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Deep Tomographic Image Reconstruction:
Yesterday, Today, and Tomorrow—~Editorial for
the 2nd Special Issue “Machine Learning
for Image Reconstruction”

Abstract— As a follow-up to the first IEEE TRANSACTIONS
oN MebicaL Imaging (TMI) special issue on the theme of deep
tomographic reconstruction, the second special issue is
assembled to reflect the status and momentum of this
rapidly emerging field. In this editorial, we provide a brief
background illustrating the motivation for the development
of network-based, data-driven, and learning-oriented recon-
struction methods, summarize the included papers, and
report our verification of the shared deep learning codes.
Finally, we discuss several important research topics to
facilitate further investigation and collaboration.

Index Terms—Tomography, image reconstruction,
machine learning, artificial intelligence, deep learning,
deep reconstruction.

|. INTRODUCTION

OMOGRAPHIC image reconstruction is an important

aspect of medical imaging and plays a key role in
modern medicine. Classic image reconstruction algorithms
assume idealized imaging models and datasets. This allows
the use of Fourier inversion and other analytic solutions.
However, when clinical needs and technical factors are taken
into consideration, both imaging scanners and raw data are far
from being ideal and often become difficult to model precisely.
For example, CT sinograms are noisy when using low-dose
scans, incomplete due to a limited scanning range or presence
of metal implants, and inconsistent due to patient motion,
including motion of the heart. In these cases, iterative solutions
are helpful because they can be designed to handle imperfect
datasets and improve image quality. Such iterative methods
utilize prior knowledge of the imaging model and the image
content. For example, prior knowledge about the physics of
data acquisition (e.g., the Poisson nature of X-ray, gamma-
ray, and optical photon emission, and Rician distribution of
MRI image noise) can be captured by a maximum likelihood
formulation. Prior knowledge about the image content may be
accounted for by sparsity, low-rank, and dimension-reduction
priors. These priors can be combined, and form the core of
iterative image reconstruction algorithms.

Despite remarkable successes of iterative algorithms, they
suffer from several limitations in practice. For example,
compressed sensing methods [1] allow sparse view reconstruc-
tions when certain conditions are satisfied, which are often
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associated with the number of projections on an order of
hundreds. However, these sparsity-oriented algorithms produce
strong artifacts when the number of projections is below
that threshold. As another example, the amount of k-space
data must be made rather small for fast MRI scans, and
in this case, even if a contemporary compressed sensing
method is used, image artifacts cannot be fully suppressed.
Furthermore, applications of these methods necessitate tuning
of hyper-parameters and are computationally demanding.

The main reasons for degradation in the image quality of
the above iterative algorithms include (a) the limited image
redundancies that classical image priors (e.g., sparsity or
low-rank) can represent, and (b) inaccuracies in the prior
knowledge about the imaging physics. Indeed, extensive prior
knowledge may be available, but not easy to be extracted
and utilized for tomographic reconstruction. For example,
the forward model of an imaging system is typically approx-
imate. Tomographic imaging models are treated as linear
systems for tractable iterative algorithms. Nonlinearities and
uncertain factors may be too complicated to be modeled in
a closed form. In addition, the formulated prior knowledge
on the image content is usually over-simplistic, including
non-negativity, sparsity, low-rank, and even low-dimensional
manifolds. Importantly, existing medical images themselves
collectively represent high-dimensional complicated distribu-
tions, and cannot be analytically expressed to aid tomographic
reconstruction. In other words, the gap between the hidden
knowledge and the tomographic need is large, demanding a
paradigm shift in image reconstruction methods.

Deep learning, as a mainstream of artificial intelligence (AI)
and machine learning, enables a paradigm shift for med-
ical imaging in general, and tomographic reconstruction in
particular. This data-driven approach relies on learning of
the system model mismatches and subtleties as well as the
image manifold shapes and relationships from big data using
a properly designed network-based reconstruction scheme.
This data-driven approach for image reconstruction leads to
a new category of image reconstruction methods, being sig-
nificantly different from analytic and iterative algorithms, and
yet such a deep reconstruction network is trained using an
iterative algorithm, and, after the training process, used in a
feed-forward fashion like an analytic algorithm.

