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Deep Symmetric Adaptation Network for
Cross-modality Medical Image Segmentation

Xiaoting Han†, Lei Qi†, Qian Yu, Ziqi Zhou, Yefeng Zheng, Yinghuan Shi?, Yang Gao

Abstract—Unsupervised domain adaptation (UDA) methods
have shown their promising performance in the cross-modality
medical image segmentation tasks. These typical methods usually
utilize a translation network to transform images from the
source domain to target domain or train the pixel-level classifier
merely using translated source images and original target images.
However, when there exists a large domain shift between source
and target domains, we argue that this asymmetric structure
could not fully eliminate the domain gap. In this paper, we present
a novel deep symmetric architecture of UDA for medical image
segmentation, which consists of a segmentation sub-network,
and two symmetric source and target domain translation sub-
networks. To be specific, based on two translation sub-networks,
we introduce a bidirectional alignment scheme via a shared
encoder and private decoders to simultaneously align features
1) from source to target domain and 2) from target to source
domain, which helps effectively mitigate the discrepancy between
domains. Furthermore, for the segmentation sub-network, we
train a pixel-level classifier using not only original target images
and translated source images, but also original source images
and translated target images, which helps sufficiently leverage
the semantic information from the images with different styles.
Extensive experiments demonstrate that our method has remark-
able advantages compared to the state-of-the-art methods in both
cross-modality Cardiac and BraTS segmentation tasks.

Index Terms—Unsupervised Domain Adaptation, Medical Im-
age Segmentation, Deep Symmetric Architecture.

I. INTRODUCTION

Deep convolutional neural networks have made significant
progress in medical image segmentation task. In the task, there
is a common assumption that training and test images are
drawn from the same data distribution. However, in numerous
real-world applications, especially in healthcare field, due to
different acquisition parameters or various imaging modalities,
a large gap of data distributions between training and test sets
possibly occurs. This distribution gap usually causes a drastic
performance drop during the deployment of trained model.
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(a) Examples of CT and MR images. (b) Performance of different settings.

Fig. 1. Comparison of the models trained respectively on CT and MR images
while evaluating on CT images. Note that, the smaller for “ASD” is better,
and reverse on “Dice”.

For example, taking magnetic resonance imaging (MRI) and
computed tomography (CT) in Fig. 1 as examples, we could
observe there exists a large appearance variation between these
two modalities. To quantitatively evaluate the performance
drop caused by domain gap, we first train two respective
segmentation models purely on CT or MR images, and then
utilize these two models to segment a common CT image set,
which denotes as “CT to CT” and “MRI to CT”, respectively.
It is obvious that a drastic performance degeneration happens
in “MRI to CT” compared to “CT to CT”, in terms of Dice
and average surface distance (ASD). In this aspect, the model
trained purely on MR images cannot directly generalize well
on CT images due to this aforementioned domain gap.

To reduce the performance drop across different modalities,
a trivial yet straightforward way is to fine-tune the model pre-
trained on source images with labeled target images. However,
the labeling process which requires pixel-wise manual delin-
eation on target images is often labor-intensive to achieve,
especially when we have a massive number of images for
labeling. To tackle this issue, unsupervised domain adapta-
tion (UDA)-based segmentation methods [1]–[4] have aroused
considerable attention in recent years. In UDA segmentation,
given a fully labeled source domain, our goal is to seg-
ment another target domain without labels in a cross-domain
manner. Thanks to the recent development of UDA-based
segmentation, the performance of cross-domain segmentation
has now been greatly improved.

For these existing UDA-based segmentation methods, most
of them focus on minimizing the differences between dis-
tributions of source and target domains from the image-
translation or feature-alignment perspectives [5]. Specifically,
for the image-translation perspective, a common way [6]–[9]
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is to translate source domain images to the style of target
domain images by image translation networks [10], [11]. The
translated source images with their inherited ground truth
labels from the source domain are utilized to train a target
domain-oriented segmentation model in a supervised man-
ner. However, due to the instability of generative adversarial
network (GAN)-based methods [4], [12], [13], some inferior
translations could destruct semantic information of original
images, thus it may affect the segmentation accuracy.

For the feature-alignment perspective, several works [14]–
[16] align distributions across domains in feature space to
mitigate domain gap. Recent studies [17], [18] propose to
project the feature space to other compact spaces, such as
image space, since latent space of semantic segmentation
might be over-complex and high-dimensional, which should
simultaneously encode appearance, shape and context, etc. In
this paper, we also apply adversarial learning in generated
image space to mitigate distribution discrepancy.

Currently, the feature alignment is usually achieved by
an independent network [8], [19]. Instead, we choose to
bidirectionally align feature distributions across domains using
two symmetric translation sub-networks, which achieves a
significant performance improvement as compared to applying
an independent network.

In this paper, we put forward a novel deep symmetric
adaptation network including a segmentation sub-network, and
source/target domain translation sub-networks. In this network,
we utilize two translation sub-networks via sharing the encoder
and using private decoders to realize the bidirectional align-
ment (i.e., from source to target and vice versa) of feature
distributions between source and target domains, which can
effectively alleviate the large discrepancy between domains.
Moreover, all images from the translation sub-networks and
raw source and target domains are used to train the segmen-
tation sub-network, thus it helps sufficiently explore rich yet
easily ignored semantic information. We evaluate our method
on cross-modality Cardiac [20] and BraTS [21] segmentation
tasks. Extensive experiments reveal the superiority of our
method, compared to current state-of-the-art (SOTA) methods.
Moreover, ablation study highlights the effectiveness of each
module developed in our method. Main contributions of this
paper are summarized as:

• We develop a novel symmetric adaptation network for
cross-modality medical image segmentation, which con-
sists of a segmentation sub-network, source and target
domain translation sub-networks.

