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Abstract

Unsupervised domain adaptation is useful in medical image segmen-
tation. Particularly, when ground truths of the target images are not
available, domain adaptation can train a target-specific model by utiliz-
ing the existing labeled images from other modalities. Most of the re-
ported works mapped images of both the source and target domains into
a common latent feature space, and then reduced their discrepancy either
implicitly with adversarial training or explicitly by directly minimizing a
discrepancy metric. In this work, we propose a new framework, where the
latent features of both domains are driven towards a common and param-
eterized variational form, whose conditional distribution given the image
is Gaussian. This is achieved by two networks based on variational auto-
encoders (VAEs) and a regularization for this variational approximation.
Both of the VAEs, each for one domain, contain a segmentation mod-
ule, where the source segmentation is trained in a supervised manner,
while the target one is trained unsupervisedly. We validated the pro-
posed domain adaptation method using two cardiac segmentation tasks,
i.e., the cross-modality (CT and MR) whole heart segmentation and the
cross-sequence cardiac MR segmentation. Results show that the proposed
method achieved better accuracies compared to two state-of-the-art ap-
proaches and demonstrated good potential for cardiac segmentation. Fur-
thermore, the proposed explicit regularization was shown to be effective
and efficient in narrowing down the distribution gap between domains,
which is useful for unsupervised domain adaptation. Our code and data
has been released via https://zmiclab.github.io/projects.html.

Index Terms— Domain adaptation, variational approximation, explicit
domain discrepancy, cardiac segmentation.
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(a) The framework of previous researches of domain adaptation
in a latent feature space. The domains were mapped into a com-
mon latent feature variable z. The domain discrepancy was then
either reduced by adversarial training or explicitly minimization
of discrepancy metrics.
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(b) The idea of the proposed domain adaptation method via vari-
ational approximation. The two domains were driven towards
parameterized distributions qφS and qφS via variational auto-
encoder. A regularization term was proposed to constrain qφS
and qφS to be the same distribution.

Figure 1: Illustration of the difference between the previous works and the
proposed method for domain adaptation in a latent feature space. xS and xT
denote the input source and target image, respectively. z is the latent feature
variable. pθS and pθT are probability functions on the source and target data,
parameterized with θS and θT , respectively. qφ is the variational approximation
of pθS/T .

1 Introduction

Accurate cardiac segmentation is an essential prerequisite for many medical ap-
plications, such as 3D modeling and functional analysis, which are important
for diagnosis of cardiac diseases [1,2]. In clinics, multi-modality medical images
are widely used to assist diagnosis. However, obtaining the automated segmen-
tation for all modality images can be label intensive and expensive. To alleviate
this, an effective learning-based approach is to train an automatic segmentation
model using existing labeled data of one modality and adapt this model for the
automatic segmentation of the other modalities. However, the performance of
such adapted segmentation models usually degrades significantly when they are
tested on images from new modalities, due to dataset bias, which is also known
as domain shift [3].

A common approach is to fine-tune the models using labeled images from the
new modalities [4–6], which however requires extra manually annotated training
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data. Recently, researchers have proposed a number of new methodologies [7,8],
among which domain adaptation, a special technique of transfer learning, has
became increasingly popular, thanks to its needlessness of additional labeled
images from the target modalities [9].

Domain adaptation transforms the images from different modalities into a
modality-invariant common space [10], or directly translates the images from
one modality to another with the same anatomic structures [11]. Formally, the
imaging modality with ground truth segmentation is referred to as the source do-
main, and the modality without ground truth, which is our target for automated
segmentation, is denoted as the target domain. Correspondingly, the data from
these two domains are known as the source data and target data, respectively.
In this work, we follow the idea of aligning the distributions of these domains in
a latent feature space, which is equivalent to extract modality-invariant features
in this specific task [12–14]. Hence, domain adaptation becomes a problem of
feature learning and minimization of domain discrepancy.

The latent features can be learned adaptively by deep neural networks (DNNs).
Particularly, the generative adversarial networks (GANs) have demonstrated
great potential [15–17]. By introducing discriminators, the discrepancy between
domains can be minimized implicitly. This adversarial training has also been
adopted in medical image analysis [10, 11, 18]. However, this technique is still
challenging, due to the difficulty of obtaining the nash equilibrium point in
GANs when they are applied to domain adaptation [19]. Also, training the
generator and discriminator networks for the implicit minimization of domain
discrepancy could be complex [15]. For cardiac segmentation, PnP-AdaNet [10]
and SIFA [11] are two most related works. PnP-AdaNet utilized features from
multi-layer for adaptation, and SIFA minimized the domain discrepancy on both
feature and image levels. They were both validated to be effective on cardiac
dataset.

There were a few works reported adopting deep learning to developing ex-
plicit measurements for domain discrepancy [20–23], which were implemented
by introducing moment statistics or unbiased estimators. These works obtained
promising results for classification tasks, however the application to segmenta-
tion has not been fully explored. Recently, an explicit distance metric based on
characteristic functions of distribution was proposed for domain adaptation [24].
This work, different from the adversarial training scheme, minimized the explicit
metric directly to reduce discrepancy between the latent variables from the two
domains.

In this work, we propose a new framework of domain adaptation for cardiac
image segmentation via the strategy of variational approximation (VarDA). The
idea is illustrated in Figure 1b, which shows a different solution from previous
works. Specifically, instead of reducing the discrepancy of the latent features
from two domains directly, we force the distributions of these features approxi-
mate to a parameterized probability distribution function. The approximation
process can be achieved by a variant of variational auto-encoder (VAE). Then,
the distance between the two approximations can be taken as a regularization,
which is validated to be effective for domain adaptation in experiments.
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The VAE is adapted to work for both the labeled source data and unlabeled
target data. For segmentation, the VAE incorporates a prediction model, which
takes only latent features as input, and thus can be shared by both domains. We
further deduce a new form of the variational lower bound for the log-likelihood
of the labeled data. This lower bound can be taken as an objective function to
train the VAE models, and thus is used to form the total loss for the domain
adaptation and segmentation task.

The main contributions of this work are summarized as follows: (1) We de-
velop a new framework for domain adaptation, where the latent features from
both domains are approximated by a common and parameterized variational
form. The framework is implemented using deep neural networks based on vari-
ational auto-encoder (VAE). (2) We propose an explicit regularization, which is
computed from the distance between the approximations for the distributions of
latent variables. (3) We validate our proposals using experiments involving two
cardiac image segmentation tasks. In the experiments, comparisons with other
state-of-the-art algorithms are provided, and parameter studies are performed.

2 Related work

This work is mainly related to two active research areas, i.e., domain adaptation
and variational autoencoder (VAE).