Since 2016, deep tomographic reconstruction has rapidly
become the main trend of medical image reconstruction
research and development [2]. In June 2018, the first special
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Fig. 1. Field of deep tomographic reconstruction growing rapidly as
measured by the number of publications per year.

issue was published on image reconstruction using machine
learning especially deep learning methods [3]. That first
special issue had a major impact on the field, as partially
evidenced by its bibliometric measures, including a total
number of citations of 2,601 and a mean number of citations
of 130 by Scopus, which is an expertly curated bibliometric
database and the largest one of its kind, covering more than
5,000 publishers. We further surveyed the deep tomographic
reconstruction literature using Scopus. With the dedicated
search rule (“deep learning” AND “medical” AND “image”
AND “reconstruct®*””) within the union of titles, abstracts, and
keywords, we had 998 hits. It can be clearly seen that the deep
reconstruction field has enjoyed an exponential growth since
2016 with over 300 papers published in the last year alone,
as shown in Figure 1.

This remarkable progress in deep tomographic reconstruc-
tion can be attributed to several factors [4]. These include
big datasets, fast computing platforms, advanced deep learn-
ing tools, as well as accumulated reconstruction expertise
on imaging modalities. In this context, impressive or even
breakthrough imaging results are constantly produced across
a wide spectrum of imaging scanners, scanning modes, and
clinical tasks, some of which are now published in this special
issue [5].

Il. SPECIAL ISSUE SUMMARY

This special issue consists of 24 papers. The first 11 papers
are focused on the recovery of CT images using deep learning.
The remaining 13 papers address issues in a variety of other
modalities as well as reconstruction robustness, also known as
the hallucination problem.

A. Deep CT Reconstruction

In [A1], Bai et al. develop a deep interactive denoiser (DID)
by introducing a lightweight test-time optimization process
that can run on top of any existing DL-based denoiser to
generate images with different noise-resolution tradeoffs. This
allows clinicians to interact with the denoisers to efficiently
review image candidates with various tradeoffs between res-
olution and noise, and quickly pick the desired one. In [A2],

He et al. propose a down-sampled imaging geometric model-
ing approach for the data acquisition process and incorporate
it into a hierarchical neural network, which simultaneously
combines geometric modeling knowledge of the CT imaging
system and prior knowledge gained from a data-driven train-
ing process for accurate CT image reconstruction. In [A3],
Ye et al. propose a unified supervised-unsupervised (SUPER)
learning framework for X-ray CT image reconstruction. The
learning formulation combines unsupervised learning-based
prior together with (supervised) deep network-based prior
based on a fixed point iteration analysis. The proposed training
algorithm is an approximate scheme for bilevel supervised
optimization, with a network-based regularizer in the lower
level and a reconstruction loss in the upper level. In [A4],
Wau et al. consider the problem of reconstructing high-quality
CT images from very few projections. To this end, they
introduce a Dual-domain Residual-based Optimization NEt-
work (DRONE) that consists of embedding, refinement, and
awareness modules. A sparse sinogram is extended, and then
the sparse-view artifacts are suppressed by the embedding
module; image details are recovered in the residual data
and image domains by the refinement module; and finally,
the results are regularized by the awareness module. In [AS5],
Yang et al. propose an unsupervised continuous kernel con-
version method using a cycle-consistent generative adversar-
ial network (cycleGAN) with adaptive instance normaliza-
tion (AdaIN) for CT reconstruction using different kernels.
By interpolating the AdaIN code, the authors demonstrate
that the network can convert images along the interpolation
path between two CT images using different filter kernels to
highlight different structures. In [A6], Tao ef al. develop a
deep neural network to reconstruct a CT image from view-
by-view backprojections (VVBP-Tensor), where the network
inputs slices of the VVBP-Tensor as feature maps and outputs
the reconstructed image. Numerous experiments reveal that the
proposed VVBP-Tensor domain learning framework obtains
significant improvement over the image, projection, and hybrid
projection-image domain learning schemes.