• We propose a bidirectional alignment scheme over source
and target translation sub-networks. Besides, all images
of different styles from source and target domains are
utilized to train the segmentation module.

• We conduct extensive experiments in the cardiac seg-
mentation task: “MRI to CT” and “CT to MRI”. We
achieve a new state-of-the-art of 78.50% and 66.45%
in mean Dice. We additionally evaluate our methods on
the BraTS dataset, where our method outperforms other
SOTA methods as well, achieving Dice of 67.18%.

II. RELATED WORK

The existing UDA-based segmentation methods can be
roughly divided into three categories according to different
alignment perspectives, i.e., 1) feature-alignment-based meth-
ods, 2) image-translation-based methods and 3) joint learning
methods of feature alignment and image translation.

A. Feature-alignment-based Methods

Many UDA methods pay attention to align distributions in
the feature space, by reducing the distance metric between
features extracted from source and target domains. Among
them, maximum mean discrepancy (MMD) loss [22]–[24]
is a popularly-used distance metric. As its extension, some
statistics of feature distributions such as covariance [25], [26]
are also utilized for alignment. Another prominent approach
towards domain adaptation for image segmentation is adversar-
ial learning [12], [27]. Several works use adversarial learning
for latent features between the encoder and decoder, which
resorts to learn domain-invariant representations [28]–[30].

Recent methods in literature [17], [18] perform adversarial
learning in low-level space, e.g., image space, to achieve a
compact embedding, since latent space of image segmenta-
tion might be over-complex and high-dimensional, including
various visual cues, such as appearance and context.

B. Image-translation-based Methods

Inspired by GAN-based techniques [6], [12], some image-
translation-based methods [7], [10], [31] are developed to
convert source images into target style-like images. After-
wards, these generated images inheriting ground truth of
source images can be used for supervised training of target
segmentation network. For example, the PixelDA method [10]
addresses domain adaptation by translating source images
to target domain, thereby obtaining a simulated training set
for target images. Huo et al. [32] first adopt a synthesis
network to generate target-like images. Then they feed these
generated images to a segmentation network to perform su-
pervised training with source domain labels. However, due
to instability of GAN-based methods, semantic information
might be destructed during generating cross-domain images.

C. Joint Learning Methods

Recently, some hybrid works integrate image translation and
feature alignment to better mitigate the domain shift [33]–
[35]. For example, Chang et al. [36] propose a domain
invariant structure extraction (DISE) framework. This frame-
work disentangles images into domain-invariant structure and
domain-specific texture representation. It further translates
image across domains and enables label transfer to improve the
segmentation performance. Appearance adaptation networks
(AAN) and representation adaptation networks (RAN) are
combined in [34]. The former adapts source-domain images
to the “style” of the target domain, and the latter attempts
to learn domain-invariant representations. In medical image
segmentation, Chen et al. [8], [9] present a novel unsupervised
domain adaptation framework, namely synergistic image and
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feature alignment (SIFA). This method considers the case
of severe domain shift in cross-modality medical images,
and synergistically merges the feature alignment and image
translation into a unified network.

However, there are two disadvantages in the aforementioned
methods. One is that aligning feature distributions via an
independent network is difficult, especially for the case when
distribution discrepancy is large. Another is that semantic
information of original images might be destructed during
generating cross-domain images. In response to these two
shortcomings, we focus on the feature alignment using two
symmetric translation sub-networks to make up for semantic
knowledge for image-translation with source images. Further-
more, we explore more common semantic information using
adversarial losses between not only original source and target
images but also translated source and target images in the
semantic space.

III. METHOD

In this section, we present technical details of our method.
Fig. 2 illustrates the overview of our framework, which con-
sists of a shared encoder (E), two domain-specific decoders
(Us, Ut) and a classifier (C). Among them, the shared encoder
and a domain-specific decoder constitute a translation sub-
network to reconstruct images and generate cross-domain
images. The encoder and classifier form the segmentation sub-
network. We focus on 1) bidirectionally aligning feature dis-
tributions, exploiting two symmetric translation sub-networks
and 2) employing different styles of images to mine rich but
easily underestimated semantic information. In the following,
we introduce our method in detail from these two aspects.
The symbols used in the following sections are summarized
in Table I.