2.1 Domain adaptation

For domain adaptation, a particular scenario is when we have the paired data,
namely each image from one modality (domain) has the corresponding image of
the same subject from the other modality (domain). Chartsias et al. [25] studied
a multi-input multi-output fully convolutional neural network for MR synthesis.
They combined latent features from all modalities into a single fused represen-
tation, which can be transformed into any target modality with a decoder.
Tulder et al. [26] proposed a shared autoencoder-like convolutional network,
which learns a common representation from multi-modal data. They utilized
feature normalization and modality dropout techniques to improve the cross-
modality classification accuracy. The core idea in these two works was to force
the latent features from paired data to be similar. To learn the models, they
processed the training data pairwisely, which does not need to consider the dif-
ference of data distributions from modalities. Moreover, Shi et al. [27] proposed
the mixture-of-experts of VAE, which implicitly decomposed multi-modal data
into shared and private subspaces, and could be applied for complex heteroge-
neous modalities, such as images and the language data. Antelmi et al. [28]
adopted multi-channel VAE to tackle paired heterogeneous data, and extracted
parsimonious and interpretable representations by variational dropout.

For unpaired data, extracting modality-invariant features is particularly
challenging. As deep learning methods have been widely used in domain adap-
tation, here we mainly focus on DNN-based approaches. Researchers have pro-
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posed explicit metrics to measure domain discrepancy. Tzeng et al. [23] and
Long et al. [20] employed the Maximum Mean Discrepancy (MMD) as a domain
confusion metric, and minimized the MMD loss together with a task-specific loss
to learn the modality-invariant representations. Sun et al. [22] proposed a new
method, referred to as Deep CORAL in their paper, to align the second-order
statistics of the source and target distributions. Instead of using the Euclidean
distance in Deep CORAL, Wang et al. [29] proposed to adopt the Riemannian
distance of covariance matrices between the source and target domains, which
can be approximated by the Log-Euclidean distance. While these methods were
solely developed for classification tasks, recently, Wu and Zhuang [24] proposed
the CFD method for medical image segmentation, which explicitly calculated
the domain discrepancy with the distance between the characteristic functions
of the distributions in a latent feature space. Although CFD was validated
to be effective, it requires to be combined with other techniques to achieve a
comparable performance to the adversarial training methods. These techniques
include the mean value matching and image reconstruction. Moreover, it was
only tested on simple segmentation tasks of two or three structures. While
for the whole heart segmentation which has much more complex structures,
CFD could be challenged to achieve successful unsupervised domain adaptation
due to the complexity of the task. Besides these statistic estimators, graph
matching based metrics were also studied. For example, Das and Lee [30] first
constructed the representation graphs for both source and target domains, and
then minimized the matching loss between them, which consisted of node-to-
node matching and edge-to-edge matching. Yang and Yuen [31] constrained
the edges in both graphs for two domains, and mapped the data into features
with unified structure criteria via adversarial training. Pilanci and Vural [32]
matched the Fourier bases of their graph instead of the nodes, such that the
label functions on the two graphs can be reconstructed with similar coefficients.

GAN has recently been shown to have great potential for domain adapta-
tion, particularly for medical image generation and segmentation. Zhang et
al. [33] utilized cycle-consistent generative adversarial networks (CycleGANs)
to achieve cross-modality synthesis between MRI and CT images. To reduce
the geometric distortion, they introduced a shape-consistency loss for the gen-
erators. Combining the idea of style transfer, Huang et al. [34] proposed to
decompose image features from both domains into disentangled representation
of domain-invariant content and domain-specific style, which were then used to
simulate target images. They employed GANs to align the distributions of these
translated target images with the real ones, and the alignment was implemented
on image levels.

For classification or segmentation tasks, domain adaptation was mainly con-
ducted on feature levels. Without disentangling features, data from different
domains were mapped into a common latent code, which was then forced to be
domain-invariant. Kamnitsas et al. [18] proposed a so-called multi-connected
architecture for the domain discriminator, where the multi-layer features were
connected before being input into the discriminator. They obtained evident
improvement in MRI-CT cross-modality segmentation of brain lesions.
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Regarding to segmentation of domain adaptation, one of the most related
works to ours is from Dou et al. [10]. They proposed a plug-and-play domain
adaptation module, based on a dilated fully convolutional network, to map
two domains into a common space. Their framework was a modified version
of the domain adversarial neural networks (DANN) [16]. It was validated on
MRI-CT cross-modality segmentation of 2D cardiac images. Another related
state-of-the-art work is from Chen et al. [11], whose method is referred to as
SIFA. The authors implemented adaptation at both of the image and feature
levels via adversarial training, and used the cycle-consistency loss. This work
was reported to outperform peer methods for natural images by a significant
margin. More recently, Ouyang et al. [35] proposed a data efficient method
for multi-domain medical image segmentation. They combined a VAE-based
feature prior matching and domain adversarial training to learn a shared latent
space which is expected to be domain-invariant. These state-of-the-art methods
designed for medical image segmentation are all based on adversarial training,
which aligns the distributions of two domains by minimizing their discrepancy
implicitly.

2.2 Variational autoencoder

VAE is a popular deep generative model. Using VAE, one can approximate the
posterior distribution of a latent variable conditioned on data using a normal
distribution [36]. This property is particularly useful, and enables us to drive
two domains towards a common and parameterized variable in a latent space.
Kingma et al. [37] developed a new model based on VAE for semi-supervised
learning with small labeled data sets. The model allowed for effective gener-
alization to large unlabeled ones, which were assumed to be from the same
distributions with the labeled data. Furthermore, based on conditional vari-
ational autoencoder with Gaussian latent variables, Sohn et al. [38] proposed
a stochastic neural network to make inference for structured output variables.
They performed the deterministic inference by maximizing a generation net-
work, which uses both the data and its corresponding latent features for pre-
diction. Another important VAE work was from Walker et al. [39], where the
authors constructed a VAE model to predict dense trajectories from pixels. The
method employs an encoder to estimate the posterior distributions of the latent
variables conditioned on the data and labels, and a decoder to predict the con-
ditional distributions of trajectories given images.

In this work, the distributions of the source data (with labels) and target
data (without labels) are different, since the domain shift exists. Also, the
VAE model, such as the one proposed by Walker et al. [39], generally requires
labels for all data, which however are not available for the target data in the
unsupervised domain adaptation task. Therefore, in this work we propose a new
form of VAE for domain adaptation, and deduced an explicit regularization for
domain discrepancy.
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Table 1: Reference to the mathematical symbols.

subscript S/T variables from source/ target do-
main

IS/T ; x image domain; image variable
y, z segmentation variable, latent

variable
NS/T number of samples from source/

target domain
xiS/T , y

i
S , ŷ

i
T image sample, ground truth seg-

mentation, and predicted seg-
mentation

XS/T , YS , ŶT the sets of the above samples
pθ() PDF of model variables with pa-

rameter θ
qφ() approximation of pθ with param-

eter φ
D(φS , φT ) distance metric of distributions
D(φS , φT ) distance estimated from

marginal distributions

L̃() Monte Carlo estimate of VAE ob-
jective function

H̃() minibatch-based Monte Carlo es-
timate of total loss function

7
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(Section III.C)

(Eq.1)

(Section III.B.2)

(Section III.B.1)

(Eq.4)

(Eq.9)

(Eq.13)

(Section III.A)   

Figure 2: Framework of the proposed domain adaptation method. For each
domain, we construct a modified VAE model, which contains an encoder to
extract modality-invariant latent features, a decoder for image reconstruction,
and a segmentor for image segmentation. The domain discrepancy is computed
explicitly with the estimated distributions of the latent features from two do-
mains.

