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ISCL: Interdependent Self-Cooperative Learning
for Unpaired Image Denoising

Kanggeun Lee and Won-Ki Jeong∗

Abstract— With the advent of advances in self-
supervised learning, paired clean-noisy data are no
longer required in deep learning-based image denoising.
However, existing blind denoising methods still require
the assumption with regard to noise characteristics,
such as zero-mean noise distribution and pixel-wise
noise-signal independence; this hinders wide adaptation
of the method in the medical domain. On the other
hand, unpaired learning can overcome limitations related
to the assumption on noise characteristics, which
makes it more feasible for collecting the training data
in real-world scenarios. In this paper, we propose a
novel image denoising scheme, Interdependent Self-
Cooperative Learning (ISCL), that leverages unpaired
learning by combining cyclic adversarial learning with self-
supervised residual learning. Unlike the existing unpaired
image denoising methods relying on matching data
distributions in different domains, the two architectures
in ISCL, designed for different tasks, complement each
other and boost the learning process. To assess the
performance of the proposed method, we conducted
extensive experiments in various biomedical image
degradation scenarios, such as noise caused by physical
characteristics of electron microscopy (EM) devices (film
and charging noise), and structural noise found in low-
dose computer tomography (CT). We demonstrate that the
image quality of our method is superior to conventional
and current state-of-the-art deep learning-based unpaired
image denoising methods.

Index Terms— Adversarial learning, cooperative learn-
ing, cyclic constraint, deep learning, denoising, self-
supervision, residual learning.

I. INTRODUCTION

DENOISING is the low-level signal processing technique
used to remove specific noise from noisy observation

in order to improve the quality of signal analysis. Before
deep learning gained its popularity, most image denoising re-
search focused on leveraging image prior information, such as
through non-local self-similarity [6]–[8], sparsity feature [9]–
[12], and total variation [13]–[15]. In recent years, supervised
learning methods using deep convolutional neural networks
(CNNs) have surpassed the performance of prior-based de-
noising methods [16, 17]. CNN models can learn to restore a
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Fig. 1. An example of film noise removal in electron microscopy
images. Top left: clean ground-truth image (top) and real film noise
image (bottom). N2S [1] is a blind denoising method. RED-CNN [2]
and CaGAN [3] are supervised learning based denoising methods.
UIDNet [4], ADN [5], and our method (ISCL) are unpaired learning based
approaches.

clean target via paired training data without prior knowledge
of image or noise. However, their performance is demonstrated
only on well-known noise models. The main reason for this
is that the training data (clean and noisy image pairs) are
generated by adding noise for a given distribution to clean
images. Therefore, unconventional image degradation cannot
be easily modeled, which makes the application of supervised
learning difficult.

Recently, several self-supervised blind denoising meth-
ods [1, 18, 19] have shown promising results without the noise
prior and the clean-noisy paired training data. The blind spot
based approaches predict the clean pixel from the neighbor
information of the target pixel based on the self-supervision
training. However, these blind denoising methods require zero-
mean noise distribution to apply the self-supervision loss. We
observed that the state-of-the-art blind denoising and prior-
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based denoising methods tend to introduce incorrect brightness
shifting for non-zero mean noise cases, as shown in Fig. 1 (see
BM3D and N2S results are still darker than the ground truth).
In addition, noise should be pixel-wise independent under the
given noisy observation to employ a blind spot scheme; this is
not satisfied in unconventional noise observed in biomedical
images. For example, recent high-throughput automatic imag-
ing using transmitted electron microscopy (TEM) [20]–[22]
uses electron-lucent support films, which introduce spatially
inhomogeneous noise (i.e., film noise). In addition, prolonged
exposure of electron beams onto the thin tissue section causes
blob-like damage (i.e., charging noise) in scanning electron
microscopy (SEM) images. See the leftmost images in the
second and fourth rows in Fig. 5 for each noise example. Such
imaging artifacts do not satisfy the necessary conditions for
blind denoising.

The primary motivation behind our proposed work stems
from the recent advances in unpaired image denoising [4,
23]. Quan et al. [23] demonstrated superior denoising perfor-
mance on electron microscopy (EM) images without paired
training data by leveraging three-way cyclic constraints with
adversarial training. However, this method requires real noise
pattern images (e.g., taking an empty film image, etc.), which
is not always feasible in a real scenario (such as low-dose
CT (LDCT)). More recently, UIDNet [4] proposed an end-
to-end denoising network trained by clean-pseudo noisy pair
images where pseudo noisy images are automatically gener-
ated via a generative model. However, they only used a simple
(weak) generative model to learn the noise distribution from
examples, which is insufficient for unconventional noise, as
in EM images (see Fig. 1). Our proposed method addresses
the above problems via cooperative learning – multiple inter-
domain mapping functions are trained together in a cooperative
manner, which serves as stronger constraints in unsupervised
training. In this paper, we propose a novel image denoising
framework, Interdependent Self-Cooperative Learning (ISCL),
to restore the clean target from the noise-corrupted image
without using either paired supervision or prior knowledge
of noise distribution. ISCL consists of two components, Cy-
cleGAN [24]-based denoiser learning, and pseudo-label based
residual learning of a noise extractor, to boost the performance
self-interdependently via cooperative learning. For training the
denoiser with the proposed constraints, the noise extractor will
assist the learning of the denoiser under the proposed loss.
Conversely, the noise extractor will be trained by pairs of
pseudo-clean and noisy with the noise consistency. The main
contributions of our work can be summarized as follows:

1) We propose ISCL, an unpaired image denoiser based
on a novel mutually adaptive training that integrates
two different tasks. ISCL shows better denoising per-
formance with faster convergence.