TABLE I
SUMMARY OF SYMBOLS

Symbol Notation

X s,X t Image sets of source and target modalities (domains)
xs, xt Samples of source and target modalities
xs→t, xt→s Translated samples
Ys, ys Annotation set and sample label corresponding to the source domain
E Shared encoder
Us, Ut Decoders for source and target domains
Zs, Zt Embeddings of source and target domains
Dt, Ds Discriminators for source and target domains
Dpi Discriminator for segmentation map at different levels
Ci Classifier for feature map at different levels

A. Translation Sub-network for Feature Alignment

We aim to address the problem of domain shift in med-
ical image segmentation, where source images (X s) with
corresponding labels (Ys), and target images (X t) without
labels, are given. Our goal is to achieve good performance
in target domain by applying the model trained on source
domain. However, due to the domain shift between source
and target domains, the performance might significantly drop.
Based on adversarial losses, the two translation sub-networks
in our framework translate images 1) from source to target
domain and 2) from target to source domain, respectively. We

also introduce reconstruction loss to better maintain semantic
information. Furthermore, we share the encoder among the two
translation sub-networks and the segmentation sub-network to
achieve the bidirectional feature alignment, which is different
from previous adaptation methods. The independent decoders
for source and target domains mainly pay attention to domain-
specific representations, which forces the shared encoder to
merely learn domain-invariant feature representations. The
detailed descriptions about adversarial loss and reconstruction
loss of translation sub-networks are provided in the following.

1) Adversarial Loss of Generated Space: Specifically, the
translation sub-network is composed of the shared encoder (E)
and domain-specific decoder (Ut). The encoder takes source
images (xs) as input and outputs source embedding (Zs). Then
the target decoder (Ut) takes source embedding (Zs) as input
and generates target-like images to fool the target discriminator
(Dt), while the discriminator tries to distinguish translated
images (xs→t) from target images (xt). The target translation
sub-network that acts as a generator, plays a minimax two-
player game with the target discriminator (Dt). They can be
optimized via the adversarial loss as below:

Lt
adv(E,Ut, Dt) =Ext∼X t [logDt(x

t)]+

Exs∼X s [log(1−Dt(Ut(E(xs))))],
(1)

where the discriminator maximizes the objective in the pro-
cess of optimization. Meanwhile, the encoder and decoder
encourage translated images to be indistinguishable from target
images, hence they make the objective continuously reduced.

Besides, we can also formulate the adversarial loss of
translation sub-network from target to source as below:

Ls
adv(E,Us, Ds) =Exs∼X s [logDs(x

s)]+

Ext∼X t [log(1−Ds(Us(E(xt))))].
(2)

2) Reconstruction Loss: To ensure translated images
(xs→t) to preserve content information of original images and
learn the style of target images, we add the target domain
reconstruction loss. That is to say, we first use the encoder (E)
and target decoder (Ut) to reconstruct target domain images,
and then optimize them by the reconstruction loss

Lt
rec(E,Ut) = Ext∼X t ‖ Ut(E(xt))− xt‖1. (3)

Similarly, we also use the reconstruction loss in source
translation sub-network, ensuring source decoder to learn
distribution information of source domain as follows:

Ls
rec(E,Us) = Exs∼X s ‖ Us(E(xs))− xs‖1. (4)

So far, we obtain the optimization losses for target and
source domain translation sub-networks, which can be cal-
culated as follows:

Lt
gen = λrecLt

rec + λadvLt
adv, (5)

Ls
gen = λrecLs

rec + λadvLs
adv, (6)

where λrec, λadv are hyper-parameters, which are used to
adjust the weight of each component. The corresponding
values in the experiment are 1.0, 0.01, respectively.
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Fig. 2. An overview of our proposed method. The whole network is a completely symmetric framework, which is composed of a common encoder (E)
shared across domains, two domain-specific private decoders (Us,Ut) and a pixel-wise classifier (C). Among them, the shared encoder and a domain-specific
decoder constitute a translation sub-network for reconstructing images and generating cross-domain images. In addition, the encoder and classifier form the
segmentation sub-network. The green and orange blocks in the figure respectively represent the source and target domain translation sub-network, and the
blue block is the segmentation sub-network.

B. Segmentation Sub-network for Semantic Mining

The previous methods [8], [9] utilize translated source im-
ages to learn the semantic information. Since translated source
images might miss some semantic information in the image
translation stage, caused by the instability of GAN-based
methods [12], [13], we utilize both translated source images
and original source images to train the segmentation sub-
network. Furthermore, the raw target images and translated
target images are employed to conduct the adversarial task,
which can help the segmentation sub-network focus more
on the common semantic knowledge of source and target
domains. This sub-network includes two kinds of losses, i.e.,
segmentation loss and adversarial loss.

1) Segmentation Loss: Since all images from source do-
main have corresponding labels, we feed source images (xs)
into the encoder (E) and pixel-level classifier (C) to generate
prediction maps. Then we optimize the whole segmentation
sub-network by the segmentation loss. Inspired from the
SIFA [8], we also apply the idea of deep supervision. We add
an additional classifier for prediction of lower feature maps.
To overcome the class imbalance issue between relative small-
sized foreground and large-sized background, we employ a
sum of soft Dice and weighted cross-entropy (CE) loss to
train the segmentation sub-network as follows:

Ls
seg(E,Ci) =LCE(Ci(E(xs)), ys)+

LDice(Ci(E(xs)), ys), i = 1, 2.
(7)

In addition, the translated images (xs→t) maintain some
content information of original images, and they can inherit
the ground truth of source images, thus these images can be

used for supervised training of the segmentation sub-network.
We feed the translated images (xs→t) into segmentation sub-
network and calculate the segmentation loss with source
domain labels. The cross-domain segmentation loss, which is
similar to source domain segmentation loss, is calculated as
follows:

Ls→t
seg (E,Ci) =LCE(Ci(E(xs→t)), ys)+

LDice(Ci(E(xs→t)), ys), i = 1, 2.
(8)