3 Methodology

In this work, we aim to align the two domains in a common latent feature
space. We first transform each domain into a latent feature variable. The two
variables are then driven and approximated by a common and parameterized
variational form via VAEs. As this approximation can be estimated with either
the source or target data, we obtain two forms of estimation for the distribution
of the common variational form. The distance of the two estimations is then
used as an effective regularization for domain adaptation. Then, we train the
segmentation model with the latent feature and the ground truth of source
data. The resulting model is expected to be applicable to the segmentation of
the target images.

We denote the independent and identically distributed (i.i.d.) samples from
the source image domain IS , as XS = {xiS}

NS
i=1, where xiS is one of the NS

samples. The corresponding segmentation of xiS is denoted as yiS , which can be
considered as i.i.d. samples of a label variable, yS . Similarly, XT = {xiT }

NT
i=1

are NT i.i.d. samples from the target image domain IT , whose segmentation,
YT = {yiT }

NT
i=1, is unknown. Here, the symbols with subscript S indicate the

variables or samples are for the source domain, and those with T are for the
target domain. We denote the probability density functions (PDFs) of the
latent variable zS and zT as pθS (z) and pθT (z), for which θS and θT are model
parameters to be learned. The posterior of zS w.r.t. the source image variable
xS is pθS (zS |xS). Hereafter, when a single symbol is enough to indicate which
domain the variables or samples belong to, we omit the others. For example,
we denote pθS (zS |xS) as pθS (z|x) for simplicity. Table 1 provides the reference
of the key symbols used in this paper.

In the rest of this section, we first introduce the framework of the proposed
domain adaptation method in Section 3.1, where the total loss function is given.
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Then, we elaborate on the VAE models, which are formulated to incorporate
segmentation models, in Section 3.2. Here, we deduce a variational lower bound
as the objective function. Finally, based on the modified VAE, we propose an
explicit metric as a regularization for domain adaptation, in Section 3.3.

3.1 The proposed framework for domain adaptation

Fig.2 illustrates the proposed framework, which consists of three components,
i.e., (1) the VAE for source domain, (2) the VAE for target domain, and (3) the
module for regularization on domain discrepancy.

The source domain VAE is composed of an encoder for feature extraction,
a decoder for image reconstruction, and a segmentor for segmentation. The
encoder maps the image xS into a shared latent feature space, and approxi-
mates the posterior probability pθS (z|x) by a parameterized model qφS (z|x).
The random variables in the shared latent space are denoted as zS and zT for
the source and target domains, respectively. At the training stage, we sample
the latent features from the posterior qφS (z|x), and feed them into the networks
of segmentor and decoder. The segmentor outputs the probability of label cat-
egory for each pixel, and the decoder, conditioned on the segmentation label,
reconstructs the input image.

The target domain VAE has a similar structure to the source domain, ex-
cept that it uses the predicted segmentation as the label input of the decoder.
We denote the objective functions of the two VAEs as LBV AE(θS , φS) and
LBV AE(θT , φT ), respectively. The detail is given in Section 3.2.

For the domain discrepancy, one can estimate the two variational approxi-
mations for zS and zT , i.e., qφS (z) and qφT (z), from which the input data of the
segmentor are sampled, based on the two VAE modules mentioned before. To
force the two approximations to be the same distribution, we therefore propose
a regularization for this discrepancy by computing the distance between qφS (z)
and qφT (z). The loss function is denoted as Lossdiscrepancy(qφS , qφT ) and will
be discussed in Section 3.3.

With the aforementioned three components, the total loss function of the
domain adaptation segmentation method is then formulated by,

Full Loss(ω) = −α1LBV AE(θS , φS)− α2LBV AE(θT , φT )
+α3Lossdiscrepancy(qφS , qφT ),

(1)

where ω = (θS , φS , θT , φT ) are the parameters to be optimized, and α1, α2, α3

are the parameters controlling the trade-off between the three terms.
At the test stage, we input a test image xT into the encoder, and obtain a

distribution qφT (z|x). We calculate the mean value of this distribution as the
input of the trained segmentor, which outputs the predicted segmentation ŷT .
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3.2 Conditional variational autoencoder with segmenta-
tion

In the proposed framework, the VAE models need to incorporate the function of
segmentation, as our task is cardiac image segmentation. This is in contrast to
the widely used VAE in [36], where the decoding is only for the reconstruction of
images. Therefore, we propose to maximize the joint log-likelihood (JLL) of the
complete data as the objective function of VAE, i.e., JLL = log pθ(X,Y ). The
complete data consist of both the images and their segmentation labels. This
is the major difference to the VAE in [36], whose objective function is based on
the log-likelihood of the images only.

Furthermore, since we do not have the gold standard segmentation of the
target images, a new formulation is needed to tackle the missing labels for the
VAE of target domain. We introduce this formulation in Section 3.2.2, where
the corresponding objective function is deduced.

3.2.1 VAE for source domain

The proposed VAE maximizes the joint log-likelihood of the complete data. For
the source data, we have

JLL = log pθS
(
(x1S , y

1
S), · · · , (xNSS , yNSS )

)
.

As all data points can be taken as samples from i.i.d. random variables, the
joint log-likelihood becomes the sum over that of individual data points, i.e.,

JLL =

NS∑
i=1

log(pθS (xiS)pθS (yiS |xiS)). (2)

To optimize this generative model pθS (x, y), a commonly adopted method
is to introduce a latent variable z. As pθS (z|x) is generally intractable, we
employ VAE to approximate it by a parameterized model qφS (z|x), which can
be implemented using neural networks easily. To infer the discriminative model
pθS (y|z), we follow the assumption of distribution independence in [37], i.e.,
qφS (y, z|x) = qφS (y|x) · qφS (z|x).