2) The proposed novel loss functions (i.e., bypass-
consistency, discriminator boosting, and noise-
consistency) promote the convergence toward an
ideal denoiser.

3) We demonstrate that the proposed architecture of ISCL
is optimal with respect to its model size; it can achieve

superior performance using only a fraction of network
parameters compared to state-of-the-art unpaired image
denoising methods.

II. RELATED WORK

A. Conventional Neural Network Denoising

Despite prior-based denoising had been widely used for
many years, deep neural network has become popular in
denoising tasks these days due to its superior performance.
An earlier work by Jain et al. [25] introduced a CNN model
for image denoising, and showed the representation powers
through the visualization of hidden layers. Burger et al. [26]
proposed the multi-layer perceptron (MLP) model for denois-
ing; however, it achieved similar or slightly better performance
than BM3D over Gaussian noise. Typically, supervised learn-
ing of deep CNNs [2, 3, 16, 27]–[29] has shown superior
performance over conventional image prior based approaches.
In particular, DnCNN [16] discovered that the combination
of residual learning [30] and batch normalization [31] can
greatly assist the training of CNNs for speeding up the training
and boosting the denoising performance; however, it has a
limitation with regard to the presence of noisy-residual (i.e.,
noise image) pairs. Recently, Lehtinen et al. [32] introduced
a Noise2Noise (N2N) method that can achieve similar perfor-
mance employing only noisy pairs to the supervised learning
performance. Even though N2N can overcome the requirement
of clean-noisy pairs in the supervised learning, noise statistics
is still an essential condition to generate noisy-noisy pairs.

B. Blind Denoising

Blind denoising approaches [1, 18, 19, 33]–[37] aim to
restore noisy observations that are corrupted by unknown noise
distribution without the supervision of clean targets. Deep
Image Prior (DIP) [33] showed the usability of a hand-crafted
prior, generated by a random-initialized neural network, for
the image denoising task. The internal image prior based
approach is the early method of blind denoising. Recently, self-
supervised learning based blind denoising approaches achieved
the performance closed to that of supervised learning. N2S [1]
and N2V [18] proposed a blind-spot scheme for training a
CNN denoiser with only noisy images. Furthermore, they
achieved significantly reduced deploying time through the
external image prior. Blind denoising methods do not require
clean-noisy pairs, but they still rely on the assumption of noise
characteristics, such as zero-mean noise and pixel-wise signal-
noise independence. More recently, S2S [19] successfully
showed superior performance using internal image prior, that
is, Bernoulli-sampled instances of only a single noisy image.
Even though S2S is trained using a single noisy image,
S2S outperforms external image prior based blind denoising
methods.

C. Unpaired Image Denoising

To overcome the limitation of the blind denoising methods,
unpaired image denoising methods [5, 23, 38]–[42] have
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Fig. 2. (a) Flow graph of ISCL. Our proposed scheme has three mapping functions, F : X → Y , G : Y → X, and H : X → N with
two discriminators, DX and DY . X, Y , and N are domains of noisy target, clean source, and noise of noisy target, respectively. (b) Training
process of two mapping functions, F andG. The blue means that the F andG are encouraged by outputs ofDX andDY for translation from one
domain to the other as in adversarial learning. The red indicates the mean absolute error (MAE) between two instances as a cycle consistency. (c)
Training process of two discriminators,DX andDY . Each discriminator can learn to distinguish between real and fake generated by F ,G andH.
The green indicates the inputs for the learning of each discriminator. (d) Training process of the mapping function H. The H can be learned from
pseudo-noise label n̄i. Furthermore, the other constraint is to restrict the difference between pseudo-noise x̂j − yj and the output noise H(x̂j)

gained much attention these days as a new denoising ap-
proach. Since the unpaired image denoising approaches can
leverage the supervision of clean targets, zero-mean noise
and pixel-wise signal independent assumptions are not pre-
requisite anymore. Furthermore, collecting of unpaired data is
more feasible in a real setup, compared to using clean-noisy
pairs. GCBD [38] demonstrated that the generative adversarial
network (GAN) [43] can be trained to estimate the noise
distribution from the noisy observations. However, it has a
critical limitation: a zero-mean noise assumption. Quan et
al. [23] proposed an asymmetrically cyclic adversarial network
that consists of two generators. One generator can decompose
a noisy observation to a clean-noise pair. The purpose of
the other generator is to combine the clean-noise pair as a
pseudo noisy image. The combination of two generators as
an asymmetrical CycleGAN outperformed the state-of-the-art
blind denoising methods without any image prior assumptions.
However, it still has a limitation of requiring real noise image,
which is often difficult to acquire. UIDNet [4] employed a
conditional GAN (cGAN) to learn the noise distribution from
noisy observations and generated clean-pseudo noisy pairs
to train a denoiser. To secure the stability of training, they
used the WGAN-GP [44] loss, that is, an improved version
of WGAN [45] with a gradient penalty. Furthermore, they
proposed a sharpening technique that boosts the performance
of the discriminator through the concatenation of input and
filtered input. However, as shown in the following sections,
using a simple generative model to learn the noise distribution
from examples is the main weakness of the method. With the
fusion of generative models and disentanglement networks,
ADN [5] and DRGAN [41] successfully reconstructed the
noisy image with comparable performance to supervised learn-
ing methods in unpaired clean-noisy medical data. Especially,
ADN adopted various encoders and decoders that conduct each