2) Adversarial Loss of Semantic Space: It is known that
segmentation outputs of source and target domains share a
significant amount of similarity, e.g., spatial layout and local
context. Also, source domain can get corresponding labels,
while there is no label information in target domain. Never-
theless, prediction maps can be utilized to aid the segmentation
sub-network to mine the shared semantic knowledge between
source and target domains. Specifically, we input target images
into the segmentation sub-network, and the prediction maps,
together with the source prediction maps, are feed into the
discriminators (Dpi), which aims to distinguish the predic-
tion maps from source domain or target domain. Differently,
the segmentation sub-network fools the discriminators (Dpi).
Therefore, the adversarial loss in the semantic space of real
images is defined as:

Lp
adv(E,Ci, Dpi) =Exs∼X s [logDpi(Ci(E(xs)))]+

Ext∼X t [log(1−Dpi(Ci(E(xt))))].
(9)

Similarly, translated source images and translated target
images are available from the translation sub-networks, and
translated source images inherit source labels. We add the cor-
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responding adversarial loss in the semantic space of generated
images, which can be described as:

Ltp
adv(E,Ci, Dpi) =E[logDpi(Ci(E(xs→t)))]+

E[log(1−Dpi(Ci(E(xt→s))))].
(10)

To sum up, in order to mine more semantic information, the
whole adversarial loss in the semantic space can be expressed
as:

Lsec
adv(E,Ci, Dpi) = Lp

adv(E,Ci, Dpi) + Ltp
adv(E,Ci, Dpi).

(11)

C. The Overall Loss

In summary, the whole objective of our network for unsu-
pervised domain adaptation is formulated as follows:

L =λgen(Lt
gen + Ls

gen)+

λseg(Ls
seg + Ls→t

seg ) + λsecadvLsec
adv,

(12)

where λgen, λseg , and λsecadv are hyper-parameters adjusting
the weight of each module. The corresponding values in our
experiment are set to 1.0, 1.0 and 0.1, respectively.

D. Network Architecture

The whole framework consists of the segmentation sub-
network and two translation sub-networks. Among them, these
three parts share an encoder. The segmentation sub-network,
which is built on Deeplab-ResNet50, includes the encoder (E)
and classifiers (Ci). Two domain-specific decoders have the
same architecture, but they do not share any weights. They
are composed of three residual blocks and three deconvolution
layers. There are three kinds of discriminators, which are used
to distinguish true and generated images of source domain,
true and generated images of target domain, and different
domains of output prediction maps. All of them have the
same architecture, including four convolution layers, but do
not share any parameters with each other.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our proposed
method from both qualitative and quantitative perspectives.
Specifically, we compare our method with several state-of-the-
art methods and perform some ablation experiments to inves-
tigate the effect of various constraints on model performance.

A. Datasets and Implementation Details

1) Datasets: In our experiment, we utilize two datasets
(i.e., Cardiac dataset [20] and BraTS dataset [21]) to validate
the efficacy of our method. The first dataset is the Multi-
Modality Whole Heart Segmentation (MMWHS) Challenge
2017 dataset [20], which consists of unpaired 20 MRI and
20 CT volumes from different clinical sites. We complete
adaptation experiments both in the “MRI to CT” direction
and in the “CT to MRI” direction. The label mask of cardiac
images is manually delineated by the professional radiologists.
The segmentation labels contain four cardiac structures, which
are the left ventricle myocardium (LVM), left atrium blood

cavity (LAB), left ventricle blood cavity (LVB) and ascending
aorta (AA). The other dataset is the Multi-Modality Brain
Tumor Segmentation Challenge 2018 dataset [21], which is
composed of four modalities of MRI imaging: FLAIR, T1,
T1CE, and T2. In the experiment, T2 is treated as the source
domain and the other modalities are considered as the target
domains. We aim to segment the whole brain tumor of target
domains in an unpaired way. For both datasets, we randomly
select 80% of patient data as the training set and 20% as the
test set. The image intensity is first normalized by subtracting
the mean intensity and dividing by the standard deviation, and
then transferred to range [-1, 1]. We perform the random crop,
rotation and other augmentation operations in the data pre-
processing stage.

2) Implementation Details: We implement our model with
PyTorch on a Tesla V100 with 32 GB memory. The model on
the Cardiac dataset is trained for 2 × 104 iterations and the
batch size is set to 8. The full training process takes 10 hours.
On the BraTS dataset, we train the model for 6×104 iterations
with a batch size of 8, and the full training process takes 24
hours. For both tasks, the shared encoder (E) and classifiers
(Ci) are trained with the Adam optimizer with learning rate
of 2 × 10−4. The two domain-specific decoders are trained
with the Adam optimizer using the learning rate of 1× 10−3.
Differently, the domain-specific discriminators (Ds and Dt)
are trained with the Adam optimizer with learning rate of
1× 10−4, and the discriminators of semantic space (Dpi) are
trained with the Adam optimizer with learning rate of 5×10−5.

B. Evaluation Metrics

There are three evaluation metrics in our experiment, includ-
ing the Dice similarity coefficient (Dice), the average surface
distance (ASD) and Hausdorff distance (HD). Dice is mainly
used to calculate the similarity between prediction map and
ground truth. Higher Dice value indicates better segmentation
performance. ASD is used to calculate the average distances
between the surface of the prediction mask and ground truth
in 3D. And HD is introduced to measure the extreme distance
between two sets of points. Lower ASD and HD values
indicate better performance. Being consistent with previous
works [8], [19], we choose Dice and ASD as evaluation
metrics on the Cardiac dataset, and choose Dice and HD as
evaluation metrics on the BraTS dataset.