Under this assumption, we can obtain a new form of variational lower bound
for log pθS (x, y), denoted as LBV AE(θS , φS), i.e.,

log pθS (x, y) ≥ LBV AE(θS , φS). (3)

Here, LBV AE(θS , φS) can be formulated by,

LBV AE(θS , φS) = −DKL(qφS (z|x) ‖ pθS (z))

+ Elog qφS (z|x)[pθS (x|y, z)] + EqφS (z|x)[log pθS (y|z)], (4)

whereDKL(q||p) is theKL divergence of q and p. The second term EqφS (z|x)[log pθS (x|y, z)]
indicates the log-probability of the input image x given the label y and feature z,
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which is conditioned on x. This term can be modeled by the image reconstruc-
tion process. The third term EqφS (z|x)[log pθS (y|z)] indicates the log-probability
of the segmentation prediction y given z, which is conditioned on x. This term is
modeled by the segmentor in the proposed framework. The proof for this lower
bound can be found in the Supplementary Material. By reparameterization
using a differentiable transformation gφS (ε, x) of an (auxiliary) noise variable
ε [36], i.e.,

z = gφS (ε, x) with ε ∼ p(ε), (5)

we form a Monte Carlo estimate of LBV AE(θS , φS) in (4), i.e.,

L̃S(θS ,φS ;xi, yi) = −DKL(qφS (zi|xi) ‖ pθS (zi))

+
1

L

L∑
l=1

[
log pθS (xi|yi, z(i,l)) + log pθS (yi|z(i,l))

]
, (6)

where z(i,l) = gφS (ε(i,l), xi), with ε(i,l) ∼ p(ε), and L is the number of samples.
For Eq.(4), DKL(qφS (z|x)‖pθS (z)) usually can be integrated analytically, and

only the second and third right hand side terms require estimation by sampling.
Specifically, let the prior over the latent variable zS be multivariate Gaussian,
i.e., pθS (z) = N(0, I), where I ∈ Rn×n is the identity matrix, and qφS (z|x) =
N(uS(x),ΣS(x)), uS(x) = (u1(x), · · · , un(x)), ΣS(x) = diag(σS(x)),σS(x) =
(λ1(x), · · · , λn(x)). For simplicity we denote uS(x),ΣS(x) as uS ,ΣS , then we
have

DKL(qφS (z|x)‖pθS (z)) =
1

2

n∑
j=1

(λj + u2j − log λj − 1). (7)

For complete source dataset, we have the estimator of the lower bound, based
on mini-batches of M data points, i.e.,

L̃S(θS , φS ;XS , YS) =
NS
M

M∑
i=1

L̃S(θS , φS ;xi, yi). (8)

As Fig. 2 illustrates, the module of VAE for source domain consists of
three parts, i.e., the encoder for approximation qφS (z|x), the decoder modeling
the reconstruction term EqφS (z|x)[log pθS (x|y, z)], and the segmentor learning

from the prediction term EqφS (z|x)[log pθS (y|z)] in Eq.(4). As the reconstruc-
tion term indicates the reconstruction accuracy, we minimize the Mean-Squared
Loss (MSELoss) between the input image and the reconstructed image from the
decoder. The prediction term indicates the prediction accuracy, thus we min-
imize the MSELoss or cross entropy loss (CELoss) between the ground truth
segmentation and the prediction from the segmentor.

3.2.2 VAE for target domain

For the target data, we have a lower bound similar to Eq.(4), denoted as
LBV AE(θT , φT ), where we however do not have ground truth segmentation. We
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Algorithm 1. Optimizing H̃ based on mini-batches, and computing D(φS , φT ) using Eq.(11).
ω = (θS , θT , φS , φT ) ← Initialize parameters;
Repeat

1. {(xniS , y
ni
S )}Mi=1,{xnjT }Mj=1← Random mini-batch of Mdata points; in source and target data, respectively ;

2. Compute uniS ,Σ
ni
S , u

nj
T ,Σ

nj
T ;

3. ε
(ni,l)
S , ε

(ni,l)
T , l = 1, · · ·L ←Random samples from distribution p(ε) = N(0, I), I ∈ Rn×n ;

4. Compute z
(ni,l)
S = (ΣniS )

1
2 ∗ ε(ni,l)S + uniS , and z

(nj ,l)
T = (Σ

nj
T )

1
2 ∗ ε(nj ,l)T + u

nj
T ;

5. Compute −L̃S(θS , φS ;xni , yni), −L̃T (θT , φT ;xnj , ŷnj ) and D(φS , φT ) using Eq.(6), Eq.(9) and Eq.(11),
respectively. Their summation is taken as the loss function in Eq.(14);

6. Update parameters using optimizer, such as SGD or Adam; Until convergence of parameters ω.
Return ω.
Test phase: the target images are fed into the target VAE, which outputs the segmentation predictions.

deal with this missing data using the pseudo labels, i.e., the predicted segmen-
tation ŷT of xT . The variational lower bound for the target domain becomes,

LBV AE(θT , φT ) = −DKL(qφT (z|x) ‖ pθT (z))

+ EqφT (z|x)[log pθT (x|ŷ, z)] + EqφT (z|x)[log pθT (ŷ|z)]. (9)

The VAE structure for the target domain is presented in Figure 2. The
segmentor shares parameters with that of the VAE for source domain. The
decoder takes the latent features and prediction from the segmentor as input,
and outputs the reconstructed images.

For the computation of Eq.(9), we can obtain the Monte Carlo estimate of
LBV AE(θT , φT ) from the complete target data, similar to Eq.(6) and Eq.(8) for

the source domain. We denote this computation as L̃T (θT , φT ;XT , ŶT ), where

ŶT = {ŷiT }
NT
i=1. Also, we minimize the MSELoss between the input image and

the reconstructed image from the decoder, to maximize the reconstruction term
in Eq.(9).

For the prediction term EqφT (z|x)[log pθT (ŷ|z)], one can use the MSELoss
or CELoss. Here, MSELoss of the prediction itself equals zero, and CELoss is
equivalent to the conditional entropy loss [40,41].

3.3 A regularization for the variational approximation

Based on the VAE designed above, we can obtain two estimations, qφS (z) and
qφT (z), for the distribution of the variational approximation. Due to the domain
shift between the two domains, the extracted features zS and zT are subjected
to different distributions. Hence, the approximations qφS (z) and qφT (z) are not
the same one. To constrain them to be the same distribution, we define a reg-
ularization, i.e., Lossdiscrepancy(qφS , qφT ) in Eq.(1), by calculating the distance
between them. There exist different metrics for this distribution distance, in-
cluding the Wasserstein distance [15] and the lp norm. As the commonly used
Wasserstein distance as well as KL divergence between qφS (z) and qφT (z) can
not be integrated analytically for M > 1, we adopted l2 norm as a suitable
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metric, i.e.,
∫

[qφS (z)− qφT (z)]2dz. Hereafter, we denote this distance metric as
D(qφS (z), qφT (z)) or D(φS , φT ). Note that for the MMD method, the sampling
operation for the latent features could lead to large variation of MMD estimator,
and thus lead to ineffectiveness of the metric for discrepancy minimization [24].

The distributions of the latent feature can be estimated via the modified
VAE. For the source data, as the VAE model can approximate the posterior
probability pθS (z|x) by a parameterized model qφS (z|x) [36,42], the distribution
of the approximation qφS (z) can be estimated by,

qφS (z) ≈ EpθS (x)[qφS (z|x)]. (10)

Similarly, we introduce another VAE for the target data, and qθT (z) can be
estimated in the same way.

