝐾

𝑘=1

] , (4) 

where 𝜑∗ represents the conjugate operator of 𝜑, and 𝛼 is the step size. The iteration-dependent form of Eq. (4) can 

be written as 

𝒙𝑡+1 = 𝒙𝑡 − 𝛼𝑡(𝐴𝒙𝑡 − 𝒚) + ∑ 𝜆𝑘
𝑡 𝜑𝑘

𝑡∗𝜂𝑘
𝑡 (𝜑𝑘

𝑡 𝒙𝑡)

𝐾

𝑘=1

(5) 

where 𝜂(∙) = 𝜓′(∙). The last term in Eq. (5) performs spatial filtering, which can be generalized as a neural network, 

and in LEARN, a three-layer CNN module is utilized to substitute it as 



𝒙𝑡 = 𝒙𝑡 − 𝛼𝑡(𝐴𝒙𝑡 − 𝒚) + 𝚽(𝒙𝑡), (6) 

in which 

𝚽(𝒙𝑡) = 𝑤3
𝑡 ∗ 𝜎(𝑤2

𝑡 ∗ 𝜎(𝑤1
𝑡 ∗ 𝒙𝑡)), (7) 

where 𝑤 is the trained kernel, ∗ denotes the convolution operator and 𝜎(∙) is the activation function. Once the 

iteration number is fixed, we can unroll Eq. (6) into a network with a determined number of layers. The initial 

reconstruction 𝒙0, projection 𝒚, and system matrix 𝐴 are input into the network. Notably, Eq. (6) can be seen as a 

residual block, which is composed of three parts: a skip connection, a data fidelity layer and a spatial CNN module. 

 

B. Patch manifold and graph convolutional network 

To extract nonlocal topological features of the LDCT data, we sample from the patch manifold to study the low-

dimensional manifold of the LDCT data. Considering an LDCT image with m × n pixels 𝑓 ∈ 𝐑m×n = {𝑓(𝑖, 𝑗)|1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛}, we extract a small rectangular patch 𝑝𝑖𝑗(𝑓), which has pixel 𝑓(𝑖, 𝑗) as the top-left corner and a 

size of s1 × 𝑠2. We fix the acquisition step size and collect the patches to obtain a set: 

P(𝑓) = {𝑝𝑖𝑗(𝑓)|(𝑖, 𝑗) ∈ {1,1 + 𝑖0, 1 + 2𝑖0, … , 𝑚} × {1,1 + 𝑗0, 1 + 2𝑗0, … , 𝑛}} ⊂ 𝐑𝑑 , 𝑑 = 𝑠1 × 𝑠2, (8) 

where 𝑖0 ∈ [1, 𝑠1] and 𝑗0 ∈ [1, 𝑠2] represent the acquisition step sizes, which guarantee that the collected patches 

overlap. P(𝑓) can be seen as a point cloud sampled from a low-dimensional manifold M(𝑓) embedded in 𝐑𝑑, 

referred to as the patch manifold associated with 𝑓. The patch manifold is of a low dimension for different kinds of 

images [41-44]. 

Since the spatial convolution cannot handle the sampling points from the patch manifold, in this paper, a graph 

neural network is constructed with these points, and graph convolution is utilized to extract the features of the low-

dimensional manifold, which has shown great potential in classification work [45, 47-49]. 

Once the patch set P(𝑓) is obtained, we can construct a graph G(V, E) with N nodes, each of which is the element 

of P(𝑓). The adjacency matrix 𝑊 ∈ 𝐑𝑁×𝑁 of the graph can be calculated with a Gaussian function [41]: 

𝑊𝑖𝑗 = exp (−
‖𝑣𝑖 − 𝑣𝑗‖

2

2

𝜎(V)
2 ) , (9) 

where 𝑣𝑖 , 𝑣𝑗 ∈ V are the two nodes in the graph and 𝜎(V) is the standard deviation of the nodes. The Euclidean 

distance is adopted to measure the distances between adjacent nodes, and we take the median as the estimation of the 

standard deviation for simplicity. The diagonal degree matrix 𝐷 is defined as 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . 