C. Comparison with the State-of-the-art Methods

We now report the quantitative results of our method and
the state-of-the-art (SOTA) methods in the Cardiac and BraTS
segmentation tasks.

In Table II, we visualize the adaptation results in the task
“MRI to CT” and “CT to MRI” of the Cardiac dataset. First,
the result of “supervised training” can be regarded as the
upper bound of unsupervised domain adaption methods. As
seen in Table II, it achieves Dice of 85.70% in the “MRI to
CT” task and 84.59% in the reverse task. “No adaptation”
denotes the evaluation results on CT images using the model
trained on MR images or vice versa, which can be taken as the
lower bound of unsupervised domain adaption methods. When
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TABLE II
COMPARISON OF DIFFERENT METHODS ON THE CARDIAC DATASET. THE BOLD NUMBER HIGHLIGHTS THE BEST PERFORMANCE.

Cardiac MRI → Cardiac CT

Method
Dice (%) ASD (voxel)

AA LAC LVC MYO Average AA LAC LVC MYO Average

Supervised training 76.14 89.82 91.37 85.47 85.70 3.39 3.64 2.44 2.19 2.91
No adaptation 37.02 33.71 0.27 4.65 18.92 28.64 8.56 58.50 28.29 31.00

PnP-AdaNet [37] 74.00 68.90 61.90 50.80 63.90 12.80 6.30 17.40 14.70 12.80
AdaOutput [2] 65.20 76.60 54.40 43.60 59.90 17.90 5.50 5.90 8.90 9.60
CycleGAN [6] 73.80 75.70 52.30 28.70 57.60 11.50 13.60 9.20 8.80 10.80
CyCADA [33] 72.90 77.00 62.40 45.30 64.40 9.60 8.00 9.60 10.50 9.40

SIFA [8] 81.30 79.50 73.80 61.60 74.10 7.90 6.20 5.50 8.50 7.00
DSFN [19] 84.70 76.90 79.10 62.40 75.80 N/A N/A N/A N/A N/A

Ours 79.92 84.76 82.77 66.52 78.50 7.68 6.65 3.77 5.59 5.92

Cardiac CT → Cardiac MRI

Method
Dice (%) ASD (voxel)

AA LAC LVC MYO Average AA LAC LVC MYO Average

Supervised training 82.24 86.33 91.51 78.28 84.59 3.44 1.82 1.52 1.72 2.13
No adaptation 0.08 9.31 12.50 0.73 5.66 57.92 18.09 16.12 16.81 27.23

PnP-AdaNet [37] 43.70 47.00 77.70 48.60 54.30 11.40 14.50 4.50 5.30 8.90
AdaOutput [2] 60.80 39.80 71.50 35.50 51.90 5.70 8.00 4.60 4.60 5.70
CycleGAN [6] 64.30 30.70 65.00 43.00 50.70 5.80 9.80 6.00 5.00 6.60
CyCADA [33] 60.50 44.00 77.60 47.90 57.50 7.70 13.90 4.80 5.20 7.90

SIFA [8] 65.30 62.30 78.90 47.30 63.40 7.30 7.40 3.80 4.40 5.70
Ours 71.29 66.23 76.20 52.07 66.45 4.44 7.30 5.46 4.25 5.36

Fig. 3. Cardiac segmentation results of different unsupervised domain adaptation methods. The first two rows are CT images in the “MRI to CT” task, and
the last two rows are MR images in the reverse task.

compared to “supervised training”, we can observe a drastic
drop in performance due to the distribution discrepancy. For
example, the Dice is reduced by 66.78% in the “MRI to CT”
task and 78.93% in the “CT to MRI” task.

We choose several recently proposed SOTA methods for
comparison. In particular, PnP-AdaNet [37] aligns the feature
spaces of source and target domains in an unsupervised

manner; The AdaOutput [2] conducts the adversarial task
between source and target prediction maps; The CycleGAN [6]
performs data augmentation in the target domain via image-
to-image translation methods; The CyCADA [33] adapts rep-
resentations at both the image-level and feature-level; The
SIFA [8] conducts synergistic alignment of domain from both
image and feature perspectives; And DSFN [19] introduces
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TABLE III
COMPARISON OF DIFFERENT METHODS ON THE BRATS DATASET. THE BOLD NUMBER HIGHLIGHTS THE BEST PERFORMANCE.

Method

Dice (%) Hausdorff Distance (mm)

T1 FLAIR T1CE Average T1 FLAIR T1CE Average

Supervised training 73.17 85.58 72.56 77.10 9.47 4.57 9.18 7.74
No adaptation 4.17 65.16 6.28 27.70 55.67 28.00 49.77 39.56

AdaOutput [2] 42.60 67.80 33.10 47.80 23.40 16.60 28.80 22.90
CycleGAN [6] 38.10 63.30 42.10 47.80 25.40 17.20 23.20 21.90
CyCADA [33] 49.60 72.00 51.70 57.80 20.20 14.90 18.40 17.80

