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Novel Subtypes of Pulmonary Emphysema
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Abstract— Pulmonary emphysema overlaps consider-
ably with chronic obstructive pulmonary disease (COPD),
and is traditionally subcategorized into three subtypes pre-
viously identified on autopsy. Unsupervised learning of
emphysema subtypes on computed tomography (CT) opens
the way to new definitions of emphysema subtypes and
eliminates the need of thorough manual labeling. How-
ever, CT-based emphysema subtypes have been limited to
texture-based patterns without considering spatial location.
In this work, we introduce a standardized spatial mapping of
the lung for quantitative study of lung texture location and
propose a novel framework for combining spatial and tex-
ture information to discover spatially-informed lung texture
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patterns (sLTPs) that represent novel emphysema subtype
candidates. Exploiting two cohorts of full-lung CT scans
from the MESA COPD (n = 317) and EMCAP (n = 22) studies,
we first show that our spatial mapping enables population-
wide study of emphysema spatial location. We then evalu-
ate the characteristics of the sLTPs discovered on MESA
COPD, and show that they are reproducible, able to encode
standard emphysema subtypes, and associated with phys-
iological symptoms.

Index Terms— Lung CT, emphysema, unsupervisedlearn-
ing, spatial mapping, lung texture.

I. INTRODUCTION

PULMONARY emphysema is morphologically defined by
the enlargement of airspaces with destruction of alveo-

lar walls distal to the terminal bronchioles [1]. Emphysema
overlaps considerably with chronic obstructive pulmonary
disease (COPD), which is the third leading cause of death
in the world [2]. Based on small autopsy series, pulmonary
emphysema is traditionally subcategorized into three standard
subtypes, which can be visually assessed on computed tomog-
raphy (CT) of the lung, using the following definitions:
• Centrilobular emphysema (CLE): low-attenuation regions

surrounded by normal lung, and located centrally in the
secondary pulmonary lobules [3]. Classically, its distribution
is predominantly in the apical regions of the lungs;

• Panlobular emphysema (PLE): low-attenuation regions
which are uniformly diffuse in the secondary pulmonary
lobules [4]. Classically, its distribution is predominantly in
the basal regions of the lungs;

• Paraseptal emphysema (PSE): low-attenuation regions adja-
cent to pleura and to intact interlobular septa, typically
found in juxtapleural lobules adjacent to mediastinal and
costal pleura [3]. Classically, its distribution is predomi-
nantly in the upper and middle lung zones.
The three standard emphysema subtypes are associated

with distinct risk factors and clinical manifestations [5], and
may represent different diseases. However, given that these
subtypes were initially defined at autopsy before the avail-
ability of CT scanning, there have been disagreements among
pathologists on the very existence of such pure subtypes [6],
current guidelines modify them [3] and a large emphysema
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study on 1,800 autopsies in [7] ignored them completely,
mainly for practical reasons. Radiologists’ interpretation of
these subtypes on CT scans is labor-intensive, with substantial
intra- and inter-rater variability [3], [4], [8].

Automated CT-based analysis enables in vivo study of
emphysema patterns, and has received increasing interest
recently [9], [10], either via supervised learning for replicating
emphysema subtype labeling as in [11]–[15], or via unsuper-
vised learning for the discovery of new emphysema subtypes
as in [16]–[18].

Preliminary CT-based clinical studies suggest that regional
analysis will be instrumental in advancing the understanding of
multiple pulmonary diseases [19]. In the case of emphysema,
it is suspected that different emphysema subtypes affect the
lungs in specific anatomical regions. But the problem of
how many subtypes exist, how they evolve in time and how
they vary with spatial (anatomical) location is still unsolved.
To date, categorization of emphysema on CT images has relied
only on analysis of local textural patterns, using either grey-
level co-occurrence matrix (GLCM) features [12], [16], texton
features [13], [14], or local binary pattern (LBP) features [11].
All these approaches use intensity information without consid-
eration of spatial location.

In two previous studies [17], [18], we proposed to use
local textural patterns to generate unsupervised lung texture
patterns (LTPs) followed by LTP-grouping based on their
spatial co-occurrence in local neighborhoods. Such separate
use of intensity and spatial information cannot guarantee
spatial and textural homogeneity of the final LTPs.

In this study, we propose to perform discovery of LTPs
via unsupervised clustering of joint spatial and textural infor-
mation of local texture patterns. Spatial information can be
inferred from crude partitioning of the lung with subdivisions
of Cartesian coordinates or by segmenting the lung into zones
(e.g. upper, lower) [4] or lobes [20]. However, such approaches
have limited spatial precision and lack relative information
such as peripheral versus central positioning, which is impor-
tant in defining paraseptal emphysema and subpleural bul-
lae. We introduced in [21] a new standardized lung shape
spatial mapping, called Poisson distance conformal mapping
(PDCM), which enables detailed, precise and standardized
mapping of voxel positions with respect to the lung surfaces.
This paper further refines the PDCM algorithm and exploits it
for the study of emphysema spatial patterns across populations
of CLE-, PLE- and PSE-predominant subjects. This paper
also provides an exhaustive description of the framework for
combining spatial and texture information in the unsupervised
discovery of emphysema-specific texture patterns, which are
called spatially-informed LTPs (sLTPs).

Exploiting a cohort of 317 full-lung CT scans from the
MESA COPD study [4], and 22 longitudinal CT scans from
the EMCAP study [22], the discovered sLTPs are exten-
sively evaluated as emphysema subtype candidates in terms
of reproducibility with respect to training sets, labeling task
and scanner generations, ability to encode standard emphy-
sema subtypes, and associations with respiratory symptoms.
A graphical pipeline of the learning and evaluation steps is
provided in the Supplementary Material.