Once the graph is constructed, the spectral graph convolution [47] can be used to study the graph: 

𝑔𝜃 ∗ 𝒂 = 𝑈𝑔𝜃𝑈𝑇𝒂, (10) 

where 𝒂 ∈ 𝐑𝑁 is the signal whose element is a scalar node, 𝑔𝜃 = 𝑑𝑖𝑎𝑔(𝜽 ∈ 𝐑𝑁) denotes the trained kernel, and 𝑈 

is the matrix of eigenvectors of the normalized graph Laplacian 𝐿 = 𝐼 − 𝐷−
1

2𝑊𝐷−
1

2 = 𝑈Λ𝑈𝑇  in which 𝐼 represents 

the identity matrix. To reduce the computational complexity, Hammond et al. [48] proposed to approximate Eq. (10) 

with truncated Chebyshev polynomials: 

𝑔𝜃 ∗ 𝒂 ≈ ∑ 𝜃𝑘𝑇𝑘(𝐿̃)𝒂

𝐾

𝑘=0

, (11) 

where 𝐿̃ =
2

𝜆𝑚𝑎𝑥
𝐿 − 𝐼, in which λmax is the largest eigenvalue of 𝐿, and 𝑇𝑘(∙) is the Chebyshev polynomial defined 

as 

𝑇𝑘(𝑏) = {
2𝑏𝑇𝑘−1(𝑏) − 𝑇𝑘−2(𝑏),    𝑘 ≠ 0 𝑎𝑛𝑑 𝑘 ≠ 1

1,     𝑘 = 0
𝑏,     𝑘 = 1

. (12) 



 

Fig. 1. Diagram of the linear transform 𝐼. Each vectorized patch corresponds to (blue arrows) a black point on the patch manifold. The patch set P 

(black points) has a trivial 2D parameterization (red curve) on the patch manifold M. 

Eq. (11) is the 𝐾th-order polynomial, which means that the convolution on each node will involve the nodes that 

are at a maximum K steps away from the node. The spectral convolution is 𝐾-localized, and the involved nodes are 

𝐾th-order neighborhoods [49]. Let 𝐾 = 1, λmax ≈ 2 and 𝜃 = 𝜃0 = −𝜃1, we have 

𝑔𝜃 ∗ 𝒂 ≈ 𝜃0𝒂 + 𝜃1(𝐿 − 𝐼)𝒂 = 𝜃 (𝐼 + 𝐷−
1

2𝑊𝐷−
1

2) 𝒂, (13)

which is equal to the graph convolutional network (GCN) proposed by Kipf et al. [45]. With the renormalization trick 

proposed in [45], let 𝑊̃ = 𝐼 + 𝑊 and 𝐷̃𝑖𝑖 = ∑ 𝑊̃𝑖𝑗𝑗 , we have 𝐼 + 𝐷−
1

2𝑊𝐷−
1

2 → 𝐷̃−
1

2𝑊̃𝐷̃−
1

2. 

For a signal 𝑋 ∈ 𝐑N×d, which has 𝑁 nodes with a 𝑑-dimensional feature vector, GCN can be formulated as [43] 

𝑍 = 𝐷̃−
1
2𝑊̃𝐷̃−

1
2𝑋Θ. (14) 

where Θ ∈ 𝐑𝑑×𝐹 is the trained filter and 𝑍 ∈ 𝐑𝑁×𝐹 is the convolved signal matrix. 

 

C. The Proposed MAGIC for LDCT reconstruction 

In our method, we attempt to simultaneously extract the pixel-level and topological features by incorporating both 

spatial and graph convolutions. In Eq. (6), a three-layer CNN module is used to extract the local pixel-level features of 

𝒙t. To impose the nonlocal topological features from the low-dimensional manifold space, we modified Eq. (6) and 

added a GCN term. First, a patch set P(𝑓t) is built, and we construct a graph G𝑡(V, E) with N nodes, each of which 

corresponds to a certain element of P(𝑓t). Then, the nodes are stacked to obtain the matrix signal 𝑋t ∈ 𝐑𝑁×𝑑, and 

two successive graph convolutions are applied on it. Our model is modified from Eq. (6) to: 