allocated task to utilize the artifact disentanglement.

III. METHOD

In this section, we introduce the details of ISCL. We focus
on mapping between the noisy image domain X and the
clean image domain Y using the two inter-domain mapping
functions F and G. Here, F serves as a denoiser, and G is
the inverse of F , which is a noise generator (i.e., adding noise
to the given clean image). To train F and G, we employ
DX and DY , which are discriminators, to distinguish a real
sample and a fake sample (i.e., a domain shifted sample
from another domain). However, adversarial losses are not
sufficient constraints to train the discriminators for translating
an ideal clean sample yi from a noisy sample xi due to
the wide possible mapping space of F (xi). To generate a
tighter mapping space from xi, CycleGAN [24] proposed cycle
consistency, i.e., x ≈ G(F (x)) and y ≈ F (G(y)), where
x ∼ X and y ∼ Y; X and Y are data distributions for the noisy
observations and the clean sources, respectively. Therefore, we
were faced with the problem that additional constraints are
required to optimize F and G into bijective functions, i.e., a
function for an ideal denoiser.

Suppose that F and G are bijective functions. Then, we
can extract only a single noise image from xi by subtracting
F (xi) from it. In other words, we can infer that there exists an
injective function H : X → N , where N is a noise domain,
that can extract the noise from the noisy observation. Based
on this inference, we propose the cooperative learning concept
to optimize the CycleGAN model and the noise extractor
model simultaneously. Note that cooperative learning enables
the training between the unpaired clean-noisy-based denoiser
and the noise extractor based on self-supervision to boost the
performance cooperatively. In greater detail, five functions
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Fig. 3. Network structure: F and G employ generator structure. H is an extractor. DX and DY are discriminators.

(i.e., F , G, DX , DY , and H) are trained by assisting each
other interdependently under the proposed novel losses
generated by such assumptions in this paragraph. We denote
the denoiser trained by Interdependent Self-Cooperative
Learning “ISCL”.

A. Bypass-Consistency
Here, we introduce the nested cycle consistency consisting

of cycle-consistency and bypass-consistency. In Fig. 2b, we
can find two mapping functions, F and G, as generative
models, trained by the following loss:

Lgen(F,G,H,DX , DY ) = LF (F,DY )

+ LG(G,DX)

+ λLnested(F,G,H), (1)

where F translates a noisy target domain X to a clean source
domain Y under the supervision of DY , and vice versa for
G and DX . In detail, we borrow the generative loss based on
hinge loss [46] to define LF and LG as follows:

LF (F,DY ) = −Ex∼X [DY (F (x))] (2)
LG(G,DX) = −Ey∼Y [DX(G(y))] (3)

and the nested cycle-consistency loss is defined as follows:

Lnested(F,G,H) = Lcycle(F,G) + Lbypass(F,H). (4)

The cycle consistency loss Lcycle restricts the mapping space
of G(F (x)) and F (G(y)), which is defined as follows:

Lcycle(F,G) = Ex∼X ||x−G(F (x))||1
+ Ey∼Y ||y − F (G(y))||1. (5)

Note that, even though the above cycle-consistency loss pro-
motes bijections F ◦G and G ◦ F , there is no guarantee that

both F and G are actually the bijective functions after con-
vergence. Moreover, in unpaired domain translation tasks with
cycle-consistency and generative adversarial models, perfor-
mance degradation is occurred by self-adversarial attack [47]
that the generator hides the output into an undetectable signal
by the human eye or the discriminators. Even though the
undetectable signal can be successfully reconstructed to the
original signal, it affects the denoising performance. In other
words, using only cycle-consistency is still insufficient for
robust convergence of each function converged into the ideal
function. If the injective function H is available, then ȳ is
a pseudo-clean label for x, as shown in Fig. 2 top. Then,
we can restrict the mapping space of F (x) into ȳ. Moreover,
we adopts the pseudo-noisy x̄ to restrict the mapping space
of F (x̄) into y real sample. Finally, we propose the bypass-
consistency to restrict the mapping space of the target denoiser
F through the pseudo label generated by H as follows:

Lbypass(F,H) = Ex∼X ||F (x)− (x−H(x))||1
+ Ex∼X ,y∼Y ||y − F (y +H(x))||1. (6)