II. METHOD

A. Overview

The proposed unsupervised learning framework is structured
in four main steps to model the spatial and texture features
within emphysema-like lung, and generate the sLTPs emphy-
sema subtype candidates:

1) Generate spatial mapping of the lung masks: mapping vox-
els within the lung masks into a custom Poisson distance
map (PDM) to encode the “peel to core” distance, and a
conformal mapping (PDCM) to distinguish superior versus
inferior, anterior versus posterior and medial versus lateral
voxel positions;

2) Encode regions of interest (ROIs) within emphysema-
like lung: sampling ROIs from emphysema segmentation
masks, and generating spatial features (based on spatial
mapping) and texture features of each ROI;

3) Discover an initial set of LTPs: clustering training ROIs into
a large number of clusters, based on texture features, and
then iteratively augment the LTPs with spatial information
via regularization;

4) Generate the final set of sLTPs: measure the similarity
between LTPs in the initial set, group similar / redundant
LTPs and generate the final set of sLTPs via partitioning a
similarity graph.

We now detail these four steps individually.

B. Spatial Mapping of the Lung Masks

To generate spatial mapping of the lung masks, we first
use the concept of Poisson distance map (PDM), introduced
in [23], to encode the shape of individual lung masks V .
PDM is commonly used for characterizing the silhouette of an
object via continuous labeling of voxel positions with scalar
field values U3d in the range of [0, 1]. In our case, the field
value U3d encodes the “peel to core” distance between a given
voxel and the external lung surface ∂V . This field is computed
by solving the following Poisson equation:

�U3d(x, y, z) = −1, for (x, y, z) ∈ V

subject to U3d(x, y, z) = 0, for (x, y, z) ∈ ∂V (1)

where �U = Ux x+Uyy+Uzz is the Laplacian operator based
on 2nd-order spatial derivatives along x, y, z.

The solution for U proposed in [23] is guaranteed to be
smooth according to [24]. It has the advantage of generating
distance values that are sensitive to global shape characteris-
tics, unlike other distance metrics (e.g. Euclidian or Metropolis
distances) which exploit single contour points. PDM can
therefore reflect rich shape properties of the lung.

The core of the PDM is the set of voxels (one or very
few) where U3d(x, y, z) = 1. The PDM generated from a
lung surface generally exhibits nice star-shaped profiles when
viewed in axial cuts, with maxima near the center. On the other
hand, core positions can vary greatly among subjects along
the superior-inferior axis, due to variable morphologies of the
lungs, especially near the heart and at the base. We illustrate
an example in Fig. 1 (b) where the PDM generated with
Equation (II-B) has core point(s) located close to the base
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Fig. 1. Illustration of the lung shape spatial mapping: (a) Original intensity image (visualized on a coronal slice, with the green contour indicating the
boundary of lung mask); (b) Corresponding Poisson distance map (PDM) U3d with values in range [0,1] that measure the “peel to core” 3D distance
to the lung mask external surface; (c) Modified PDM Umod for comparable core locations between subjects; (d) 3D conformal mapping of the lung
PDM to a sphere leading to a Poisson distance conformal map (PDCM) where pixels are assigned three coordinate values (r, θ, φ) which enable to
distinguish superior vs. inferior, anterior vs. posterior and medial vs. lateral positions, in addition to “peel to core” distance.

of the lung rather than concentrated toward the middle of
the longitudinal axis. We propose the following calibration of
lung PDMs to (1) prevent U3d = 1 in most apical and basal
regions, and (2) enforce U3d = 1 in a large range of axial
slices. This makes PDM values numerically more consistent
between subjects over a comparable range of axial slices.

We denote Umax
3d (i) the maximal in-slice value of

U3d(., ., i), where the i th axial slice index is counted from the
apex. We denote iV % the highest slice index value such that
the total lung volume sumed over all slices with lower indices
is < V % of the total lung volume. A normalized version
(denoted as U2d ) of the original PDM U3d , is then defined,
per axial slice index i , as U2d (., ., i) = U3d(., ., i)/Umax

3d (i).
We further define Umod by combining U3d and U2d values, as
follows:

Umod(., ., i) = U2d(., ., i), ∀ iu � i � id

Umod(., ., i) = U3d(., ., i)/Umax
3d (iu), ∀ i < iu

Umod(., ., i) = U3d(., ., i)/Umax
3d (id), ∀ i > id (2)

with iu (resp. id ) the smallest (resp. highest) slice index where
Umax

3d reaches a local maximum. To ensure that a consistent
portion of the lung is included in [iu , id ] we further enforce: if
iu > i25% then iu = i25% (resp. if id < i75% then id = i75%).
We illustrate in Fig. 1(c) an example where Umod = 1 over
a large range of axial slice indices and exhibits decreasing
values when moving toward the apex or the base of the lung.

To equip the PDM with a coordinate system, we set the
final core coordinate center point as the point on the axial
slice index i50% where Umod(x, y, i50%) = 1 and closest to
the 2D center of mass of the axial lung mask (in case of
multiple candidates, we would select one abitrarily, but such
situation was not encountered on our dataset.).

To uniquely encode 3D voxel positions, we define radial
values r = 1 − Umod and add conformal mapping of voxels
positions onto a sphere, generating a Poisson distance confor-
mal map (PDCM). We encode superior versus inferior, anterior
versus posterior and medial versus lateral voxel positioning via
latitude and longitude angles (θ, φ) with respect to the PDM
core defined above and standard image axis. The generation
of the spatial PDCM mapping is illustrated in Fig. 1(d).

The PDCM spatial mapping will be exploited for sLTP
learning, and also to study population-based spatial location
of emphysema, as reported in Section III-B.

C. Texture and Spatial Features

1) Prior Emphysema Segmentation and ROI Sampling: Tex-
ture and spatial analysis is performed within local ROIs
centered on a subset of lung voxels. Sampling ROIs from
emphysema-like lung requires prior emphysema segmentation.
In this study, we exploited a training cohort of full-lung
CT scans and their associated emphysema masks, which are
generated using both a thresholding-based voxel selection and
a hidden Markov measure field (HMMF) segmentation [25].
For thresholding, voxels with attenuation below −950 HU are
selected. The HMMF segmentation enforces spatial coherence
of the labeled emphysematous regions, and relies on paramet-
ric modeling of intensity distributions within emphysematous
and normal lung tissues to adapt to individual and scanner
variability. Percent emphysema measures the proportion of
emphysematous voxels within the lung region, and is denoted
%emph−950 or %emphHMMF, depending on the emphysema
segmentation method.