𝒙𝑡+1 = 𝒙𝑡 − 𝛼𝑡(𝐴𝒙𝑡 − 𝒚) + 𝚽(𝒙𝑡) + 𝚿(Xt),  𝑋𝑡 = 𝛪(𝑓𝑡) (15) 

where 𝚿(𝑋𝑡) = 𝐷̃−
1

2𝑊̃𝐷̃−
1

2 𝜎 (𝐷̃−
1

2𝑊̃𝐷̃−
1

2𝑋𝑡Θ1
𝑡 ) Θ2

𝑡 , Θ1 ∈ 𝐑𝑑×𝐹  and Θ2 ∈ 𝐑𝐹×𝑑  are the graph convolutional 

kernels and 𝐼: 𝐑𝑚×𝑛 → 𝐑𝑁×𝑑 is the linear transform to obtain 𝑋t. Fig. 1 illustrates the main steps to obtain 𝑋 from 

𝐼 . In Fig. 1, the vectorized patches correspond to the points on the smooth manifold, and P  has a trivial 2D 

parameterization (𝑖, 𝑗) → 𝑝𝑖𝑗  on the patch manifold. 

Notably, the computation of the adjacency matrix is time-consuming if we update it in each iteration. Based on 

this consideration, we divide the whole iteration procedure into two stages: coarse and fine stages. Fig. 2 shows the 

flowchart of our proposed unrolled iteration network MAGIC. In the coarse stage, 𝒙0 (initial reconstruction with FBP) 

and projection data 𝒚 are fed into the network. Compared with LEARN, one parallel path, which performs graph 

convolution, is added into each iteration block. The adjacency matrix of coarse stage 𝑊𝐶 is calculated based on 𝒙0 

and kept fixed in each iteration block during the entire coarse stage. The graph transform in Fig. 2 equals the linear 

function: 𝐼, and the inverse graph transform denotes the inverse operator of 𝐼. In the coarse stage, the result of FBP 

usually suffers from heavy noise, which makes 𝑊𝐶 inaccurate. After the 𝑡 + 1 iteration, once the noise of 𝒙𝑡+1 has 

been basically removed, the network enters the fine stage. We recalculate the adjacency matrix 𝑊𝐹 based on 𝒙𝑡+1 

and leave it unchanged during the entire fine stage. 



 

Fig. 2. Illustration of our proposed MAGIC. 

For simplicity, the mean square error (MSE) is adopted as the loss function: 

𝐿𝑀𝑆𝐸 =
1

𝑁𝑠

∑‖𝒙𝑖 − 𝒙𝑖‖2
2

𝑁𝑠

𝑖=1

, (16) 

where 𝒙𝑖 is the predicted reconstruction result and 𝒙𝑖 is the corresponding label. 𝑁𝑠 is the total number of samples. 

In addition, we apply our proposed MAGIC to only part of the labeled samples. The projection loss is proposed as: 

𝐿𝑃𝑟𝑜 =
1

𝑁𝑠

∑‖𝐴𝒙𝑖 − 𝒚𝑖‖2
2

𝑁𝑠

𝑖=1

, (17) 

where 𝒚𝑖 is the corresponding measured projection data. In the case of semi-supervised learning, the loss function 

can be formulated as: 

𝐿 =
1

|𝑆1|
∑ ‖𝒙𝑖 − 𝒙𝑖‖2

2

𝑖∈𝑆1

+
1

|𝑆2|
∑ ‖𝐴𝒙𝑖 − 𝒚𝑖‖2

2

𝑖∈𝑆2

(18) 

where 𝑆1 and 𝑆2 are the sets of labeled and unlabeled samples, respectively. |𝑆1| and |𝑆2| denote the numbers of 

elements in 𝑆1 and 𝑆2, respectively, and |𝑆1| + |𝑆2| = 𝑁𝑠. While dealing with the unlabeled data in the training set, 

the projection loss can be leveraged to avoid overfitting. Importantly, a more advanced loss function or network 

architecture, such as perceptual loss or GAN, may further boost the model performance, but in this paper, we only 

focus on exploring the power of integrating both spatial and graph convolutions in the image and manifold spaces and 

making a fair comparison with other existing models. 