SIFA [8] 51.70 68.00 58.20 59.30 19.60 16.90 15.01 17.10
DSFN [19] 57.30 78.90 62.20 66.10 17.50 13.80 15.50 15.60

Ours 57.70 81.79 62.04 67.18 14.24 8.62 13.70 12.19

Fig. 4. Brain tumor segmentation results of different methods in the unsupervised domain adaptation task. The input images from top to bottom are from
T1, FLAIR, and T1CE modality, respectively.

a dual-scheme fusion network to reduce the domain gap.
Among these methods, PnP-AdaNet and CycleGAN are the
feature-alignment-based method and image-translation-based
method, respectively. CyCADA, SIFA and DSFN are the joint
learning methods of feature alignment and image translation.
In particular, our method also belongs to the joint learning
method. Different from other joint learning methods, from
the feature alignment perspective, we propose the bidirec-
tional feature alignment using two symmetric translation sub-
networks. From the image translation perspective, we exploit
all styled images to train the segmentation sub-network via
segmentation loss and adversarial loss.

According to Table II, we can observe that 1) joint learning
paradigm outperforms the independent image-translation or
feature-alignment manner. The main reason is that image
translation can help achieve better feature alignment in joint
learning paradigm and vice versa. For example, PnP-AdaNet
and CycleGAN perform worser than joint learning methods
of feature alignment and image translation (i.e., CyCADA,
SIFA, and DSFN). As for AdaOutput, it adopts the alignment
in the semantic space, which also belongs to the category of
independent methods. Its test result is also in accordance with
this observation. 2) Compared to the existing joint learning
methods, our proposed method shows better performance,

which is attributed to the proposed bidirectional alignment and
semantic mining schemes. As seen in Table II, compared to
CyCADA, our method significantly outperforms CyCADA by
14.10% in “MRI to CT” and 8.95% in “CT to MRI”, which
demonstrates the effectiveness of the shared encoder between
segmentation sub-network and translation sub-networks. In
addition, our method improves the Dice by 4.40% (“MRI to
CT”) and 3.05% (“CT to MRI”) when compared to SIFA. The
main reason might be that we fully exploit all styled images
to incorporate more semantic knowledge. As for DSFN, our
method outperforms DSFN by 2.70% in “MRI to CT” since we
implement bidirectional feature alignment via two symmetric
translation sub-networks. Some typical segmentation results of
these adaptation methods on the Cardiac dataset are shown in
Fig. 3.

In Table III, we display the segmentation results on the
BraTS dataset. Similar with that in the Cardiac dataset, we
first report the experimental results of “supervised training”
and “no adaptation” methods. Due to the domain gap, the
Dice is reduced by 49.40% and HD is increased by 31.82.
Since the appearance of FLAIR and T2 modality is similar,
we achieve the Dice of 65.16% and the HD of 28.00, respec-
tively, without adaptation. Differently, T1 and T1CE have a
significant distribution discrepancy with T2 modality, the Dice
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TABLE IV
EXPERIMENTAL RESULTS OF ABLATION STUDY. THE BOLD NUMBER HIGHLIGHTS THE BEST PERFORMANCE.

Cardiac MRI → Cardiac CT

Method
Dice (%) ASD (voxel)

AA LAC LVC Myo Average AA LAC LVC Myo Average

Ls
seg 37.02 33.71 0.27 4.65 18.92 28.64 8.56 58.50 28.29 31.00
Lt

gen + Ls→t
seg 71.11 71.21 56.37 46.67 61.34 6.11 6.84 9.77 8.93 7.91

Lt
gen + Ls→t

seg + Ls
gen 82.11 76.53 70.36 42.75 67.94 7.48 7.27 6.95 7.68 7.34

Lt
gen + Ls→t

seg + Ls
gen + Ls

seg 81.04 77.03 69.42 51.59 69.77 7.82 4.98 10.09 6.24 7.28
Lt

gen + Ls→t
seg + Ls

gen + Ls
seg + Lsec

adv(all) 79.92 84.76 82.77 66.52 78.50 7.68 6.65 3.77 5.59 5.92

Cardiac CT → Cardiac MRI

Method
Dice (%) ASD (voxel)

AA LAC LVC Myo Average AA LAC LVC Myo Average

Ls
seg 0.08 9.31 12.50 0.73 5.66 57.92 18.09 16.12 16.81 27.23
Lt

gen + Ls→t
seg 57.19 22.43 67.92 35.77 45.83 6.53 13.38 5.35 5.23 7.62

Lt
gen + Ls→t

seg + Ls
gen 56.50 47.61 75.12 35.30 53.63 6.17 10.73 4.89 5.25 6.76

Lt
gen + Ls→t

seg + Ls
gen + Ls

seg 57.70 50.86 75.79 32.54 54.22 7.80 8.68 4.64 4.68 6.45
Lt

gen + Ls→t
seg + Ls

gen + Ls
seg + Lsec

adv(all) 71.29 66.23 76.20 52.07 66.45 4.44 7.30 5.46 4.25 5.36

(a) MRI to CT (b) CT to MRI

Fig. 5. (a) The intermediate segmentation performance of the proposed network and its variant models after different training steps in “MRI to CT”. (b)
The segmentation result boxplot with different ablation experimental settings in “CT to MRI”. The confidence intervals are generated based on the different
volumes in the test sets.

are only 4.17% and 6.28%, respectively. From Table III, we
can observe that the performance of all adaptation methods on
this dataset shows the same trend as the Cardiac dataset. Some
typical segmentation results of these adaptation methods for
the BraTS dataset are illustrated in Fig. 4. As observed, our
segmentation results are closer to supervised results and better
than other methods.