In preliminary implementations, we tested several options
for ROI sampling such as keypoint sampling in [17] and
regular sampling in [18]. In this study, we use the system-
atic uniform random sampling (SURS) strategy as suggested
in [26] for use on lung CT scans. Each individual lung mask
is randomly sampled via dividing the bounding box of the
lung into 3D stacks, and then selecting voxels per stack with
a random shift of positions. Two parameters are used for the
sampling: β1 is used for the random shift of positions and β2 is
used to set the number of sampled voxels per stack. The SURS
sampling ensures even representation of all lung regions while
introducing variability in the position of sampled points with
the random shift parameter β1. Only ROIs with both percent
emphysema %emph−950 > 1% and %emphHMMF > 1%
are retained for training to ensure sufficient representation of
emphysematous regions (i.e. each training ROI has a minimal
proportion of emphysema but can be a mixture of normal and
emphysematous tissues).

2) Texture Features: We use texton-based texture features to
characterize each ROI, which model textures as the repetition
of a few basic primitives (called textons), and were shown to
outperform other texture features in unsupervised lung texture
learning in [18]. A texton codebook is constructed by retaining
the cluster centers (textons) of raw pixel representations of
small-sized training patches. The clustering is performed with
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K -means. By projecting all small-sized patches of a ROI
onto the codebook, the texton-based feature of the ROI is the
normalized histogram of texton frequencies.

3) Spatial Features: To generate spatial features of individ-
ual ROIs, we divide the lung masks into lung sub-regions by
discretizing our continuous lung shape spatial mapping with
a minimal granularity. We divided r ∈ [0, 1] into 3 regular
intervals to distinguish pleural from mid from core regions,
divided θ ∈ [0, 2π] into 4 regular intervals to distinguish
anterior, medial, posterior and lateral regions, and divided φ ∈
[−π/2, π/2] into 3 regular intervals to distinguish inferior,
mid-level and superior regions. The spatial feature of each ROI
is a one-hot vector indicating the lung sub-region it belongs
to. Ordering of the bins that represent the sub-regions is done
via arbitrary spatial rastering as no assumption needs to be
made on spatial adjacency of adjacent bins.

D. Initial Augmented LTPs

We formulate the discovery of spatially-informed lung tex-
ture patterns (sLTPs) as an unsupervised clustering problem.
One key factor in unsupervised clustering is the choice of
the number of clusters. The algorithm is expected to find
finer-grained emphysema subtype candidates than the three
standard ones. Therefore, the number of clusters should be
large enough to handle the diversity of textures encountered
in the lung volumes (i.e. good intra-cluster homogeneity),
and small enough to avoid redundancy (i.e. good inter-cluster
differences) for clinical interpretation. Fixing a priori the
number of clusters may prevent the discovery of rare patterns.
We therefore propose a two-stage learning strategy, where
we first generate an arbitrary large number of fine-grained
lung texture patterns (LTPs), and then group similar LTPs to
produce the final set of sLTPs, according to a dedicated metric.

LTPs {LT Pk} ({·} denotes a set of variables hereafter) are
characterized by their texture and spatial feature centroids
(FT LT Pk , FSLT Pk ), which are encoded as histograms via
averaging over assigned ROIs. An initial set of LTPs is
generated by clustering with texture features, and is then
augmented with spatial regularizations via iterative updates
of the centroids and the ROIs assignements as described in
Algorithm 1 and using the following mixed χ2-	2 similarity
metric to enforce spatial concentration of LTPs while preserv-
ing their intra-class textural homogeneity:

{



(t)
LT Pk

}∗
{λ,W,γ } = argmin

{
(t)
LT Pk
}

∑
k

∑
x∈
(t)

LT Pk

χ2
(

FTx , FT (t−1)
LT Pk

)

+λ · W ·
∣∣∣∣∣∣FSx − FS(t−1)

LT Pk

∣∣∣∣∣∣2

2

+γ · 1
[
χ2

(
FTx , FT (t−1)

LT Pk

)

> P95
x �∈
(t−1

LT Pk
)

[
χ2

(
FTx �, FT (t−1)

LT Pk

)]⎤⎦
(3)

where P95 denotes the 95th percentile, 

(t)
LT Pk

denotes the
set of ROIs that are labeled as LT Pk at iteration t and

Algorithm 1 Generating and Augmenting LTPs
Input : NLT P : Target number of LTPs;
{x, FTx , F Sx }: Training ROIs x along with their
texture features FTx and spatial features F Sx .
Output: {FT LT Pk , F SLT Pk }k=1,...,NLT P : LTP texture and

spatial feature centroids.
Procedure:
- Cluster training ROIs {x} into NLT P clusters with {FTx },
using K -means.
- Initialize 


(0
LT Pk

) (k = 1, . . . , NLT P ) with the NLT P LTPs.

- For each k, compute FT (0)
LT Pk

, F S(0)
LT Pk

based on 

(0)
LT Pk

.
- Set t = 1
while t = 1 or {
(t−1)

LT Pk
} �= {
(t−2)

LT Pk
} do

1. {
(t)
LT Pk
} ← {
(t−1)

LT Pk
}∗ following Equation (3);

2. Compute {FT (t)
LT Pk

, F S(t)
LT Pk
} based on {
(t)

LT Pk
};

3. t = t + 1.
end

{



(t)
LT Pk

}∗
{λ,W,γ } denotes the optimal labeling identified with

a set of parameters {λ, W, γ } and the centroids updated
at iteration t − 1. Designing proper distance metrics for
histograms plays a crucial role in many computer vision
tasks. Two popular choices are the χ2 and the 	2 distance
metrics. The latter equally weights distances of all bins and
is favored to compare one-hot vectors, while the former is a
weighted distance favored to compare probability distributions.
For the texture feature histograms that encode distributions
over textons the first distance metric χ2(·) measures the χ2

distance between the textural features of a ROI x and the
centroid of LT Pk . For the spatial features that are sparse one-
hot vectors for individual ROIs, the second distance metric
|| · ||22 measures the 	2 distance between the spatial features of
a ROI x and the centroid of LT Pk . A textural penalty term
is then introduced as the third term, where 1 is the indicator
function. Update of LTP centroids (step 2 in Algorithm 1) is
performed after relabeling each ROI with the LTP to which it
has the smallest weighted feature distance without turning on
the textural penalty.