 

3. Experiments and results 

To evaluate the performance of our MAGIC, the dataset “the 2016 NIH-AAPM-Mayo Clinic Low-Dose CT Grand 

Challenge” [50] was used in our experiments. The dataset has 5936 full-dose CT images from 10 patients. In our 

experiments, 400 images were randomly selected from 8 patients as the training set, and 100 images were chosen from 

the remaining 2 patients as the test set. The size of the image was 256 × 256. The projection data were simulated with 

the distance-driven method [51, 52]. The distances of the X-ray source and detector to the rotation center were both 25 

cm. The physical height and width of a pixel were both 0.6641 mm. The detector had 512 elements, each of which had 

a length of 0.72 mm. On average, 1024 projection views were sampled in the 360 degree range. To simulate a realistic 

clinical environment, Poisson noise and electronic noise were added into the measured projection data as [9]: 

𝒚 = ln
𝐼0

Poisson(𝐼0 exp(−𝒚̂)) + Normal(0, 𝜎𝑒
2)

, (19) 

where 𝐼0 is the number of photons before the X-rays penetrate the object, 𝜎𝑒
2 is the variance of electronic noise 

caused by the equipment measurement error, and 𝒚̂ represents the noise-free projection. In our experiments, the X-

ray intensity of a normal dose was set to 𝐼0 = 106 according to [9]. Three different dose levels were simulated as 



low-dose cases, including 10%, 5% and 2.5%, i.e., 𝐼0 = 105, 5 × 104, and 2.5 × 104 , respectively. In all the 

experiments, we fixed the electronic noise variance at 𝜎𝑒
2 = 10. 

The size of the spatial convolution kernels was set to 3 × 3. When sampling from the patch manifold, the 

extracted patch size was set to 6 × 6, and the acquisition step size was 𝑖0 = 𝑗0 = 2. While calculating the adjacency 

matrix, 8 nearest neighbors of each node were included to make the adjacency matrix sparse and reduce the 

computational complexity. The sizes of the graph convolution parameters Θ1 and Θ2 were 36 × 64 and 64 × 36, 

respectively. The number of iterative blocks was fixed to 50. The coarse and find stages had 25 blocks. In the semi-

supervised learning experiments, only 10% of the training data, which means only 40 images have labels. During the 

semi-supervised training, inputs of the network were randomly selected from both labeled and unlabeled data. In a 

single batch, while both labeled and unlabeled data exist, the losses were separately calculated and then summed. 

Meanwhile, to verify the clinical feasibility of our proposed method, real data were also tested using the network 

trained with simulated data. In addition, we conducted extensive experiments to verify the robustness of our proposed 

model for different cases. The experiments were performed in Python 3.6 with the PyTorch library on a PC (Intel Core 

i5 8400 CPU, 16 GB RAM and GTX 1080Ti GPU). Our codes for this work are available on 

https://github.com/xwj01/MAGIC. 

Four state-of-the-art methods were involved for comparison, including TGV [9], RED-CNN [25], learned primal-

dual (LPD) [37] and LEARN [36]. All the implementations of these methods were provided by the original authors. 

TGV is a regularization-based method that utilizes the sparsity of the high-order gradient of images. RED-CNN is a 

supervised learning-based postprocessing method for LDCT image restoration. LPD and LEARN are both unrolling 

iteration network methods that adopt spatial convolution for image filtering. The semi-supervised learning version of 

MAGIC is referred to as MAGIC-Semi. The training epochs of all the learning-based methods were fixed to 100. The 

peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were employed to quantitatively 

evaluate the performance of different methods. 

 

A. Validation with the simulated data 

Fig. 3 shows the results of an abdominal image reconstructed by different methods with a 10% dose. The FBP 

results suffer from severe noise. The TGV method removes most of the noise while preserving the details to a certain 

degree. The learning-based methods can also effectively suppress the noise, and most of the detailed information is 

well maintained in these results. Two possible metastases, which are indicated by the blue arrows, are apparent in all 

the results of Fig. 3. However, some oversmoothed effects can also be observed in the results of the learning-based 

methods. Without the help of the measured data, the detailed distortion in the result of the RED-CNN is obvious, 

especially for the contrast-enhanced vessels in the liver. Although LEARN and LPD were deduced from different 

numerical schemes, after adequate training, they achieved similar performance. The proposed MAGIC and MAGIC-

Semi obtained the best visual result and preserved most details. In the region indicated by the red arrow, the vascular 

structures in our results are more complete and have a higher contrast than the other methods. It can also be seen that 

our proposed models achieved noticeable improvements in terms of both the PSNR and SSIM. 

To better visualize the performance of different methods, we magnify the region indicated by the red rectangle in Fig. 