D. Ablation Study

We perform ablation experiments on Cardiac dataset to
verify the impact of various constraints on the entire network.
The experimental results are displayed in Table IV. Overall, we
focus on bidirectionally aligning feature distributions between
source and target domains from the generated image space and
learning common semantic knowledge in the semantic space.

1) Effectiveness of unidirectional alignment: We perform
an experiment that only exploits unidirectional alignment via
the “from source to target” translation sub-network and apply
the translated segmentation loss (Lt

gen+Ls→t
seg ). Compared to

the result of “no adaptation”, the average Dice increases by
42.42% and the average ASD is reduced by 23.09 in the “MRI

to CT” task. Besides, in the “CT to MRI” task, the average
Dice increases by 40.17% and the average ASD is reduced by
19.61.

2) Effectiveness of bidirectional alignment: We perform
an experiment to conduct bidirectional feature alignment
(Lt

gen + Ls→t
seg + Ls

gen) by adding a symmetric “from target
to source” translation sub-network. The two translation sub-
networks consist of the shared encoder and private decoders,
where two private decoders learn domain-specific representa-
tions by reconstruction losses and the shared encoder focuses
on learning domain-invariant representations. In this way, our
average Dice increases by 6.60% in “MRI to CT” and 7.80%
in “CT to MRI”, compared to “Lt

gen + Ls→t
seg ” (unidirectional

alignment).

3) Effectiveness of source segmentation: Due to the insta-
bility of GAN-based methods [12], [13], translated source
images might miss some semantic information of source
images. As a result, we feed source images into the segmen-
tation sub-network to make up for lost semantic information
(Lt

gen + Ls→t
seg + Ls

gen + Ls
seg). The Dice increases by 1.83%

in “MRI to CT” and 0.59% in “CT to MRI” when compared
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Fig. 6. Comparison of the random initialization (blue) and the pre-trained
initialization (orange).

TABLE V
COMPARISON OF DIFFERENT PARAMETER SETTING AND OUR METHOD.

THE BOLD NUMBER HIGHLIGHTS THE BEST PERFORMANCE.

Cardiac MRI → Cardiac CT
Method Dice (%) ASD (voxel)

Shared Decoders 44.93 10.50
Unshared Encoders 73.90 6.90

Unshared Discriminators 76.14 6.04
Ours 78.50 5.92

“Ours” : private decoders, shared encoders, and shared discriminators

to “Lt
gen + Ls→t

seg + Ls
gen”.

4) Effectiveness of adversarial loss in semantic space: It is
known that not only original source images are accessible to
corresponding labels, but translated source images can inherit
source labels. Being aware this fact, we use original images
and generated images to respectively perform adversarial
learning (Lt

gen+Ls→t
seg +Ls

gen+Ls
seg +Lsec

adv) in the semantic
space, which can exploit all styled images to explore more
common semantic information. By this way, the average Dice
increases to 78.50% (“MRI to CT”) and 66.45% (“CT to
MRI”), and ASD is reduced to 5.92 (“MRI to CT”) and
5.36 (“CT to MRI”). Moreover, Fig. 5 shows the intermediate
segmentation performance of the proposed network and its
variant models after different training steps in the “MRI to CT”
task and shows the “CT to MRI” segmentation result boxplot
from different volumes in the MR test set. As observed, each
module proposed in our method is useful for performance
improvement.

V. DISCUSSION

In this part, we mainly discuss different parameter settings
in each module and our method. We report the experimental
results in Fig. 6 and Table V.

1) Initialization of network parameters: In the experiment,
there are two ways to initialize the network parameters,
i.e., 1) random initialization and 2) initialization with a pre-
trained network. Specifically, for the latter, we use the pre-
trained model ResNet50 on the ImageNet dataset [38]. In the
experiment, we only reuse the parameters of layer1, layer2,
layer3, layer4 in the pre-trained ResNet50 model, since our
segmentation network replaces the last fully connected layer
with a convolutional layer and changes the input channel to
one. As verified by experiment, due to the initialization using
pre-trained model, the encoder can extract more representative

features and the average Dice is improved to 80.73% compared
with random initialization, as shown in Fig. 6. However, in
order to make a fair comparison with other methods, we adopt
the results of random initialization in this paper.

2) Evaluation of domain-specific decoders: In our proposed
network, there are two translation sub-networks, which are
composed of a common shared encoder and two private de-
coders. The private decoders are used to learn domain-specific
representations via reconstruction losses and the shared en-
coder is used to learn domain-invariant representations via
adversarial losses. If we share the decoders of translation sub-
networks in our framework, it means that source and target
domains apply a common translation network. The shared
decoders could not learn domain-specific representations and
could not encourage the shared encoder to learn the domain-
invariant representations. As verified by experiment (Shared
Decoders) in Table V, the result of shared decoders is poorer
than private decoders in “ours”. It only achieves the Dice of
44.93% and the ASD of 10.50.

3) Evaluation of shared encoders: We share the encoder
between the segmentation sub-network and two translation
sub-networks. In this way, we achieve the bidirectional feature
alignment. If the segmentation sub-network does not share
the encoder with two translation sub-networks, it means that
they are independent with each other. The network could not
achieve the feature alignment from the generated image space.
As observed in Table V, the Dice is reduced by 4.60% in
“unshared encoders” when compared to shared encoders in
“ours”.