Parameter W: This parameter is used to scale contributions
between textural and spatial feature distances so that λ can be
tuned within a small range of values. We defined it as:

W = SSTT

SSTS
=

∑
x χ2

(
FTx ,

∑
x FTx/N

)
∑

x

∣∣∣∣FSx −∑
x FSx /N

∣∣∣∣2
2

(4)

where SSTT and SSTS are respectively the texture and spatial
total sum-of-square distances, computed on the whole N train-
ing ROIs to measure the overall diversity of texture and spatial
features.

Parameter λ: This parameter controls the spatial regular-
ization which will inevitably decrease textural homogeneity
of individual LTPs. The value of λ is set as follows. First
we define SSWT as the initial sum-of-square intra-cluster
homogeneity of texture features without spatial regularization:

SSWT =
∑

k

∑
x∈
(0

LT Pk
)
χ2

(
FTx , FT (0)

LT Pk

)
(5)

Then we define SSWλ
T as the SSWT measured on

augmented LTPs with spatial regularization enforced with
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λ ∈ [0, 2]. Final value of λ is set to:

λ∗ = argmax λ s.t. �SSWT (λ) < LT

where �SSWT (λ) = SSWλ
T − SSWT

SSWT
% (6)

In the context of unsupervised discovery, we hereby spa-
tially regularize the augmented LTPs via an empirically
acceptable textural homogeneity loss with the threshold LT

(set based on data observations, as reported in Section III).
Parameter γ : This parameter weights the textural penalty

term which is used for ROI labeling. We set γ = ∞ to prevent
a ROI from being labeled to a spatially preferred but texturally
dissimilar LTP.

E. Final sLTPs

In this final step, we generate sLTPs by partitioning a
weighted undirected graph G where nodes are the NLT P

initial augmented LTPs. As in [21], we define the edge weight
between nodes i and j as the average replacement ratio of
training ROIs relabeled from label LT Pi to LT Pj if LT Pi

is removed from the set of centroids and vice versa. In the
replacement task, a ROI with a textural distance to the LT Pk

centroid exceeding the maximal intra-cluster textural distance
of LT Pk is not re-labeled. To prevent weak associations of
LTPs that are not easily replaceable, we remove edges with
weights lower than 0.5 (i.e. 50% replacement). Indeed, graph
partitioning tends to preserve nodes that are not connected,
which in our case would correspond to LTPs that are not
easily replaced by other ones in the labeling task, hence not
redundant. We use the Infomap algorithm [27] to partition
the similarity graph G. As part of its optimization process
that minimizes the description length of the network, Infomap
selects an optimal number of clusters of aggregated LT Pk

which define our final sLTPs. Final texture and spatial cen-
troids of the sLTPs are then computed utilizing the training
ROIs labeled in our final {LT Pk}.

F. Labeling of CT Scans With sLTPs

In the test stage, scans in the whole dataset are labeled
by extracting sample points and their ROIs {x}. Since it is
computationally prohibitive to evaluate the textural and spatial
features on every voxels within the lung masks, we only label
centers of ROIs densely sampled using again SURS. Sampled
ROIs with %emph−950 � 1% or %emphHMMF � 1%
have their center labeled as no-emphysema class. Remaining
sampled centers get a sLTP label, via minimization of the
following cost metric:

χ2(FTx , FT s LT Pk )+ λ · W · ||FSx − FSs LT Pk ||22 (7)

Non-sampled voxels are labeled with the sLTP index of
the nearest sampled center point via nearest neighbor search
within the lung mask (i.e. using a Voronoi diagram). Labeling
lung scans with the discovered sLTPs generates histograms
of sLTPs, which are efficient lung texture signatures exploited
for several tasks, as described in the evaluation sections.

G. Visualization of the sLTPs Spatial Density

To study the spatial distribution of sLTPs, we generate
spatial visualization by scatter plotting of voxels labeled with
individual sLTPs in sagittal projections, as follows.

We first randomly sample an initial set of ROIs over each
lung via SURS sampling. Each ROI is associated with its
center point coordinates (r, θ, φ) in the PDCMs. To avoid
artificial higher densities on the scatter plot in regions close
to the core, we adapt the number of ROIs selected per radial
regions. The r values are binned into Nr intervals with
midpoint values r1, . . . , rNr to generate isovolumetric sub-
volumes of the lung. We then define the sub-sampling ratio
αi = ri/rNr (which approximates the ratio of areas in the
scatter plot) and set the number of ROIs sampled per r bin to
NIsoVi = αi · NIsoV where NIsoV is a pre-set number of ROIs
sampled in the outermost part of the lung.

All ROI centers in the sub-sampled set are converted to
(x, y, z) Cartesian image coordinates and accumulated in a
sagittal single plane, by setting x = 0. Final density plots
of sLTPs are shown in projected radial coordinates r � =√

y2 + z2 and φ� = atan(z/y). We color code each point
on the sagittal projection with the following density measure:

Den(r �,φ�)
s LT Pk

= |
s LT Pk ∩
(r �,φ�)|
|
s LT Pk |

/∑
i |
s LT Pi ∩
(r �,φ�)|∑

i |
s LT Pi |
(8)

where 
(r �,φ�) denotes the set of ROIs at (r �, φ�) positions. The
numerator (first term) in Equation (8) measures the probability
of sLT Pk at projected position (r �, φ�), and the denominator
(second term) measures the observed overall probability of
(r �, φ�) to host any sLT Pi .

III. EXPERIMENTS & RESULTS

A. Data

The data used for evaluation consists of full-lung CT scans
of 317 subjects. All subjects had underwent CT scanning in
the MESA COPD study [4], between 2009−2011. In addition,
22 out of the 317 subjects underwent CT scanning in the
EMCAP study [22], between 2008−2009.