3 (a). The enlarged parts of the different methods are presented in the bottom right corner. The shapes of the lesions in 

the reconstructed results with different methods are basically distinguishable. However, there are still some visible 

blocky artifacts in TGV result. Two purple arrows indicate two minute vessels, and only TGV and our methods 

recovered them well. All the other methods blurred these details to varying degrees. In the area indicated by the yellow 

arrow, TGV result produced piecewise smooth result. Although the result of MAGIC-Semi has more mottle-like noise 

than that of MAGIC, the visual effect is more similar to the ground truth data, which is more compatible with the 

doctors’ reading habits. 



 

Fig. 3. Abdominal reconstruction with 10% dose data by different methods. (a) Ground truth, (b) FBP (25.02/0.7084), (c) TGV (30.84/0.8925), (d) 

RED-CNN (31.20/0.8955), (e) LPD (31.38/0.9040), (f) LEARN (31.80/0.9078), (g) MAGIC (34.00/0.9356) and (h) MAGIC-Semi (33.55/0.9360). 

The display window is [-160, 240] HU. 

 

Fig. 4 Means and standard deviations for (a) ROI I and (b) ROI II obtained with different methods. 

To quantitatively study the reconstruction error in local regions, two homogeneous regions of interest (ROIs) 

indicated by two blue dotted boxes in Fig. 3 (a) were selected to calculate the means and standard deviations (SDs), 

and the results are depicted in Fig. 4. It can be seen that FBP has obvious biases with regard to both the means and 

SDs. Since RED-CNN is a postprocessing algorithm and the input is the result of FBP, it has a similar means to FBP 

but a smaller SD. LPD also shows similar results to those of RED-CNN. The remaining four methods obtained an 

accurate means to the ground truth. Specifically, the result of MAGIC-Semi has the closest SD to that of the ground 

truth, which agrees with the observation in Fig. 3 that MAGIC-Semi can partially maintain the mottle-like texture in 

the ground truth. 



 

Fig. 5. Thoracic reconstruction with 10% dose data by various methods. (a) Ground truth, (b) FBP (27.93/0.7762), (c) TGV (31.49/0.9299), (d) 

RED-CNN (32.98/0.9423), (e) LPD (33.24/0.9521), (f) LEARN (33.74/0.9517), (g) MAGIC (36.26/0.9696) and (h) MAGIC-Semi (35.58/0.9692). 

The display window is [-1000, 200] HU. 

 

Fig. 6. Absolute difference images associated to the ground truth (a) FBP, (b) TGV, (c) RED-CNN, (d) LPD, (e) LEARN, (f) MAGIC and (g) 

MAGIC-Semi. 

Fig. 5 demonstrates the reconstructions of a thoracic slice using different methods, and the results are displayed 

in the lung window. All the methods can efficiently eliminate the noise in the current display setting. Two red arrows 

indicate that two edges can visually differentiate the performance of different methods. Only MAGIC preserved these 

structures well, and other methods smoothed them to varying degrees. To better visualize the denoising performance 

of different methods, we show the absolute difference images associated with the ground truth in Fig. 6. It is clear that 

our proposed methods yielded the smallest difference from the ground truth, eliminating most noise and maintaining 

more details. Consistent with the visual results, our proposed methods have the best PSNR and SSIM, and the 

improvement is significant. 

 

Fig. 7. Quantitative results of different methods over the ROIs indicated in Fig. 5 (a). 



Four typical ROIs, which are indicated by the blue boxes (ROI I-IV) in Fig. 6 (a), were chosen to calculate the 

local PSNR and SSIM. The results are given in Fig. 7. Generally, our proposed methods obtained better scores in terms 

of both metrics in all four ROIs. MAGIC had slightly better PSNR values than MAGIC-Semi, and the SSIM values of 

both models were similar. 

Fig. 8 demonstrates the training loss curves of different learning-based methods. It can be seen that 100 epochs 

are enough for all the methods to converge stably, and our network converges faster than all the other methods with 

the lowest loss. 

 

Fig. 8. The loss curves of different methods with data from the 10% dose. 

 

B. Validation with real data 

To study the clinical potential of our proposed method, the real data were tested using networks trained with 

simulated data. The real data were obtained by circular cone-beam scanning of a sheep lung with a Siemens Somatom 

Sensation 64-slice CT. NDCT data were acquired at 100 kV and 150 mAs, and LDCT data were obtained after the 

injection of a contrast agent at 80 kV and 17 mAs (due to the unavoidable registration problem, there are some 

inconsistent structures between Fig. 10 (a) and (b)). The cone-beam sinograms were rearranged into fan-beam type. 