In other words, there exists two different approaches to
mapping a noisy image x into a clean source domain Y ,
either a bijective function F or an injective function H ,
as shown in Fig. 2b. The bypass-consistency promotes two
outputs generated by the two mapping functions F and H to
be similar to each other to satisfy our assumption. In addition,
as shown in Fig. 2 bottom, the reconstructed outputs ỹj and
ŷj generated from real clean source yj through F (G(yj))
and F (yj +H(xi)) should be similar to the clean source yj .
In summary, we introduced the nested cycle-consistency to
cooperate between the generators of CycleGAN and the noise
extractor H under the supervision of discriminators DX and
DY .
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Algorithm 1: Interdependent Self-Cooperative Learn-
ing Algorithm
Require:λ = 30 for Lnested, γ = 0.5, Nepoch, Niter,
batch size m, patch size of 64× 64

Require:Nswa, cycle length c, synchronization period
k, weights step size α

Require:Initialize parameters θ(F ), θ(G), θ(H) θ(DX),
θ(DY )

φ(DX) ← θ(DX), φ(DY ) ← θ(DY ), φ(H) ← θ(H)

for e = 0, ..., Nepoch do
if e ≥ Nswa then

φ(F ) ← θ(F ), φ(G) ← θ(G)

end
for t = 1, ..., Niter do

Unpaired mini-batch of noisy image patches
{x(i)}mi=1, and clean image patches {y(j)}mj=1

from data generating distribution X and Y
feed into each loss.

Update F,G: θ(F ), θ(G) ← Radam
(∇θ(F ),θ(G)Lgen(F,G,H,DX , DY ), θ(F ), θ(G))
if e ≥ Nswa then

if mod(t+ (e−Nswa) ∗Niter, c) = 0 then
nmodels ← t+(e−Nswa)∗Niter

c

φ(F ) ← φ(F )·nmodels+θ
(F )

nmodels+1

φ(G) ← φ(G)·nmodels+θ
(G)

nmodels+1

end
end
Update DX , DY : θ(DX), θ(DY ) ← Radam(
∇θ(DX ),θ(DY )Ldis(F,G,H,DX , DY ), θ(DX), θ(DY ))

Update H: θ(H) ← Radam(
∇θ(H)Lself (F,G,H), θ(H))
if mod(t+ e ∗Niter, k) = 0 then

φ(DX) ← φ(DX) + α(θ(DX) − φ(DX))
φ(DY ) ← φ(DY ) + α(θ(DY ) − φ(DY ))
φ(H) ← φ(H) + α(θ(H) − φ(H))
θ(DX) ← φ(DX), θ(DY ) ← φ(DY ),
θ(H) ← φ(H)

end
end

end
return φ(F ), φ(G), φ(DX), φ(DY ), φ(H)

B. Boosting Discriminators

Discriminators use real and fake samples to optimize the
model based on the adversarial losses. In conventional ad-
versarial learning, discriminators DX and DY depend on
only fake samples generated by F and G. To improve the
ability of discriminators, the fake samples generated by H also
have the advantage of the cooperative learning. We propose
an additional boosting loss to improve the discriminator’s
capability to distinguish fake samples as follows:

Ldis(F,G,H,DX , DY ) = LDY
(F,DY )

+ LDX
(G,DX)

+ Lbst(H,DX , DY ). (7)

For the discriminators, we employ hinge loss [46] to train
the adversarial network against the generators, F and G as
follows:

LDY
(F,DY ) = Ey∼Y [min(0, 1−DY (y))]

+ Ex∼X [min(0, DY (F (x))]

LDX
(G,DX) = Ex∼X [min(0, 1−DX(x))]

+ Ey∼Y [min(0, DX(G(y))] (8)

and the boosting loss is defined with additional fake samples
generated by H as follows:

Lbst(H,DX , DY ) = Ex∼X [min(0, DY (x−H(x)))]

+ Ex∼X ,y∼Y [min(0, DX(y +H(x))].
(9)

Lbst promotes the ability to discriminate fake clean ȳ and
fake noisy x̄ using a noise H(x), as shown in Fig. 2c. The
discriminators are interdependently optimized by the outputs
of generators and the noise extractor with real unpaired data.

C. Pseudo-Noise Label
The basic concept of self-residual learning is to construct

a pseudo-noise label from CycleGAN for training the noise
extractor. In the next step, the noise extractor H will assist the
training of CycleGAN to boost the performance. We express
the mapping function H as the noise extractor, as shown in
Fig. 2d. If F is a bijective function, then we can generate
a unique noise map n by x − F (x). In other words, we
employ the pseudo-noise label n̄ generated by x − F (x) to
learn the capability of the noise extraction. Using this pseudo-
noise label, we can optimize the mapping function H by the
following loss:

Lpseudo(F,H) = Ex∼X ||H(x)− (x− F (x))||1. (10)

In addition, we can generate the single noise n by G(y)−y if G
is also a bijective function. Moreover, H(G(y)) can extract the
same noise map n because of the injective function assumption
for H . To reduce (constrain) the mapping space of the H(x̂),
we add the noise-consistency loss as follows:

Lnc(G,H) = Ey∼Y ||G(y)− y −H(G(y))||1. (11)

Finally, we can optimize H function with the following loss:

Lself (F,G,H) = Lpseudo(F,H) + Lnc(G,H). (12)

Lself is a self-supervision based loss because it utilizes each
sample x or y even if x and y are unpaired. In other words,
the self-residual learning through Lself can be applicable
to the task in which unpaired data are available. The self-
residual learning with Lself leads to stable convergence and
performance improvement similar to co-teaching scheme [48].
Algorithm 1 is the pseudo-code of ISCL where stochastic
weight averaging (SWA) [49] and Lookahead [50] schemes
are used with the RAdam [51] optimizer for optimal training.
The final denoising output of ISCL is an ensemble of outputs
F and H as follows:

y = γF (x) + (1− γ)(x−H(x)) (13)

where 0 ≤ γ ≤ 1. We used γ = 0.5 in our experiments.
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Fig. 4. Qualitative performance of supervised denoisers (i.e. RED-CNN and CaGAN), a blind denoiser (i.e. N2S), and unpaired image denoisers
(i.e. UIDNet, ADN, and ISCL) on low-dose CT data. First row indicates the denoising results of the small portion of abdominal CT that are normalized
under [-160, 240] Hounsfield Unit (HU). Third row shows the denoising results of the small portions of chest CT that are normalized under [-400,
1000] HU. Second and fourth rows are the error heat mpas showing the difference between NDCT and each result.

IV. EXPERIMENTS

In this section, we demonstrate the performance of ISCL
via quantitative and qualitative evaluation on synthetic and
real EM datasets and a low-dose CT dataset. For the CT
dataset, we also conducted ablation study to elaborate how
each loss contributes to the performance of the method. Our
experiments consists of three parts: (1) Ablation study and
performance assessment on the 2016 NIH-AAPM-Mayo Clinc
Low Dose CT Grand Challenge dataset [52]; (2) Quantitative
performance evaluation on synthetic noisy EM image gener-
ated by adding film noise and charge noise into clean EM
images [23]; and (3) Qualitative performance comparison on
real EM images corrupted with film noise and charge noise in
which the ground-truth clean images are not available [23].
For the fair comparison with other methods, we used the
source code provided by the authors (downloaded from their
website) with the optimal hyper-parameters empirically found
for the best performance or the best parameters reported by
the authors.

A. Implementation Details

We construct five deep neural networks, generators F and
G, discriminators DX and DY , and noise extractor H , to train
the ISCL denoiser. All architectures are illustrated in Fig. 3.
The noise extractor H is adopted from DnCNN [16] except
the normalization method. We replace the batch normaliza-
tion [31] layers with Batch-Instance normalization [53] layers
that can have advantages of batch normalization and instance

normalization [54]; it preserves useful textures while selec-
tively normalizing only disturbing textures. As shown in Fig. 3,
we adopt a fully convolutional network architecture [55] to
handle different input sizes. We randomly extract patches of
size 64×64 to increase the batch size to fit to the limited GPU
memory size. Each mini-batch contains randomly selected
patches from unpaired clean and noisy images. As shown in
Algorithm 1, the three RAdam [51] optimizers are used to
train the generators, the discriminators, and the extractor. Fur-
thermore, since self-cooperative learning is sensitive to each
other performance at each iteration, we empirically found the
suitable generalization methods for each network architecture.
We employ a SWA [49] for generalization of generators to
avoid unstable convergence since the unstable performance at
each iteration negatively affects the self-cooperative learning.
We also employ the Lookahead [50] generalization scheme to
improve the learning stability for discriminators DX and DY ,
and noise extractor H . The learning rate is initially set to 1e-4,
and is linearly decayed up to 1e-6 for all RAdam optimizers.

B. Low-Dose CT Denoising

For performance evaluation on low-dose CT, we used the
abdominal and chest CT images in the 2016 NIH-AAPM-
Mayo Clinc Low Dose CT Grand Challenge dataset [52]. In
this dataset, LDCT and normal dose CT (NDCT) indicate the
noisy and clean images, respectively. We randomly selected 30
anonymous patients for training and 10 anonymous patients for
testing in the abdominal and chest datasets. We collected 2944
and 1433 slices (each is of size 512×512 pixels) for training
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Fig. 5. Comparison with state-of-the-art denoising methods on synthetic noisy EM data in case 1 (charge noise) and 2 (film noise). Second and
fourth rows are the error heat map showing the difference between the ground-truth and the result.

TABLE I
PERFORMANCE COMPARISON ON LOW-DOSE CT DATASET. P.S.:

PAIRED SUPERVISION, B.S.: BLIND SUPERVISION, U.S.: UNPAIRED

SUPERVISION, (A) CYCLEGAN ONLY, (B) SELF-RESIDUAL NETWORK

TRAINED BY PSEUDO-NOISE LABEL, (C) Lbypass , (D) Lbst , (E) Lnc .
BOTTOM-MOST RESULTS ARE FINAL PERFORMANCE OF THE PROPOSED

METHOD ISCL. THE BEST PSNR IN EACH CASE EXCEPT P.S. IS

HIGHLIGHTED IN BOLD.