In this work, we adopt the minibatch strategy to optimize (1). We randomly
sample M data points independently from the source domain and M samples
from the target domain, then D(φS , φT ) can be approximately calculated by,

D(φS , φT ) =

∫
[qφS (z)− qφT (z)]2dz

≈
∫ [ 1

M

M∑
i=1

qφS (z|xiS)− 1

M

M∑
j=1

qφT (z|xiT )
]2

dz

=
1

M2

M∑
i=1

M∑
j=1

[
k(xiS , x

j
S) + k(xiT , x

j
T )− 2k(xiS , x

j
T )
]
, (11)

where k(xiS , x
j
T ) =

∫
qφS (z|xiS) · qφT (z|xjT )dz.

Let N(uiS ,Σ
i
S) or N(ujT ,Σ

j
T ) be a normal distribution, which is adopted to

model the posterior of the latent variables given the sample xiS or xjT . Partic-
ularly, we further adopt the simple situation, where ΣiS = diag(λiS1

, · · · , λiSn),

ΣjT = diag(λjT1
, · · · , λjTn), λiSl > 0 and λjTl > 0, one can obtain that

k(xiS , x
j
T ) =

e
− 1

2

∑n
l=1

(uiSl
−uj

Tl
)2

λi
Sl

+λ
j
Tl

(2π)
n
2 · (

∏n
l=1(λiSl + λjTl))

1
2

, (12)

where uiSl is the l-th element of uiS .
The computation of Eq.(12) involves consecutive multiplication operations,

which may be problematic when using deep learning frameworks (such as Ten-
sorFlow, PyTorch) for optimization. When the dimension of z is large, the
computation error of Eq.(12) could be non-negligible, especially at the back
propagation stage. To avoid this problem, we propose to compute the distance
of the marginal distributions of zS ∼ qφS (z) and zT ∼ qφT (z) instead, i.e.,

D̃(φS , φT ) =

n∑
i=1

∫
[qφS (zi)− qφT (zi)]

2dz, (13)
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Table 2: Quantitative evaluation results of the segmentation of 3D MR images
from MM-WHS dataset, where the CT images were used as the source domain.
Note: N/A means that the ASSD value cannot be calculated due to no prediction
for that cardiac structure. The best result in each column of the unsupervised
methods is in boldface.

methods
Dice (%) ASSD (mm)

MYO LA LV RA RV MYO LA LV RA RV
NoAdapt 0.122±0.124 4.33±7.47 0.980±1.06 0.488±0.695 20.2±17.7 21.8±1.68 N/A 47.2±25.4 39.3±13.9 17.6±10.6
PnP-Ada 25.3±16.2 46.3±21.5 48.7±21.3 51.2±12.4 46.6±5.05 11.3±2.8 27.9±6.85 7.75±2.79 21.2±10.5 17.0±2.30
SIFA 31.5±12.1 54.4±6.09 64.3±14.3 44.1±22.6 26.7±20.0 11.4±3.11 14.7±9.22 15.5±4.04 16.2±9.15 21.3±8.66
VarDA 39.9±16.2 54.8±6.67 60.9±16.2 65.5±4.34 57.0±11.0 5.95 ±2.48 11.0±1.02 8.54±2.70 7.10±0.776 9.02±2.79

where D̃ indicates the sum of distance of marginal distributions, and zi is the
i-th element of z, and n is the dimension of latent variable z.. Note that min-
imizing the distance of two PDFs, i.e., D(φS , φT ) of Eq.(11), is not equivalent

to minimizing the distance of their marginal distributions, i.e., D̃(φS , φT ) in
Eq.(13). Here, we propose the latter to be a surrogate solution of the former.
As discussed in the work of [24], this substitution could lead to an ineffective con-
straint. However, as the features adapted in VarDA are extracted via variational
approximation to N (0, I), the effect of this substitution can be alleviated with
weak correlations among the element variables of the features. Specifically, as we
assume the priors pθS (z) and pθT (z) to be both Gaussian, and their covariance
matrices be diagonal. This assumption leads to the fact that D(θS , θT ) = 0 if

and only if D̃(θS , θT ) = 0. As qφS (z) and qφT (z) approximate pθS (z) and pθT (z),
respectively, this alternative is reasonable as a measurement of the discrepancy.
Moreover, D̃(φS , φT ) can be taken as a sliced version of D(φS , φT ). The detail
of this sliced distance can be found in the Supplementary Material document.

Finally, the minibatch version of the total loss, i.e., Eq.(1), denoted as H̃(ω),
is given by,

H̃(ω) =− α1 · L̃S(θS , φS ;XS , YS)

− α2 · L̃T (θT , φT ;XT , ŶT ) + α3 · D̃(φS , φT ). (14)

Algorithm 1 provides the procedure of minimizing H̃.

4 Experiments and results

4.1 Data and experimental setup

We denote the proposed VAE-based method with explicit regularization for
domain adaptation as VarDA. We used two data sets for experiments. One is
the Multi-Modality Whole Heart Segmentation (MM-WHS) Challenge dataset1

1https://zmiclab.github.io/mmwhs
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Table 3: Quantitative evaluation results of the segmentation of 2D MR images
from MM-WHS dataset, where the CT images as the source domain. Note:
N/A means that the ASSD value cannot be calculated due to no prediction for
that cardiac structure.

methods
Dice (%) ASSD (mm)

MYO LA LV RA RV MYO LA LV RA RV
NoAdapt 0.0811±0.272 3.08±11.63 0.00±0.00 0.742±2.44 23.9±29.2 N/A N/A N/A N/A N/A
PnP-Ada 32.7±23.8 49.7±30.4 48.4±28.2 62.4±17.6 44.2±18.8 6.89±2.96 22.6±11.1 9.56±5.14 20.7±16.0 20.0±19.6
SIFA 37.1±16.0 65.7±18.9 61.2±27.5 51.9±23.3 18.5±19.5 11.8±7.15 5.47±3.77 16.0±15.1 14.7±7.58 21.6±10.1
VarDA 47.0±16.6 63.1±14.1 73.8±14.1 71.1±9.30 73.4±7.55 4.73±1.99 5.33±1.60 4.30±2.53 6.97±3.28 4.56±1.66

[43, 44], and the other is the Multi-Sequence Cardiac MR Segmentation (MS-
CMRSeg) Challenge dataset2 [45].