4) Effectiveness of the shared discriminators: In our ex-
periments, we use two sets of discriminators for adversarial
learning in the semantic space. We share the parameters of
these two sets of discriminators. Between them, one set of
discriminators is used to distinguish prediction maps of real
images which domain they come from. In this set, since the
source domain is annotated, its label is a positive category
and the target domain is a negative category. The other set of
discriminators are used to distinguish which domain prediction
maps of generated images come from. Since translated source
images have corresponding labels, they are marked as a
positive class, and translated target images are marked as
a negative class. If the parameters are shared between the
two sets of discriminators, it means the real and generated
images use the same classifier. In addition, source images and
translated source images are grouped into the same category,
and target images and translated target images are grouped into
the other category, which exactly meets the requirements of
semantic consistency. As seen in Table V, sharing parameters
of discriminators in “ours” improves the Dice by 2.36%
when compared to not sharing parameters (i.e., Unshared
Discriminators).

VI. CONCLUSION

In this paper, we proposed a novel symmetric network
of unsupervised domain adaptation for medical image seg-
mentation. Our model not only achieves the bidirectional
feature alignment via two symmetric translation sub-networks,
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but also sufficiently explores the semantic information from
different style images. Through the experiments, our network
shows significant advantages compared to the state-of-the-art
methods on both the Cardiac and BraTS datasets.

Besides, our method can be further improved to better
generalize in the target domain. For example, if we can get
pseudo-labels of target domain or combine the self-training
paradigm, more semantic information from target domain
could be explored to achieve better segmentation performance.
We will explore this direction in our future work.
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domain adaptation by discovering latent domains,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 3771–3780.

[27] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Lavio-
lette, M. Marchand, and V. Lempitsky, “Domain-adversarial training of
neural networks,” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 2096–2030, 2016.

[28] Y.-H. Chen, W.-Y. Chen, Y.-T. Chen, B.-C. Tsai, Y.-C. Frank Wang, and
M. Sun, “No more discrimination: Cross city adaptation of road scene
segmenters,” in Proceedings of the IEEE International Conference on
Computer Vision, 2017, pp. 1992–2001.

[29] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain
adaptation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2507–2516.

[30] W. Hong, Z. Wang, M. Yang, and J. Yuan, “Conditional generative
adversarial network for structured domain adaptation,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
2018, pp. 1335–1344.

[31] A. Royer, K. Bousmalis, S. Gouws, F. Bertsch, I. Mosseri, F. Cole, and
K. Murphy, “Xgan: Unsupervised image-to-image translation for many-
to-many mappings,” in Domain Adaptation for Visual Understanding.
Springer, 2020, pp. 33–49.

[32] Y. Huo, Z. Xu, H. Moon, S. Bao, A. Assad, T. K. Moyo, M. R.
Savona, R. G. Abramson, and B. A. Landman, “Synseg-net: Synthetic
segmentation without target modality ground truth,” IEEE transactions
on medical imaging, vol. 38, no. 4, pp. 1016–1025, 2018.

[33] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros,
and T. Darrell, “Cycada: Cycle-consistent adversarial domain adapta-
tion,” in International conference on machine learning, 2018, pp. 1989–
1998.

[34] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei, “Fully convolutional
adaptation networks for semantic segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 6810–6818.

[35] Y. Li, L. Yuan, and N. Vasconcelos, “Bidirectional learning for domain
adaptation of semantic segmentation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
6936–6945.

[36] W.-L. Chang, H.-P. Wang, W.-H. Peng, and W.-C. Chiu, “All about
structure: Adapting structural information across domains for boosting



11

semantic segmentation,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 1900–1909.

[37] Q. Dou, C. Ouyang, C. Chen, H. Chen, B. Glocker, X. Zhuang, and
P.-A. Heng, “Pnp-adanet: Plug-and-play adversarial domain adaptation
network at unpaired cross-modality cardiac segmentation,” IEEE Access,

vol. 7, pp. 99 065–99 076, 2019.
[38] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:

A large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition. Ieee, 2009, pp. 248–255.


	I Introduction
	II Related Work
	II-A Feature-alignment-based Methods
	II-B Image-translation-based Methods
	II-C Joint Learning Methods

	III Method
	III-A Translation Sub-network for Feature Alignment
	III-A1 Adversarial Loss of Generated Space
	III-A2 Reconstruction Loss

	III-B Segmentation Sub-network for Semantic Mining
	III-B1 Segmentation Loss
	III-B2 Adversarial Loss of Semantic Space

	III-C The Overall Loss
	III-D Network Architecture

	IV Experiments
	IV-A Datasets and Implementation Details
	IV-A1 Datasets
	IV-A2 Implementation Details

	IV-B Evaluation Metrics
	IV-C Comparison with the State-of-the-art Methods
	IV-D Ablation Study
	IV-D1 Effectiveness of unidirectional alignment
	IV-D2 Effectiveness of bidirectional alignment
	IV-D3 Effectiveness of source segmentation
	IV-D4 Effectiveness of adversarial loss in semantic space


	V Discussion
	V-1 Initialization of network parameters
	V-2 Evaluation of domain-specific decoders
	V-3 Evaluation of shared encoders
	V-4 Effectiveness of the shared discriminators


	VI Conclusion
	References