Type Method
Abdominal Chest

PSNR SSIM PSNR SSIM

P.S.
DnCNN [16] 30.57 0.8192 27.47 0.7354

RED-CNN [2] 33.09 0.9075 29.54 0.7904
CaGAN [3] 31.98 0.8968 27.69 0.7766

B.S.
BM3D [7] 30.31 0.8730 26.75 0.7336

N2S [1] 28.94 0.8355 23.76 0.6672
N2V [18] 28.32 0.7961 26.30 0.7283

U.S.

UIDNet [4] 28.91 0.8470 24.15 0.7221
ADN [5] 30.41 0.8857 26.79 0.7573

(A) 22.33 0.7561 22.06 0.6236
(A)+(B) 22.10 0.7954 22.58 0.5815

(A)+(B)+(C) 29.43 0.8811 26.61 0.7533
(A)+(B)+(C)+(D) 30.13 0.8819 26.89 0.7569

(A)+(B)+(C)+(D)+(E) 30.61 0.8849 26.93 0.7587

and testing in the abdominal case, respectively. For the chest
case, we randomly selected 3000 slices from among 6687
training images to reduce the training cost, and collected 3254
slices from 10 anonymous patients for testing. We compared
ISCL with supervised denoisers (i.e., DnCNN [16], RED-
CNN [2], and CaGAN [3]), blind denoisers (i.e., BM3D [7],
N2S [1], and N2V [18]), and unpaired image denoisers (i.e.,
UIDNet [4] and ADN [5]). For the blind denoising methods,
all LDCT slices of the training set are used to train N2S and
N2V models without NDCT. Unlike the supervised learning

TABLE II
SPECIFICATIONS FOR OUR EM EXPERIMENT CASES.

Case Noise-Free Images Noise Types Noisy Images (Scenario)

1 TEMZB Charge TEMZB + Charge (Synthetic)

2 TEMDR5 Film TEMDR5 + Film (Synthetic)

3 TEMZB Charge SEMZB (Real)

4 TEMDR5 Film TEMPPC (Real)

TABLE III
P.S.: PAIRED SUPERVISION, B.S.: BLIND SUPERVISION, U.S.:

UNPAIRED SUPERVISION. QUANTITATIVE PSNR AND SSIM RESULTS

ON CASE 1 AND 2. THE BEST PSNR IN EACH CASE EXCEPT P.S. IS

HIGHLIGHTED IN BOLD.

Type Method
Charge noise Film noise

PSNR SSIM PSNR SSIM

P.S.
DnCNN [16] 28.27 0.9172 27.55 0.8964

RED-CNN [2] 28.61 0.9230 28.02 0.9049
CaGAN [3] 28.60 0.9186 28.03 0.9020

B.S.
BM3D [7] 17.85 0.7873 12.85 0.6097
N2S [1] 18.75 0.8680 13.47 0.7942

N2V [18] 18.06 0.8286 12.86 0.6860

U.S.
Quan et al. [23] 22.32 0.8785 23.44 0.8288

UIDNet [4] 23.11 0.8592 21.34 0.7826
ADN [5] 25.67 0.8686 24.37 0.8535

ISCL (ours) 27.12 0.9054 27.06 0.8915

and the blind denoising methods, unpaired image denoising
approaches (i.e., UIDNet, ADN, and ISCL) require unpaired
clean-noisy data. Therefore, we divided the data into two
non-overlapping groups; one group contains only NDCT as
a clean dataset, the other group contains only LDCT as a
noisy dataset. Table I and Fig. 4 show the quantitative and
qualitative comparison of the results, respectively. The su-
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Fig. 6. Qualitative assessment of the denoising quality without using ground truth on real EM images corrupted with charge noise (case 3) and film
noise (case 4). Note that the proposed method enhances the quality of the input noisy images comparable to the clean TEM images (shown on the
left) without paired clean ground truth images.

pervised denoiser RED-CNN tends to over-smooth the image
(note the cartoon-like, a piecewise linear resulting image of
RED-CNN in Fig. 4) but the quantitative results are better than
the other non-supervised methods (B.S. and U.S. in Table I).
ISCL and CaGAN generate qualitatively better results than
RED-CNN (see the first and third rows of Fig. 4, image
textures of ISCL and CaGAN are closer to NDCT) while
quantitatively comparable to RED-CNN (similar or higher
PSNR and SSIM). When comparing with blind (BM3D, N2S,
and N2V) and unpaired image denoisers (UIDNet and ADN),
ISCL outperformed them in PSNR and SSIM (ADN was
slightly better in SSIM for the abdominal data, only about
0.0008, which seems statistically insignificant). The error heat
map in Fig. 4 also shows that ISCL’s results are much less
noisier than the others. The bottom five rows in Table I are
the result of ablation study to assess the effect of the proposed
loss functions. The baseline is a vanilla CycleGAN (A), and
we incrementally added each loss term (B, C, D and E) and
measured PSNR and SSIM. We observed that including more
losses (Lbypass, Lbst, Lnc) always lead to better performance.
Especially, we observed a sharp performance jump when
Lbypass is added, showing the dominant performance gain
was from the bypass consistency; this is the core idea of
cooperative learning where F and H are jointly promoting
the performance of each method.