MM-WHS dataset: The organizers provided 20 MR and 20 CT 3D images
with gold standard segmentation, which are not paired. These images were
collected from different patients and different clinical sites. For evaluation,
we included the following five structures for segmentation: the right atrium
blood cavity (RA), the right ventricle blood cavity (RV), the left atrium blood
cavity (LA), the left ventricle blood cavity (LV), and the myocardium of the left
ventricle (MYO). We employed the CT images as the source domain, and the
MR images as the target. For comparison, we followed the experiment protocols
in [10, 11], and randomly split the images from both domains into the training
set consisting of 16 subjects and the test set of the remaining 4 subjects. For
convenience, all images were rigidly aligned and resampled into 1 × 1 × 1 mm.
For 2D experiments, we used the axial slices, which were intensity normalized
and cropped with an ROI of 192× 192 pixel.

MS-CMRSeg dataset: The challenge provided three CMR sequences, i.e.,
the LGE , bSSFP and T2 images, and the target of this challenge is to segment
RV, LV and MYO of the LGE CMR images. Hence, we used the LGE images
as the target domain. Also, the bSSFP CMR covers more similar part of the
heart with the LGE images and contains more slices than T2, we therefore chose
bSSFP images as the source domain. The organizers provided 45 bSSFP CMR
images with 35 of them having gold standard segmentation of RV, LV and MYO.
The target data consisted of 5 annotated LGE CMR images for validation and
40 images without ground truth for test. The bSSFP images consist of 8 to 12
contiguous slices with in-plane resolution of 1.25 × 1.25 mm, covering the full
ventricles from the apex to the basal plane of the mitral valve. The LGE CMR
images are composed of 10 to 18 slices with in-plane resolution of 0.75 × 0.75
mm, covering the main body of the ventricles. As the proposed method was
for unsupervised domain adaptation problem, we shuffled the bSSFP CMR and
LGE CMR images, which were collected from the same subjects, to make them
unpaired. For experiments, all images were intensity normalized, resized to be
the same resolution of 1.0×1.0 mm and cropped with an ROI of 192×192 pixel.

2https://zmiclab.github.io/mscmrseg19
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The dice metric (Dice) and average symmetric surface distance (ASSD) were
employed to evaluate the performance of the proposed method [46]. Dice mea-
sures the overlap between the ground truth and predicted volume or area, and
ASSD is used to assess the segmentation accuracy at the boundaries [47].

For experiments, we designed a U-net [48] based network for multi-scale
segmentation. The details of the network structure are presented in the Supple-
mentary Material. We adopted Adam optimizer [49] for the training with batch
size of 10. The initial learning rate was set to be 10−4, and was decreased with a
stepped decay rate of 0.9 every 150 iterations. We empirically valued the trade-
off parameters in (14). To achieve this, we validated VarDA on MS-CMRSeg
dataset with α1 = 1, α2 = 10−1, 100, 101, α3 = 100, 10−1, 10−2, 10−3, 10−4, 10−5

, 10−6. We found that the setting of α2 = 1 and α3 = 10−2 was a suitable choice,
and we kept this parameter setting in the following experiments. We further
plotted the loss terms of VarDA during training in Fig.3. As the segmenta-
tion loss from source domain contributed largely to the model optimization,
we separated the loss of the source VAE, i.e., L̃S , into two parts, including
the segmentation loss (denoted by L̃seg) and the remaining loss (denoted by

L̃S/seg). As shown in Fig.3, the regularization term D̃ dropped fast and con-

verged quickly. Moreover, L̃S/seg and its counterpart in target domain, i.e., L̃T ,
even converged in the first 100 iterations.

Figure 3: The losses of VarDA during training on MS-CMR dataset.

4.2 Performance of the proposed method

We compared the proposed VarDA with three state-of-the-art methods, i.e.,
PnP-AdaNet (also denoted as PnP-Ada for short) [10], SIFA [11] and CFDnet
[24]. We also included the method solely trained on the source data without
adaptation, which is referred to as NoAdapt.
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Images VarDASIFAPnP-AdaNetGround Truths

Subject1

Subject2

Subject3

65.8/5.6835.6/10.130.4/19.3

63.3/15.1 51.4/17.2 65.8/1.84

66.4/4.6337.7/11.252.0/14.9

LA

RA

RV

LV

MYO

Figure 4: Visualization of 2D MR image segmentation results. Subject 1, 2, 3
are three slice cases around median Dice score from VarDA, respectively. The
cardiac structure of MYO, LV, LA, RV, RA are indicated in blue, red, yellow,
green and purple color, respectively. The average Dice(%)/ASSD(mm) value is
in orange.

Table 4: Performance comparison of methods on LGE CMR images from MS-
CMRSeg dataset with bSSFP images as the source domain. Here, in row Best
Result, we present the best Dice scores reported from the MS-CMRSeg Challenge,
which did not use same setting of unsupervised domain adaptation as this work.

methods
Dice (%) ASSD (mm)

MYO LV RV MYO LV RV

NoAdapt 14.50±20.18 34.51±31.62 31.10±26.30 21.6±19.4 11.3±13.1 14.5±17.3

PnP-AdaNet 64.64±16.41 78.43±16.24 72.66±19.04 4.64±6.41 13.8±10.3 5.30±5.33

CFDnet 69.1±9.69 86.4±5.62 76.0±10.9 2.46±0.840 3.07±1.66 4.50±2.13

SIFA 70.66±9.689 84.62±7.760 83.99±6.821 2.40±1.22 2.68±1.14 2.05±1.19

VarDA 73.03±8.316 88.06±4.832 78.47±14.86 1.73±0.560 2.55±1.18 3.51±2.24

Best Result1 82.7±6.0 92.2±3.5 87.4± 5.7 - - -

1
Challenge result: http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mscmrseg19/result.html

4.2.1 MM-WHS results

Table 2 reports the segmentation results of 3D MR images, where the CT images
were used as the source domain. The segmentation was done slice-by-slice in
a 2D manner. One can see the results from NoAdapt are poor, indicating
there is a large domain shift between the CT and MR images. Both PnP-
AdaNet and VarDA achieve domain adaptation in a latent feature space, but
the latter obtained evidently better accuracies. SIFA, a method that conducts
domain adaptation from both the image and feature perspectives, nevertheless
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performed worse compared to the proposed VarDA. Particularly, on the right
atrium and right ventricle, SIFA had over 20% Dice score deficit. SIFA largely
depends on the quality of the fake target image translated from the source
data [11]. Since the textures of MR images are more complex than that of the
CT images, translating CT to MR with the same semantic contents is more
difficult than the other way around. Hence, in their work [11] SIFA obtained
much better accuracies on CT images when MR images were used as the source
domain. For CFDnet, as it failed in the segmentation of all structures, we did
not report the results in the table. This indicates that the CF distance could be
challenged in domain adaptation, when the structures to be segmented are over
complex. In addition, the average Dice score of the eleven supervised methods
reported in [44] ranged in (0.674, 0.874) with mean value as 0.824. We provide
this result here solely for reference.