The distance between the X-ray source and rotation center was 57 cm. A total of 1160 projection views were uniformly 

sampled in the 360 degree range. The detector had 672 elements, each of which covered an angle of 0.0014 rad, and 

the radius of field-of-view (FOV) was 25.05 cm. In this experiment, the scanned area was divided into a 256 × 256 

grid, covering an area of 29.09 × 29.09 cm2. Fig. 9 shows the reconstruction using different methods. The networks 

of learning-based methods were trained with simulated data of 10% dose as in the previous subsection. Notably, the 

geometry of the training data is not the same as that of scanning the sheep lung, which means our model can be easily 

extended to different datasets with different scanning geometries. It can be seen that the noise displayed in Fig. 9 (b) 

was basically removed using different methods. RED-CNN, LPD and LEARN still suffer from noise, as indicated by 

the red arrow. In this respect, our proposed methods show better robustness. In the region indicated by the blue arrow, 

our proposed MAGIC also has the clearest edges. To better observe the details of reconstructions, the area indicated 

by the red rectangle in Fig. 9 (a) is magnified and presented in the bottom left corner. The vessels indicated by the red 

arrows of RED-CNN, LPD and LEARN are blurred, and TGV and our proposed methods recovered them well. 

 

C. Study of different dose levels 

To evaluate the robustness of MAGIC, two more datasets simulated with 5% and 2.5% doses were used. The 

results of a femur case with 5% dose data and a pelvis case with 2.5% dose data are shown in Figs. 10 and 11, 

respectively. Due to the significantly reduced radiation dose, the FBP results are severely degraded. In Fig. 10, the 

noise can be almost removed using different methods. In the regions indicated by the red arrows, the results of RED-

CNN, LPD and LEARN can hardly maintain the structures. TGV and our methods better preserved these details, but 

TGV left some noise in the middle of the image. In Fig. 11, as the radiation dose was seriously reduced, the blurring 

effect became more obvious. The structure indicated by the red arrow is missing in the results of RED-CNN, LPD and 



LEARN but can be recognized in the results of TGV and MAGIC. However, TGV cannot recover the structure 

indicated by the blue arrow. 

 

Fig. 9. Reconstructions of real data with different methods. (a) FBP of NDCT data, (b) FBP of LDCT data, (c) TGV, (d) RED-CNN, (e) LPD, (f) 

LEARN, (g) MAGIC and (h) MAGIC-Semi. The display window is [-555 575] HU. 

The statistical quantitative results of the whole testing set using different learning-based methods are shown in 

Table I, which gives the means and SDs of PSNR and SSIM. It is clear that our methods obtained higher scores than 

all the other methods. It is worth mentioning that the results of MAGIC-Semi have lower scores than those of MAGIC, 

which is not exactly coherent with the visual results. This result is probably because the L2 norm loss will lead to 

higher PSNR and SSIM values but smoother images [30]. 

 

Fig. 10. Femoral reconstruction with 5% dose data by different methods. (a) Ground truth, (b) FBP (24.25/0.6142), (c) TGV (31.38/0.9229), (d) 

RED-CNN (31.91/0.9227), (e) LPD (32.04/0.9328), (f) LEARN (32.72/0.9404), (g) MAGIC (34.82/0.9562) and (h) MAGIC-Semi (34.40/0.9545). 

The display window is [-160, 240] HU.  

 

Fig. 11. Pelvic reconstruction with 2.5% dose data by different methods. (a) Ground truth, (b) FBP (21.12/0.5598), (c) TGV (29.51/0.8908), (d) 

RED-CNN (29.49/0.9109), (e) LPD (29.76/0.9087), (f) LEARN (30.02/0.9233), (g) MAGIC (32.52/0.9488) and (h) MAGIC-Semi (32.04/0.9447). 

The display window is [-160, 240] HU.  