For the MESA COPD study, all CT scans were acquired at
full inspiration with either a Siemens 64-slice scanner or a GE
64-slice scanner, at 120 kVp, speed 0.5 s, and current (mA)
set according to body mass index following the SPIROMICS
protocol [28]. Images were reconstructed using B35/Standard
kernels with axial pixel resolutions within the range
[0.58, 0.88] mm, and 0.625 mm slice thickness.

For the EMCAP study, scans were acquired with a Siemens
16-slice scanner, at 120 kVp, speed 0.5 s, and a current
between 169 mA and 253 mA. Images were reconstructed
using the B31f kernel with axial resolutions within the range
[0.49, 0.87] mm, and 0.75 mm slice thickness.

Emphysema subtypes and severity have previously been
assessed visually in the MESA COPD study (details available
in [4]). The raters included four experienced chest radiologists
from two academic medical centers. They assessed emphy-
sema subtypes on CT scans by assigning a percentage of the
lung volume affected by CLE, PLE and PSE respectively.
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Fig. 2. Population evaluation of emphysema using PDCM. (a) Illustration of superior (S), inferior (I), medial (M), lateral (L), posterior (P) and
anterior (A) positions, and PDCM-based intensity projections on a sample right lung. (b) Average intensity (in HU) on PDCM-based angular and
radial projections for MESA-COPD subjects with no emphysema (N = 205); (c) Average relative intensity differences, with respect to (b), on PDCM-
based projections for MESA-COPD subjects with CLE-, PLE- and PSE-predominant emphysema (N = 37, 12 and 10 respectively).

Based on [4], N = 205 subjects do not exhibit emphysema,
and are used here as the control set of no emphysema (NE)
subjects. The remaining N = 112 subjects exhibit light
(N = 53) or mild-to-severe (N = 59) emphysema. For these
subjects, predominant emphysema subtype is defined as the
subtype affecting the greatest proportion of the lungs. In the
mild-to-severe cases, there are N = 37 CLE-predominant,
N = 12 PLE-predominant, and N = 10 PSE-predominant
subjects. Overall population prevalence of emphysema in
the MESA COPD cohort is 27%, composed of 14% of
CLE-subtype, 9% of PSE-subtype, and 4% PLE-subtype.

In addition, the following clinical characteristics are avail-
able for the scans in MESA COPD study (details in [4]):
demographic factors (age, race, gender, height, weight); forced
expiratory volume in 1 second (FEV1); MRC dyspnea scale
measure (5-level scale); six-minute walking test (6MWT)
total distance; pre (baseline) 6MWT pulse oximetry; post
6MWT pulse oximetry; reported post 6MWT fatigue; and
reported post 6MWT breathlessness. We used these measures
for evaluating the clinical significance of the discovered sLTP.

B. Population Evaluation of Emphysema Using PDCM

We first demonstrate the ability of our proposed PDCM lung
shape mapping to study the spatial patterns of emphysema over
a population of subjects (cf. Fig. 2). For each scan in MESA
COPD study, PDCM maps of voxels inside individual lungs
are generated, attributing to each voxel a coordinate (r, θ, φ).
Voxel intensity values in PDCM maps are then averaged and
visualized along two types of projections:

1) Angular projections: intensity values averaged along r for
each pair of angular directions (θ, φ);

2) Radial projections: intensity values averaged over all angu-
lar directions at a subset of Nr = 60 regular radial positions
r1, . . . , rNr .

An illustration of these two PDCM intensity projections on
a sample lung are visualized in Fig. 2 (a).

Population-average PDCM angular and radial intensity pro-
jections over subjects without emphysema (NE) are displayed
in Fig. 2 (b). The averaged angular projection shows a clear
pattern of lower attenuations (i.e. intensity values) in the
anterior versus posterior region, which agrees with the inten-
sity gradient due to gravity-dependent regional distribution of
blood flow and air [29], [30]. The averaged radial projection
shows a slight gradient from core to peel regions, which
is likely due to the inclusion of voxels belonging to the
mediastinal and costal pleura inside the lung mask.

Population-average PDCM intensity projections over sub-
jects with CLE-, PLE-, and PSE-predominant emphysema
subtypes are visualized in Fig. 2 (c). To highlight differences
with respect to the control set, we display relative values after
subtraction of the values from the corresponding NE average
projection in Fig. 2 (b). Color coding represents relative
intensity differences with more emphysema (more negative
attenuation values) corresponding to the red color.

We can see on the relative angular PDCM intensity pro-
jections that regions of normal attenuation (green to blue)
are absent for PLE-predominant subjects, whereas CLE- and
PSE-predominant subjects appear to have emphysema regions
(red) concentrated in the superior part. The average relative
radial PDCM intensity projections on emphysema subjects
show systematic lower attenuation values consistent with more
emphysema in the core part for CLE-predominant subjects
and more emphysema in the peel part for PSE-predominant
subjects.

C. Qualitative Evaluation of Discovered sLTPs

For the discovery of sLTPs, 3/4 of the total scans in
MESA COPD study (N = 238) were used for training, using
random stratified sampling without replacement, while the
other scans (N = 79) were used for testing. We summarize
the setting of pre-defined parameters for the sLTP learning in
TABLE I. In addition, spatial regularization weight λ is set via
empirical tuning using Eq. (II-D). Based on the relative texture
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Fig. 3. Qualitative illustrations of discovered sLTPs ordered in ascending order of their mean intensity values, equal to: [1: −964, 2: −941, 3: −926,
4: −912, 5: −909, 6: −907, 7: −895, 8: −877, 9: −876, 10: −854, 11: −818, 12: −760] HU. (a) Two examples of lung scans and their sLTP labeled
masks; (b) Characteristics of {sLTPk}k=1,..,12: (top) texture appearance (visualized on axial cuts from 9 random ROIs); (middle) average �sLTPk
on MESA COPD scans with �sLTPk > 0 within training | test | all cases; (bottom) Spatial density plots of sLTPk using labeled ROIs (legend: S =
superior; I = inferior; P = posterior; A = anterior positions).