Additionally, to compare with the results reported in [10] and [11], which
are all in 2D, we evaluated the performance of these methods using the 2D
images extracted from the axial view of the 3D images around the center of
the heart. The results are presented in Table 3. Again, the proposed VarDA
performed better in general. VarDA achieved better Dice scores and ASSD
values than PnP-AdaNet with statistical significance (p < 0.01) for all five
structures. When compared with SIFA, VarDA performed better on MYO, LV,
RA and RV (p < 0.01) in both Dice scores and ASSD values. For LA, they
achieved similar Dice (p = 0.1563) and ASSD (p = 0.7558).

Fig. 4 visualizes the segmentation results from 3 cases, which were the
median cases of VarDA according to their average Dice scores. One can see that
the domain adaptation methods are generally challenged in this task, though
the proposed method demonstrated more semantically meaningful results. As
shown in Table 3, NoAdapt totally failed in this segmentation task, and thus
the figures can not represent the accuracies in this case. Indeed RV could be
more difficult to segment than other structures when using domain adaptation
techniques. The reason could be that the contrast between RV and RA was
low, while others were higher. Hence, the process of domain adaptation might
function better on the structures of LV and LA, while confuse RV and RA.
As shown in Fig.4, RV was commonly predicted to be in the region of RA by
PnP-AdaNet and SIFA. Note that previous works [44,45], and challenges (such
as MM-WHS and MS-CMRSeg) have shown that RV was difficult to segment.

4.2.2 MS-CMRSeg results

Table 4 presents the Dice and ASSD of LGE CMR segmentation, where the
bSSFP images were used as the source domain. The segmentation was done
slice-by-slice in a 2D manner. Fig. 5 visualizes the segmentation results of a
subject, which was the median case of VarDA according to the average Dice
score.

Compared with the task for domain adaptation between cardiac CT and MR
images, NoAdapt in this task performed rather well, indicating that the domain
shift between bSSFP and LGE images is much smaller than that between CT
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Original LGE 
CMR Images

VarDA / DAVAEVarDASIFAPnP-AdaGround truth 
segmentation (86.1/1.33) (77.4/2.85) (79.5/5.23)

MYORV
LV

B

M

A

(79.5/2.60)
CFDnet

Figure 5: Visualization of 2D LGE MR cardiac image segmentation results.
These cases are the apical (indicated with A in the column of Images), middle
(M) and basal (B) slices from the subject with median Dice score from VarDA.
The cardiac structure of MYO, LV, RV are indicated in blue, red and green color
respectively. Note that the sub-figures of segmentation results are the zoom-in
and cropped images for better visualization. The average Dice(%)/ASSD(mm)
values of this case from the three methods are in brackets. Note that VarDA is
the same as DAVAEVarDA.

and MR. Therefore, the domain adaptation between bSSFP and LGE is easier.
Compared to PnP-AdaNet, VarDA obtained significantly better Dice scores and
ASSD values on all structures (p < 0.01). Compared to SIFA, VarDA achieved
better accuracies on MYO and LV segmentation but worse on RV. Compared
to CFDnet, VarDA obtained comparable average Dice score (p = 0.05042),
and significantly better average ASSD value (p = 0.001487). In addition, for
reference we provide the results of MS-CMRSeg challenge here. The Dice scores
of the top ten methods on the leaderboard, which tackled paired data, ranged
in (0.854, 0.922) for LV, (0.713, 0.827) for Myo and (0.792, 0.874) for RV. We
further provided the best Dice scores reported from the MS-CMRSeg Challenge

Table 5: Performance of the proposed framework with different inputs or num-
bers of convolution layers in the decoder. The methods were tested on LGE
CMR segmentation, where the bSSFP CMR was used as the source domain.

No. of layers
Dice (%) ASSD (mm)

MYO LV RV MYO LV RV
VarDA (N=0) 70.70±9.503 86.62±5.762 77.87±10.29 1.92±0.682 2.63±1.23 4.81±2.61
VarDA (N=3) 70.73±9.453 86.61±6.271 77.38±11.26 1.86±0.661 2.60±1.21 4.21±2.01
VarDA (N=7) 73.03±8.316 88.06±4.832 78.47±14.86 1.73±0.556 2.55±1.18 3.51±2.24
VarDA (N=11) 72.86±9.101 87.26±6.071 78.27±10.08 1.89±0.854 2.72±1.68 3.90±2.12
VarDAweak (N = 3) 70.15±9.409 86.55±5.212 74.93±12.03 2.04±0.722 3.10±1.16 5.12±2.32
VarDAweak (N = 7) 71.80±8.492 86.75±5.571 78.11±10.75 2.00±0.839 2.93±1.54 3.80±1.91
VarDAweak (N = 11) 72.16±9.825 87.18±5.854 79.08±10.75 1.99±0.908 2.71±1.40 3.43±2.04
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Figure 6: Typical examples of reconstructed images from the encoder with
different numbers of layers in the proposed framework.

in Table 4 for reference.

4.3 Effect of reconstruction

This study investigates the role and effect of the reconstruction model to the
segmentation in the proposed domain adaptation framework. It is arguable
that the reconstruction mechanism of the decoder helps constrain the anatomic
shape, which leads to a better performance of the segmentor. To verify this,
we first altered the modeling capability of the reconstruction model, i.e., the
number of convolution layers in the decoder, denoted as N , and compared the
segmentation performance of the framework. Four schemes were evaluated, i.e.,
with N=0, 3, 7 and 11, where N = 0 means the reconstruction model is removed
from the proposed framework. Then, we further studied the proposed framework
with a reconstruction model that solely takes the latent features as input without
the segmentation, namely the decoder in (4) becomes EqφS (z|x)[pθS (x|z)]. This
is a weaker version of the proposed method and thus is referred to as VarDAweak.
We conducted this study on the LGE segmentation using bSSFP CMR as the
source domain.

Table 5 provides the Dice and ASSD results of LGE CMR segmentation.
VarDA (N = 3) with three layers for the decoder network did not perform ev-
idently better than VarDA (N = 0) (p = 0.6836 for Dice and p = 0.0236 for
ASSD), indicating the gain from the small reconstruction model was limited.
However, when seven layers were used, where the decoder had a much greater
reconstruction capacity, VarDA (N = 7) achieved much better segmentation
accuracies (p < 0.01 for both Dice and ASSD). When the number of layers in-
creased to eleven, VarDA (N = 11) achieved similar results with VarDA (N = 7)
(p = 0.5370 for Dice and p = 0.0518 for ASSD), probably due to the fact that
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the reconstruction capacity had reached its upper limit, and no gain could be
pursued. For VarDAweak, similar results were observed. We have provided visu-
alization examples of the reconstruction results in the Supplementary Material,
which agreed with the quantitative results in Table 5.