C. Synthetic Noisy EM Denoising

For quantitative assessment, we used synthetically generated
noisy EM images. We used the same dataset of charge noise
and film noise first used in Quan et al. [23], as listed in
Table II. We used 128 images of 512× 512 for each type of
noise free (TEMZB and TEMDR5) and noisy (synthetically
generated) images, listed as case 1 and 2. TEMZB and
TEMDR5 are noise-free clean TEM images of a juvenile
zebrafish brain and a mouse brain respectively, and the corre-
sponding noisy images are synthetically generated by adding
a charge noise (for TEMZB) or multiplying a film noise
(for TEMDR5). The example noise images are shown in
Fig. 5 (under the ground truth image). To avoid test set
selection bias, we ran 4-fold cross validation (3 to 1 split)
where each test set consists of 32 images. To compensate
the small size of EM training set, we applied rotation and
mirroring data augmentation. As shown in the first row of
Fig. 5, we observed that N2S fails to recover the correct
brightness due to the non-zero mean noise distribution. We
also observed in the error heat map of case 1 that N2S did not
remove structural noise well. As shown in Tab. III, the other
blind denoising methods (BM3D and N2V) also performed
poorly. As for unpaired denoising cases, the result of Quan et
al. on case 1 shows strong errors near the edges. UIDNet
and ADN also show Gaussian noise-like corruption in the
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Fig. 7. An example graph for validation data of film noise (case 2);
the validation data is also unseen data during training. In this graph, the
performance of ISCL indicates the validation PSNR of F (x) instead the
ensemble (F (x) + x−H(x)) ∗ 0.5 for a fair comparison.

result of case 1. For case 2, we discovered that the shape-
dependent noise in the result of UIDNet. Unlike the other
unpaired image denoising methods, ISCL successfully restores
the structure noise with correct brightness in case 1 and case 2
of Fig. 5. In addition to qualitative results, ISCL outperforms
all comparison methods except the supervised learning in
Table III. Furthermore, ISCL achieves PSNRs > 27dB that is
the highest values among all the unpaired denoising methods
compared with. Consequently, it is clearly shown that ISCL
can effectively eliminate unconventional noise corruption via
training using only unpaired data without noise distribution
prior.

D. Real Noisy EM Denoising
To assess the performance of the proposed method in a

realistic setup, we compared the denoising quality on SEMZB

(case 3) and TEMPPC (case 4), which are real noisy EM
images corrupted with charge noise and film noise, respec-
tively. In this experiment, we used clean EM images (TEMZB

and TEMDR5) as unpaired clean images to train unpaired
denoising methods. We already observed in the previous syn-
thetic noise removal experiment that blind denoising methods
performed poorly on film and charge noise. Therefore, we
tested only unpaired denoising methods in this experiment.

In the absence of ground truth data, we can only assess
the visual quality. Fig. 6 shows the qualitative results for
case 3 and 4. All four unpaired image denoising methods we
compared (Quan et al., UIDNet, ADN, and ISCL) successfully
restored the image contrast similar to the unpaired clean
images used for training. Although the difference seems subtle,
Quan et al., UIDNet, and ADN sometimes over-smooth or
over-enhance the image compared to ISCL. For example, in
case 3, ISCL restored cell membranes and particles much
clearer compared to the other methods (see the red arrows and
circles). In case 4, Quan et al. restored synapse and vesicles
well but small particles are removed. UIDNet and ADN over-
smoothed the image and the results look fuzzy and blurry.
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Fig. 8. Performance comparison in terms of model size for case 1
(left) and 2 (right) in EM image denoising. Each model is represented
by two points connected with a dotted line; the left point indicates the
number of trained variables for deployment, and the right point indicates
the number of trainable variables for training.

ISCL showed the best result among all in case 4 where all
cellular neural structures are well restored. In summary, ISCL
demonstrated similar or better denoising quality compared to
Quan et al., while outperforming UIDNet and ADN in terms
of overall image contrast and feature details for real EM image
denoising.

E. Discussion

In the previous section, we demonstrated how the proposed
constraints contribute to the performance of ISCL (Table I).
To further analyze the main source of the performance of
ISCL, we compare the validation performance graph of a
vanilla CycleGAN and ISCL (Fig. 7). In this experiment,
we used the same generator architecture for both methods;
the only difference is that ISCL is trained using the pro-
posed self-cooperative learning scheme. As shown in Fig. 7,
the vanilla CycleGAN without the self-cooperative learning
showed unstable performance; furthermore, it converged to
lower validation performance even though SWA and Looka-
head were applied to generators and discriminators. However,
ISCL showed stable performance with higher PSNR for the
validation data. Moreover, it reached the level of the maximum
PSNR of CycleGAN even if each generator F of CycleGAN
and ISCL for denoising has the same structure, as shown in
Fig. 3. We conclude that self-cooperative learning closely leads
to a global optimal point under the same conditions, such as
the number of parameters and training data.