Table I Quantitative results (Mean±SD) using different methods. The best scores are marked in red, and the second best scores are marked in blue. 

dose 
10% 5% 2.5% 

PSNR SSIM PSNR SSIM PSNR SSIM 

FBP 26.35±0.68 0.6969±0.0321 23.56±0.74 0.6160±0.0363 20.67±0.77 0.5381±0.0374 

TGV 31.91±0.50 0.9210±0.0097 31.12±0.52 0.9103±0.0119 29.41±0.62 0.8721±0.0207 

RED-CNN 32.89±0.58 0.9251±0.0124 31.57±0.60 0.9123±0.0144 29.93±0.63 0.8911±0.0169 

LPD 33.12±0.59 0.9356±0.0117 31.59±0.61 0.9194±0.0140 30.05±0.62 0.8981±0.0165 

LEARN 33.51±0.60 0.9363±0.0112 32.18±0.61 0.9299±0.0116 30.38±0.61 0.9090±0.0142 

MAGIC 35.89±0.66 0.9587±0.0092 34.18±0.64 0.9460±0.0107 32.72±0.64 0.9335±0.0120 

MAGIC-Semi 35.18±0.59 0.9548±0.0092 33.70±0.59 0.9425±0.0111 32.16±0.57 0.9275±0.0133 

 

D. Proportion of the labeled training data 

Fig. 12 shows the impact of different proportions of labeled training data on the performance. The proportion of 

labeled data is from zero (unsupervised learning) to 50% (200 slices). It can be seen that there is a sharp rise from zero 

to 0.25% (only one slice). When the proportion of labeled data reaches 10% (40 slices), the performance improves 

slowly, which shows that our method can use only a small number of labeled data to achieve satisfactory results, which 

is quite meaningful for clinical practice. 

Meanwhile, we conducted experiments to verify the robustness of our proposed method to different dose levels 

and different training samples in the supplemental materials, in which we also discuss the impacts of hyperparameters 

in our model. 

 

Fig. 12. Results of the networks trained with different proportions of labeled data. 

 

4. Conclusion and discussion 

In this paper, we propose a novel manifold and graph integrative convolutional network for LDCT reconstruction. 

This method not only uses spatial convolution to extract local pixel-level features in image space but also utilizes graph 

convolution to analyze the nonlocal topological features in manifold space. Compared with other methods, our method 

can capture the self-similarity during local pixels and nonlocal patches simultaneously. We conducted extensive 

experiments to evaluate the performance of our methods. Four state-of-the-art reconstruction methods, including TGV, 

RED-CNN, LPD and LEARN, were used for comparison. The results prove that our method outperforms other 

methods in both visual and quantitative aspects. In addition, our method is suitable for semi-supervised learning. In 

the case of only 10% of the data labeled, the results of our method have visually exceeded supervised learning-based 

methods. The success of MAGIC-Semi is of great significance for clinical applications, since paired low-dose and 

normal-dose data are quite difficult to obtain.  

Our method has a limitation in that calculating the adjacency matrix requires the Euclidean distances between 

each two nodes to find the neighborhoods, which is time-consuming. We implemented this part with CUDA to 

accelerate the computation. Since we divide the network into coarse and fine stages, we only need to calculate the 

adjacency matrix twice during the training process. We must admit that the adjacency matrix used in each block is not 

the most accurate one. Fortunately, the neural network can fix this by adaptively updating the parameters. Table II 

shows the time cost of the different methods. Due to the computation of the adjacency matrix and the implementation 

of graph convolution, our method is more time-consuming than other learning-based methods. 



Table II Time cost of different methods for training and testing 

 TGV RED-CNN LPD LEARN MAGIC 

Train - 1.7 h 17.6 h 20.8 h 32.9 h 

Test 15.7 min 2.6 ms 1.8 s 4.8 s 5.3 s 

There are some potential issues we can consider to further improve our model. First, since the projection is 

contaminated, the data consistency layer may introduce error. Simultaneously, filtering both image and projection data 

may be a possible solution. Second, when our model processes data with different geometries as the training data, the 

performance cannot be guaranteed. In future work, we will focus on network architecture design and optimization to 

solve these limitations. 
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Appendix 

A. Robustness analysis 

1) Unpaired dose levels 

To further study the robustness of our method, three models were trained with specific dose levels, including 10%, 

5% and 2.5%, and these models were tested on datasets with various dose levels. Fig. 13 shows an abdominal case 

with different doses, and the reconstructions of MAGIC and MAGIC-Semi are shown in Figs. 14 and 15, respectively. 