TABLE I
PARAMETER SETTING FOR SLTP LEARNING

homogeneity loss measure �SSWT , we chose LT = 1%
which corresponds to λ = 1.52, above which �SSWT

increases drastically.
A total of 12 sLTPs were discovered using the full train-

ing set, and were used to label both the training and test

scans in emphysema-like lung. Each sLTP was detected (i.e.
%sLT Pk > 0) in at least 5% of scans both in training and test
sets. In Fig. 3, we illustrate in (a) the sLTP labeling of two
sample CT scans; and in (b) the characteristics of each sLTP
via visual illustrations of labeled patches, average occurrence
in MESA COPD scans, and spatial distribution of their occur-
rence within the lungs. For the patch illustrations, 9 samples
were randomly selected from all available labeled ROIs (see
the Supplementary Material for high-resolution illustrations).
For the average occurrence, we averaged %sLT Pk values
over scans with %sLT Pk > 0. For the spatial distributions,
we generated spatial scatter plots of sLTP locations from
labeled ROIs, following the method described in II-G, with
NIsoV = 5, 000, and Nr = 60.

We can observe that patches belonging to an individual
sLTP appear to be textually homogeneous. sLTP 1 and 4 show
clear spatial accumulation in superior (apical) regions, sLTP
3, 5 and 7 in anterior regions, and sLTP 10, 11 and 12 in
posterior regions. The brightest LTPs (11 and 12) have very
distinct visual appearance and resemble combined pulmonary
fibrosis emphysema (CPFE). Since we jointly enforce spatial
prevalence and textural homogeneity, some sLTP can have spa-
tial “outliers” that are texturally favored. All sLTPs returned
similar occurrences in training and test sets. Some sLTPs are
rare, such as sLTP 12 which covers ∼1% of the lungs when
present, but is still found in 24 scans over the whole MESA
COPD cohort.
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D. Reproducibility of sLTPs

1) Reproducibility of sLTP Labeling Versus Training Sets: To
test the reproducibility of sLTPs learning, we first compare
the NsLTP = 12 sLTPs {sLT Pk} generated with the full set
of training scans, to Nset = 4 sLTPs sets {sLT Pc

k }(c=1,2,3,4)
using subsets of training data by eliminating via stratified
subsampling 25% of the training scans without overlap on
the left-out scans. Reproducibility of sLTPs is evaluated on
the ROI labeling task, by computing the average overlap of
labeled test ROIs with the following metric:

Rln = 1

Nset · NsLTP

Nset∑
c=1

NsLTP∑
k=1

|
s LT Pk ∩
π(s LT Pc
k )|

|
s LT Pk |
(9)

where 
s LT Pk denotes the set of ROIs labeled with sLT Pk ,
and π() denotes the permutation operator on the {sLT Pc

k }
determined by the Hungarian method [31] for optimal match-
ing between sets {sLT Pk} and {sLT Pc

k }.
Compared with the NsLTP = 12 sLTPs learned on the

full training set, we discovered Nc
sLTP = 12, 12, 13, and

13 sLTPs on training subsets. We obtain an overall labeling
reproducibility measure of Rln = 0.91 which corresponds to
a high reproducibility level.

We then further compute the reproducibility measure,
denoted as R�ln, among training subsets. The metric is similar
to Equation 9, replacing {sLT Pk} and {sLT Pc

k } with sLTPs
{sLT Pc1

k } and {sLT Pc2
k } (c1 �= c2) learned on different

training subsets. We obtain an overall labeling reproducibility
measure of R�ln = 0.85 (standard deviation = 0.07).

To evaluate the contribution of spatial features in sLTP
learning, we further generate sets of lung texture patterns
using only texture features (i.e. using initial LTPs without
spatial augmentation in Section II-D, and setting λ = 0 for the
replacement test in Section II-E). We discovered 11 patterns
using the full training set, and 11, 11, 12 and 12 patterns
on training subsets. The reproducibility measures Rln and R�ln
equal to 0.84 and 0.78 (standard deviation = 0.12), are lower
than the ones obtained using the proposed sLTP learning,
hence confirming the benefit of adding spatial features.

2) Reproducibility of sLTP Labeling Versus ROI Sampling: As
detailed in Section II-F, sLTP labeling is based on a subset
of voxels setting ROI positions, using SURS-based sampling
strategy, which is controlled with the parameter β2 (number of
samples per stack). The selected ROIs have an influence on the
final outline of the label map, which is hopefully minor if ROIs
are sampled densely enough and if sLTPs are generic enough.
In this experiment, we test this hypothesis by generating two
different sets of ROIs on test scans using two different random
seedings, and measure the reproducibility of the generated
label masks using the {sLT Pk} discovered on the full training
set, while varying the β2 parameter. We measure labeling
reproducibility using the two sets of ROIs with the following
metrics:
• RDC

la (sLT Pk, β2) = average of Dice coefficients of label
masks of sLT Pk over all test scans;
• RCC

la (sLT Pk, β2) = Spearman correlation coefficients of
%sLT Pk values within the lungs over all test scans.

Fig. 4. Results of sLTP reproducibility measures. (a) Reproducibility
measures Rla versus ROI sampling parameter β2; (b) Reproducibility
of sLTPs labeling across scanners (from EMCAP and MESA COPD
studies) measured with Cohen’s Kappa coefficients of sLTPk presence
and Spearman correlation coefficients of�sLTPk values (white=without
and black = with intensity histogram mapping).

We illustrate in Fig. 4 (a), the average, max and min values
of R∗la measures overall {sLT Pk}, for β2 ∈ [1, 20]. Both
reproducibility measures increase with β2 in an exponential
manner. We obtain an average RDC

la > 0.8 when β2 > 10,
corresponding to sampling less than 0.05% points in each
stack. We obtain an average RCC

la > 0.9 when β2 > 5.
Minimum Rla values always occur for sLTP 12, which is the
rarest sLTP, as reported in Section III-C.