With the features being updated to be domain-invariant during the training
stage, the generated target label would be more accurate than those of NoAdapt.
Moreover, with the optimization process to minimize the reconstruction error,
the anatomic structure of the pseudo labels can be further improved. Table 5
presents the results of the weak form of VarDA with seven-layer CNN recon-
structor, i.e., VarDAweak (N = 7), where the reconstructor does not have the
input of the segmentation. One can see that VarDA (N = 7) obtained evidently
better Dice scores (p < 0.01) and ASSD values (p = 0.011) than VarDAweak

(N = 7). This confirms that VarDA, with reconstruction network having inputs
of both the latent features and (pseudo) labels, could achieve better segmenta-
tion performance, thanks to the constraints and knowledge of anatomic shapes
in the segmentation.

Fig. 6 visualizes the reconstruction results from 3 bSSFP CMR images and
3 LGE CMR images. One can see that the reconstructed images from the
decoders with higher capacity networks, i.e., N = 7 and N = 11, contain more
meaningful textures, when compared with the images reconstructed from VarDA
(N = 3). However, the texture details reconstructed from VarDA (N = 7) and
VarDA (N = 11) are comparable, which agrees with the quantitative results of
segmentation accuracies in Table V of the original manuscript.

4.4 Comparisons with adversarial training

In this section, we compared the proposed method with two other approaches
using adversarial training . Here, the adversarial training with joint distribu-
tions is referred to as DAVAEAdvJoint , where we concatenate the latent features
and the prediction label for discrimination. Similarly, the adversarial training
without joint distributions is referred to as DAVAEAdv, where we only use the
latent features for discrimination. For comparison, we also denote the proposed
method as DAVAEVarDA. We applied these three methods to the segmenta-
tion of LGE CMR where bSSFP CMR was used as the source domain. The
results shown that the proposed method performs much better than the ad-
versarial approaches in the same VAE-based U-Net framework. As shown in
the work of Kamnitsas et al. [50] and Dou et al. [10], deep features of multi-
layers were much more effective for domain adaptation than shallow features.
While in the VAE-based framework, the features for adaptation were shallower
than those of PnP-AdaNet. Moreover, the skip connections in the U-Net of the
framework concatenated the shallow features with deep ones, which further lead
the features ineffective for adversarial training based methods. Details of the
framework for adversarial training and the comparison results are provided in
the Supplementary Material.
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Figure 7: Model performance with regard to the number of samples during
training. The red line shows the results with all the 45 LGE CMR images
(target domain) and different number of bSSFP CMR images (source domain).
The green line shows the results with all the 35 bSSFP CMR images and different
number of LGE CMR images.

(a) Before domain adaptation. (b) After domain adaptation.

Figure 8: T-SNE plot of features for bSSFP (blue) → LGE CMR (orange)
images via VarDA.

4.5 Performance with different sample complexity

To validate the model performance with different sample complexity, we con-
ducted two set of ablation experiments. We first used all the 45 LGE CMR
images as the target data, and set the number of source data, i.e., the bSSFP
CMR images, to be 5, 10, 15, 20, 25, 30 and 35, respectively. As Fig. 7 showed,
the performance of the model improved and even did not show convergence with
the increasing number of the source samples. We further did the experiments
with all the source images, and set the number of target data to be 5, 10, 15,
20, 25, 30, 35, 40 and 45, respectively. As shown in Fig. 7, the performance
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of the model also improved with the increasing number of the target samples,
though not as stably as the improvement with different source data. The results
demonstrated that both the diversities of source and target data were important
for the model training.

To see how the distribution discrepancy was reduced by VarDA, we further
visualized the features by T-SNE [51]. As shown in Fig.8, the data points in
two domains showed strong clustering before adaptation. After training with
VarDA, the representations learned by the model became more indistinguishable
between the source and target domains.

5 Conclusion

In this work, we proposed a new VAE-based framework which drives two do-
mains to one parameterized distribution, and introduced a regularization for
the variational approximation in an explicit formulation. Minimization of this
regularization has been shown to be efficient in correcting domain shifts in
the segmentation tasks for unsupervised domain adaptation. We validated the
proposals using two segmentation tasks, i.e., the cross-modality (CT and MR)
whole heart segmentation and the cross-sequence (bSSFP and LGE) CMR seg-
mentation. The results showed that the explicit regularization was more effec-
tive, compared to the adversarial training, and the proposed domain adaptation
method achieved state-of-the-art performance in the two segmentation tasks.
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[44] X. Zhuang, L. Li, C. Payer, D. Štern, M. Urschler, M. P. Heinrich, J. Os-
ter, C. Wang, Örjan Smedby, C. Bian, X. Yang, P.-A. Heng, A. Mortazi,
U. Bagci, G. Yang, C. Sun, G. Galisot, J.-Y. Ramel, T. Brouard, Q. Tong,
W. Si, X. Liao, G. Zeng, Z. Shi, G. Zheng, C. Wang, T. MacGillivray,
D. Newby, K. Rhode, S. Ourselin, R. Mohiaddin, J. Keegan, D. Firmin,
and G. Yang, “Evaluation of algorithms for multi-modality whole heart
segmentation: An open-access grand challenge,” Medical Image Analysis,
vol. 58, p. 101537, 2019.

[45] X. Zhuang, “Multivariate mixture model for myocardial segmentation com-
bining multi-source images,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 12, pp. 2933–2946, Dec 2019.

[46] Q. Dou, L. Yu, H. Chen, Y. Jin, X. Yang, J. Qin, and P.-A. Heng, “3D
deeply supervised network for automated segmentation of volumetric med-
ical images,” Medical image analysis, vol. 41, pp. 40–54, 2017.

[47] T. Heimann, B. Van Ginneken, M. A. Styner, Y. Arzhaeva, V. Aurich,
C. Bauer, A. Beck, C. Becker, R. Beichel, G. Bekes et al., “Comparison
and evaluation of methods for liver segmentation from CT datasets,” IEEE
transactions on medical imaging, vol. 28, no. 8, pp. 1251–1265, 2009.

27



[48] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on Medi-
cal image computing and computer-assisted intervention. Springer, 2015,
pp. 234–241.

[49] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in
International Conference on Learning Representations, 2014.

[50] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson,
A. Kane, D. Menon, A. Nori, A. Criminisi, D. Rueckert et al., “Unsu-
pervised domain adaptation in brain lesion segmentation with adversarial
networks,” in International conference on information processing in medical
imaging. Springer, 2017, pp. 597–609.

[51] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008.

28


	1 Introduction
	2 Related work
	2.1 Domain adaptation
	2.2 Variational autoencoder

	3 Methodology
	3.1 The proposed framework for domain adaptation
	3.2 Conditional variational autoencoder with segmentation
	3.2.1 VAE for source domain
	3.2.2 VAE for target domain

	3.3 A regularization for the variational approximation

	4 Experiments and results
	4.1 Data and experimental setup
	4.2 Performance of the proposed method
	4.2.1 MM-WHS results
	4.2.2 MS-CMRSeg results

	4.3 Effect of reconstruction
	4.4 Comparisons with adversarial training
	4.5 Performance with different sample complexity

	5 Conclusion