For a fair comparison of model performance, we compared
the accuracy versus the model size (Fig. 8). In this plot, the
horizontal axis represents the model size and the vertical axis
represents the accuracy in PSNR (higher the better). Each
model is represented using two points connected by a dotted
line; the left point is for the deployment, and the right point
is for the training (note that the model used during training
is usually larger due to multiple generators and adversarial
modules). Therefore, the models in the upper left region are
optimal ones in terms of the model size and accuracy. ISCL
used about nine times smaller trained variables than Quan et al.
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TABLE IV
P.S.: PAIRED SUPERVISION, U.S.: UNPAIRED SUPERVISION. QUANTITATIVE PSNR AND SSIM RESULTS ON DIFFERENT DOSE-LEVELS LDCT. THE

BEST PSNR AND SSIM IN EACH CASE EXCEPT P.S. IS HIGHLIGHTED IN BOLD.

Type Method
I0 = 1 ∗ 104 I0 = 5 ∗ 104 I0 = 1 ∗ 105 I0 = 5 ∗ 105

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
P.S. RED-CNN [2] 19.36 0.6801 24.38 0.8053 27.18 0.8441 30.15 0.8914

U.S.
UIDNet [4] 15.61 0.6103 21.21 0.6947 23.89 0.7463 28.76 0.8534

ADN [5] 15.62 0.6578 21.47 0.7676 25.63 0.8204 29.21 0.8828
ISCL (ours) 18.76 0.6326 23.61 0.7273 25.63 0.7745 28.79 0.8664
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Fig. 9. Performance graph in terms of γ in EM image denoising.

and ADN but outperformed all the unpaired image denoisers.
Even though ISCL requires the additional noise extractor
for cooperative learning, its overhead (additional model size
increment due to the noise extractor) is only 12.67%. Besides,
the number of trainable variables of ISCL used during training
is only about 27% of those of Quan et al. and ADN. We expect
that the increase of the model size of ISCL may lead to even
higher performance, which is left for future work.

We also conducted the experiment to study the effect of
γ, which is an weighting parameter for blending between the
unpaired (F) and paired (H) denoising results to generate the
final ensemble result. As shown in Fig. 9, we observed that
the ensemble of two clean images predicted by two different
networks always achieves a better result than each single
output, with the parameter value of around γ = 0.5. We
believe that the ensemble of the different network structures
or different tasks reduces the variation of the error, which
eventually contributes for better local optimal predictions.

Even though ISCL shows good performance in unpaired
denoising, there are some limitations worth discussing. To
test the robustness to different noise levels, we conducted
another experiment using different dose levels of LDCT as
an extension of Section IV-B. For this, we retrained the
models (RED-CNN, UIDNet, ADN, and ISCL) using the same
training set used in the abdominal experiment of Section IV-B,
and deployed them to LDCT images with various dose levels.
In Table IV, I0 denotes the unattenuated X-ray beam intensity
that is usually determined by the tube electric current or
voltage. In Fig. 10, ISCL is comparable to or outperforms other
unpaired denoising methods (UIDNet and ADN) in different
noise levels. However, all the image denoising methods we
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Fig. 10. Performance comparison graph on various dose-levels LDCT.

tested did not recover extremely low dose CT images well
(below 20db in PSNR) for I0 = 1 ∗ 104. The denoising
approaches learned from correlation of paired or unpaired
clean and noisy images have weak tolerance for unseen noise
levels. We believe that various dose-level training samples
covering the entire domain of noisy images are helpful to
generalize the method and to overcome this limitation.

Another limitation is that training the network is difficult,
e.g., finding optimal hyper-parameters, due to complex loss
functions and adversarial networks. Even though we employ
recent training schemes [49, 50] to reduce the sensitivity of
the hyper-parameters, training a complicated neural network as
ours was not easy. In detail, we observed that the performance
degradation occurred by excessive training iterations (due to
overfitting or self-adversarial attack [47]) even though ours is
much more robust compared to vanilla CycleGAN (see Fig. 7).
We avoided such problems by employing early stopping.

V. CONCLUSION
In this paper, we introduced a novel denoiser, ISCL, with

which the unpaired image denoising becomes feasible. ISCL
outperformed the state-of-the-art blind denoising methods (i.e.,
BM3D, N2S, and N2V) and the unpaired image denoising
methods (i.e., Quan et al., UIDNet, and ADN). Furthermore,
ISCL showed superior performance comparable to a super-
vised learning-based method, which is encouraging consid-
ering ISCL is an unpaired image denoising method. To the
best of our knowledge, it is the first cooperative learning ap-
proach wherein CycleGAN and a self-residual learning-based
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network can complement each other under novel constraints
(e.g., bypass-consistency, discriminator boosting, and noise-
consistency). We discovered that the cooperative learning helps
to converge faster to the optimal point than vanilla CycleGAN.
Moreover, ISCL can arrive at better optimal point even though
the network architecture is same as that of CycleGAN. As
per our assumption in III, we demonstrated that our proposed
constraints can reduce the mapping space of prediction of
CycleGAN, so that the results are closed to ground-truth.
We conclude that ISCL can be applied to the real-world
examples such as in the medical domain that includes complex
heterogeneous noise. In the future, we plan to conduct clinical
assessment, specifically targeting CT and MRI, to validate
denoising quality and clinical applicability of ISCL. Extending
ISCL to other image restoration applications, such as single
image super-resolution, would be another interesting future
research direction.
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