3) Reproducibility of sLTP Labeling Versus Scanner Type:
The 22 subjects from MESA COPD previously scanned within
the EMCAP study, underwent different generations of CT
scanners. The average time lapse between EMCAP and MESA
COPD scans is 14-months. The mean of %emph−950, cali-
brated for outside air values, is 0.7% (min < 0.1%, max =
3.9%) in EMCAP, and 2.6% (min = 0.3%, max = 9.5%)
in MESA COPD, corresponding to an average increase of
%emph−950 equal to 1.9%. Therefore, we use this subset of
scans to evaluate the reproducibility of sLTP labeling versus
scanner types.

We used the 12 sLTPs discovered on the full MESA COPD
training set. Because of differences in scanner generations
(axial CT in EMCAP versus spiral CT in MESA COPD)
and radiation dose settings, intensity calibration was required,
implemented in two steps: 1) equalizing the outside air mean
intensity value (according to [25]); 2) histogram mapping of
normal lung parenchyma identified with the HMMF-based
emphysema masks. The sLTPs 2 to 12 were found to be



3660 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 12, DECEMBER 2021

present in both datasets, but sLTPs {2, 3, 4, 12} occur in less
than 6 pairs of scans. We report in Fig. 4 (b) the Cohen’s
Kappa coefficients of sLT Pk presence for sLTPs 2-12, and
the Spearman correlation coefficients of %sLT Pk for the
frequent sLTPs only (sLTPs 5 to 11). The Cohen’s Kappa
coefficients and Spearman correlations are all above 0.8, which
confirms robust sLTP presence and percentage labeling on the
22 subjects scanned on different scanner types in two studies.

E. sLTPs’ Ability to Encode Standard Emphysema
Subtypes

When generating unsupervised lung texture patterns (either
sLTPs in this work or earlier generations of LTPs in previous
work), we expect them to be finer-grained than the three
standard emphysema subtypes used in [4], while still capa-
ble to encode them, hence linking unsupervised image-based
emphysema subtyping with clinical prior knowledge.

The (s)LTPs (either LTPs or sLTPs) can correspond to a
single standard subtype or a mixture of those. We hereby
evaluate the ability of the generated (s)LTPs to predict the
overall extent of standard emphysema subtypes. To do this,
we generate, for each scan and per lung, two signature vectors:
1) a (s)LTP signature histogram composed of the percentage
of non-emphysema class (obtained as in Section II-F) and
the percentages of individual (s)LTPs in the emphysema-like
lung. This normalized histogram is called the (s)LTP predictor
signature and is of size Npredictor = N(s)LT P +1; 2) a ground-
truth signature composed of the percentage of non-emphysema
and the three standard emphysema subtypes (CLE, PLE,
PSE), as visually evaluated in [4]. A constrained multivariate
regression model is used on labeled training scans to learn
regression coefficients between the (s)LTP and ground-truth
signatures, using the following optimization:

argminA||X A − Y ||22 s.t. 0 < Ak,i < 1 and
∑

i
Ak,i = 1

(10)

where X Nscan×Npredictor is composed of all training (s)LTP
signatures in Nscan training scans, and YNscan×4 contains the
ground-truth signatures. ANpredictor×4 is the matrix of regression
coefficients {Ak,i }, which measure the probability of a voxel
labeled as a certain predictor belonging to one of the ground-
truth classes, and are therefore constrained to be in the range
of [0, 1]. Optimization of regression was solved using the
CVX toolbox [32]

Quality of prediction is measured with the intraclass cor-
relation (ICC) between predicted and ground-truth exploiting
the full MESA COPD dataset. We use a 4-fold cross validation
(3/4 label masks used for training the regression and 1/4 used
for testing and measuring prediction quality). Significance of
differences in ICC values was assessed using Fisher’s r-to-z
transformation and a two-tailed test of the resulting z-scores.

In Fig. 5, we compare prediction quality with 7 sets of
emphysema-specific (s)LTPs (re)trained on the same set of
emphysematous ROIs: 1) the 12 sLTPs learned in this study;
2-3) the initial set of 100 LTPs generated in this study
before (denoted as LTP init-T) and after (denoted as LTP
init-TS) spatial augmentation; 4) LTPs generated by one-stage

Fig. 5. Intraclass correlation (ICC) and 95% confidence interval between
predicted standard emphysema subtype scores and ground-truth. Dif-
ferences with sLTP-based values are marked as � when significant
(p < 0.05).

clustering (denoted as LTP TS) of the proposed texture and
spatial features, by setting NLT P = 12 directly (this is to
test the contribution of the proposed two-stage learning in
Section II-D); 5-6) LTPs re-generated using Method A [17],
discovered via graph partitioning of 100 candidates based
on local spatial co-occurrence and with NLT P = 8 as
in [17] or 12; 7) LTPs re-generated using Method B [18],
discovered via merging 100 candidates based on texture simi-
larity and local spatial co-occurrence, and setting NLT P = 12
for the iterative merging.

Fig. 5 shows that the two sets of 100 LTP models achieve
overall best prediction accuracy, and that the newly discovered
12 sLTPs have the best performance among the 5 small (s)LTP
sets. Difference of ICC values between the sLTPs and the
100 LTP models was not significant for PLE emphysema
subtype.

F. Clinical Associations of sLTPs

To evaluate clinical association of sLTPs, we first compute
Spearman’s partial correlations between %sLT Pk within both
lungs and the seven clinical characteristics listed in III-A,
on the full MESA COPD dataset, using two models: Model 1
adjusted for demographical factors (age, race, gender, height
and weight), and Model 2 further adjusted for %emph−950.
The results are reported in Fig. 6. Correlation values for MRC
dyspnea scale, post 6MWT breathlessness and post 6MWT
fatigue are flipped in the figure so that more negative correla-
tion values always correspond to more severe symptoms.