It can be seen that the noise cannot be completely eliminated when using a network trained with higher-dose data to 

reconstruct lower-dose data. Conversely, the results become slightly blurred when using a network trained with lower-

dose data to reconstruct higher-dose data. Notably, there are several metastases indicated by the red dotted circles, 

which are severely degraded by the noise. In all the results predicted by the networks with different training strategies, 

these metastases can be well recognized and have clear boundaries. A simple conclusion can be reached that although 

our proposed model cannot be generalized to an arbitrary dose level, it demonstrates robustness to a certain degree. 

 

Fig. 13. Abdominal case of different doses. (a) Ground truth, (b) FBP of 10% dose data, (c) FBP of 5% dose data and (d) FBP of 2.5% dose data. 

 

Fig. 14. The reconstructions with MAGIC trained with different dose data. From top to bottom, the results are obtained with the networks trained 

with 10%, 5% and 2.5% dose data. From left to right, the images are reconstructed by 10%, 5% and 2.5% dose data, respectively. 



 

Fig. 15. The reconstructions with MAGIC-Semi trained with different dose data. From top to bottom, the results are obtained with the networks 

trained with 10%, 5% and 2.5% dose data. From left to right, the images are reconstructed by 10%, 5% and 2.5% dose data, respectively. 

 

2) Different training samples 

We conducted another experiment to validate the robustness of our proposed model by training with natural 

images. We trained the network with a public dataset of natural images, DIV2K [53]. Four hundred images were 

randomly selected as the training set, and the same geometry was adopted as in Section 3 to obtain the projection data. 

Then, we tested the network with the 10% dose CT data. Fig. 16 shows the results. It can be seen that the network 

trained with natural images can eliminate the noise. The metastasis indicated by the dotted circles is well preserved. In 

particular, the metastasis indicated by the blue circle, which is difficult to identify, has clear boundaries in the results 

of both MAGIC and MAGIC-Semi trained with natural images. This finding can be treated as evidence that our method 

is robust to different training data. 

 

Fig. 16. Abdominal case of 10% dose data reconstructed with the networks trained with natural images. (a) Ground truth, (b) FBP, (c) MAGIC 

trained with DIV2K and (d) MAGIC-Semi trained with DIV2K. 

 

A. Hyperparameter study 

In our method, there are several hyperparameters, including the number of iterative blocks 𝑁𝑡, the patch sizes of 

sampling the patch manifold 𝑠1 and 𝑠2, the size of the graph convolutional kernels 𝐹 and the proportion of labeled 

data for MAGIC-Semi. This subsection will discuss the impacts on the performance of these parameters. 

1) Number of iterative blocks 𝑁𝑡 

Generally, a deeper network will have better performance, but its training will be more difficult and require more 

memory. A proper depth is important to balance the tradeoff between the performance and other issues. Fig. 17 shows 

the quantitative results with different numbers of iterative blocks. It can be seen that the performance of the network 

improves rapidly as the network becomes deeper. When the number of iteration blocks reaches 50, the performance 

improvement slows down. Considering the performance and memory consumption, 50 is an appropriate number for 



the iteration blocks. 

 

Fig. 17. Results of the networks with different numbers of iteration blocks. 

 

2) Patch sizes 𝑠1 and𝑠2 

In our method, we extract square patches from the patch manifold, i.e., 𝑠1 =  𝑠2. If the patch size is too small, 

then the feature vector is insufficient to represent the characteristics of the LDCT data. If the patch size is too large, 

then it will boost the computational cost. The quantitative results with different patch sizes are shown in Table III. 

Based on this study, we set the patch size to 6 in our experiments. 

Table III Quantitative results of different patch sizes 

Patch Size PSNR SSIM 

4 35.66 0.9577 

5 35.69 0.9576 

6 35.89 0.9587 

7 35.64 0.9579 

8 35.67 0.9571 

9 35.76 0.9581 

10 35.80 0.9575 

 

3) Size of graph convolutional kernels 𝐹 

Table IV shows the performance of the network with different sizes of graph convolutional kernels. It can be 

noticed that the impact of 𝐹 is not very significant, so considering the visual effect, computational complexity, and 

memory issues, we set the size of graph convolutional kernels 𝐹 = 64. 

Table IV Quantitative results of different kernel sizes 

Kernel Size PSNR SSIM 

32 35.86 0.9568 

64 35.89 0.9587 

96 35.97 0.9587 

128 35.96 0.9588 
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