Overall, we obtained 47 and 31 significant correlations with
Models 1 and 2. The sLTPs 7 and 8 are associated with less
severe symptoms (positive correlations), while the other sLTPs
correlate with symptoms (negative correlations). In Model 1,
all clinical variables show significant correlations with 2 to
11 sLTPs. Model 2 looses significant correlations for post
6MWT breathlessness, but preserves all, or almost all, signifi-
cant correlations for FEV1, 6MWT total distance, dyspnea and
post-6MWT oximetry. With further adjustment for FEV1 in
Model 2, sLTP 3 remains significantly correlated with baseline
and post-6MWT pulse oximetry, sLTPs 2, 4 and 7 remain
significantly correlated with 6MWT total distance, and sLTP
7 remains significantly correlated with MRC dyspnea scale.
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Fig. 6. Partial correlations between �sLTPk and clinical measures
after adjusting for demographical factors (Model 1), and adjusting for
demographical factors and�emph−950 (Model 2). Black-boxes indicate
statistically significant values (p < 0.05).

IV. DISCUSSION & CONCLUSION

In this work, we propose a novel unsupervised learning
framework for discovering emphysema-specific lung texture
patterns and a small set of emphysema subtype candidates on
the MESA COPD cohort of CT scans. The proposed method
incorporates spatio-textural features via an original cost metric
combining χ2-	2 constraints, along with data-driven parameter
tuning, and Infomap graph partitioning.

Our methodological framework includes the introduction of
a standardized spatial mapping of the lung shape utilizing
Poisson distance map and conformal mapping to uniquely
encode 3D voxel positions and enable comparison of CT scans.
Our PDCM lung shape spatial mapping enables straightfor-
ward population-wide study of emphysema spatial patterns.
By visualizing relative angular PDCM intensity projections on
CLE-, PLE- and PSE-predominant subjects, we can see that
regions of normal attenuation are absent for PLE-predominant
subjects, which agrees with the definition of PLE (diffuse
emphysema subtype). CLE- and PSE-predominant subjects
appear to have emphysema regions concentrated in the supe-
rior part. This agrees with the observation made in [4] on
the same dataset that CLE and PSE severity was greater in
upper versus lower lung regions, whereas severity of PLE did
not vary over the lung. By visualizing relative radial PDCM
intensity projections, we can see that emphysema subjects
show systematic lower attenuation values than subjects with-
out emphysema, as expected. CLE-predominant subjects have
more emphysema in the core part, whereas PSE-predominant
subjects have more emphysema in the peel part. This agrees
with the definitions of CLE and PSE. As a standardized tool,
the proposed PDCM spatial mapping is not tied to emphysema
patterns, and our future work will exploit such spatial mapping
to study other pulmonary diseases.

With the proposed method, we discovered 12 spatially-
informed lung texture patterns (sLTPs) in the MESA COPD
Study. Qualitative visualization show that the discovered
sLTPs appear to be textually homogeneous with specific
average intensities and/or spatial prevalence. Using texton-
based features to encode both texture and intensity is supported
by [33] where “combination of both texture and densitometric
measures strengthened the association with lung function”
as we rely on association with physiological symptoms to
evaluate our sLTPs. sLTPs (11, 12) resemble CPFE studied
in [34], where posterior emphysematous areas were more
likely involved with interstitial lung abnormalities, which
agrees with the posterior spatial prevalence seen in Fig. 3.

Extensive evaluations show that the discovered sLTPs are
reproducible with respect to training sets, sampling of ROI
for labeling, and certain scanner changes. The proposed incor-
poration of spatial and texture features obtains higher learn-
ing reproducibility compared to using texture features only,
confirming the benefit of spatial regularization. The number
of discovered sLTPs varies slightly between training subsets.
This can be caused by a large change in the proportion of rare
LTPs within these subsets, which modifies the weights in the
Infomap similarity graph. A larger dataset with more diseased
cases might be beneficial to solve such issue and would enable
us to measure reproducibility on non-overlapping training
subsets, which is a limitation of our study.

The sLTPs are able to encode the three standard emphy-
sema subtypes, and thus link unsupervised discovery with
clinical prior knowledge. Prediction quality is better than
previous models, and close to the optimal level reached with
100 emphysema-specific LTPs. While intra-cluster LTP homo-
geneity increases with the number of LTPs, hence leading
to higher prediction performance, working with 100 LTPs
leads to redundancy between subtypes which is detrimental
when studying associations of individual LTPs with clinical
measures. One-stage clustering leads to significantly lower
prediction power for PLE and PSE subtypes compared to
sLTPs, which demonstrate the benefit of the proposed two-
stage learning.

Significant correlations with physiological symptoms were
found for several measures. Training our discovery of
emphysema-specific sLTPs on ROIs with %emph > 1 aimed to
enable discovery of early emphysema stages. Our correlation
results suggest that sLTPs 7 and 8 are good candidates for
early emphysema characterization, not yet associated with
physiological symptoms. Significant correlation results after
adjusting for %emph−950 indicate that our sLTPs provide
clinically-relevant and complementary information to the com-
monly used %emph−950 measure. After adjusting for FEV1,
there are still sLTPs showing significant correlations with
MRC dyspnea scale, 6MWT total distance, baseline and post-
6MWT oximetry. Overall, our correlation levels compare well
with [35] performed on a similar cohort size, but with highest
COPD-prevalence, while reporting fewer significant positive
correlations when proposing 7 radiological emphysema sub-
types (called “factors”) learned from 80 emphysema visual
patterns. Correlations with standard emphysema subtypes,
using similar models, were studied for the same population
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in [4]. Without adjusting for FEV1, CLE and PLE only showed
significant associations with MRC dyspnea scale and 6MWT
total distance, and only CLE showed significant associations
with FEV1. With further adjustment for FEV1, only CLE
and PLE showed significant associations with 6MWT total
distance.

Progression patterns of the sLTPs will be investigated in
the future, via sLTP labeling of longitudinal CT scans (with
large time lapse). The sLTP histograms extracted in this study
provide texture signatures that can be used to characterize
and group CT scans. Patient grouping was found beneficial to
study physiological indicators of COPD in [16], and will be
considered in our future study. Further development is possible
to improve the generation of image-based sLTPs with demo-
graphic and population-wide information, which would likely
reveal population-specific and population-invariant patterns,
but requiring a larger and more diseased cohort for training.
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