The next set of papers pertain to CT recovery in the presence
of various artifacts and advanced scanning methods. In [A7],
Huang er al. propose a plug-and-play (PnP) method for trun-
cation correction in CT. Their approach uses a deep learning
method to reconstruct a prior image for the extrapolation of
missing data first, and then a conventional reconstruction is
applied to obtain the final image. With such a PnP method,
the region outside the field-of-view (FOV) is restored, which
highly relies on the learned image, while the region inside
the FOV is reconstructed with full fidelity. In [A8], Zhi et al.
propose two CNN based models to recover 4-D cone-beam
CT images. The challenge is that 4-D CBCT images are
degraded by severe streaking artifacts and noise because the
phase-resolved image is from an extremely sparse-view CT
procedure wherein a few under-sampled projections are used
for the reconstruction of each phase. By incorporating the prior
image reconstructed from the entire projection data and the
correlation among the phase-resolved images, they are able
to suppress streaking artifacts and noise while restoring the
required features. In [A9], Xia et al. develop a approach to
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process data obtained under different scanning protocols in
CT. Their approach allows training only once, by training a
reconstruction network with data originating from multiple
alternative geometries and dose levels simultaneously. The
geometry and dose levels are parameterized and fed into two
multilayer perceptrons (MLPs). The outputs of the MLPs are
used to modulate the feature maps of the CT reconstruction
network, which condition the network outputs on different
geometries and dose levels. In [A10], Hayes et al. consider
the single source multi-row detector helical CT reconstruction
problem. A longstanding challenge is the reconstruction of
images from projection data acquired with a helical pitch
greater than 1.5. The authors demonstrate that a synergistic
use of advanced techniques in conventional helical filtered
backprojection, compressed sensing, and more recent deep
learning methods can be made to enable accurate reconstruc-
tion up to pitches of four without significant artifacts. Finally,
in [All], Zhang et al. propose the Comprehensive Learn-
ing Enabled Adversarial Reconstruction (CLEAR) method
using a progressive improvement strategy for subtle structure
enhanced low-dose CT imaging. A generator is established on
the comprehensive domain which can extract more features
than the one built on degraded CT images and directly map
raw projections to high-quality CT images. Then, a multi-
level loss is assigned to the generator to push the network
components to be updated towards high-quality reconstruction,
preserving consistency between generated images and gold-
standard counterparts.

The second half of this special issue is focused on
MRI, PET, X-ray, ultrasound, microscopy, and reconstruction
robustness.

B. Deep MRI

Moving on to deep learning for MRI, in [Al2],
Zou et al. propose a patient-specific deep generative model for
the reconstruction of dynamic cardiac MRI. Unlike traditional
generative models that require extensive training data, the gen-
erator parameters and the time-dependent latent variables
that drive the generator are learned from the under-sampled
data of the specific subject. The latent variables capture the
important dynamic components in the data, including cardiac
and respiratory phases. Once learned, the representation can be
used to generate data in the desired cardiac/respiratory phases.
In [A13], Lahiri et al. propose the Blind Primed Supervised
Learning (BLIPS) approach for MR image reconstruction
by integrating blind and supervised learning for MR image
reconstruction. Image features learned by deep supervised
learning-based reconstruction algorithms from paired training
data are shown to be different from those learned using
shallower blind learning-based reconstruction methods such as
dictionary learning. Adopting BLIPS techniques reduces the
demands on training data for learning-based reconstruction,
and improves performance.

In [A14], Oh et al. propose an unpaired deep learning
method for MR motion artifact removal that does not require
matched motion-free and motion artifact images. In this
method, outliers in k-space are first rejected by random

sampling. Then, the neural network reconstructs fully sampled
MR images. Finally, by aggregating multiple reconstructed
images from different downsampled images, motion-corrected
images are acquired. In [A15], Cheng er al. propose Learned
DC for fast MR imaging that implicitly learns data consistency
with deep networks, corresponding to the actual probability
distribution of system noise. The data consistency term and
the prior knowledge are both embedded in the weights of the
networks, which provides an implicit learning reconstruction
model.

C. Deep PET

In [A16], Zhou et al. consider low-dose gated PET where
gating is utilized to reduce respiratory motion blurring and
facilitate motion correction methods. Reducing injection doses
causes increased noise levels in gated images that could
corrupt motion estimation and subsequent correction, leading
to inferior image quality. The authors propose MDPET, a uni-
fied motion correction and denoising adversarial network for
motion-compensated low-noise imaging from low-dose gated
PET data. The denoising network is unified with the motion
estimation network to simultaneously correct the motion and
predict a motion-compensated denoised PET reconstruction.

D. Deep X-Ray Imaging

In [A17], Fotouhi et al. combine information from 2-D
X-ray acquisitions in parallax-free domains and enable the
stitching of X-ray images with no constraints on the motion
of the C-arm. They leverage the Fourier slice theorem to
aggregate information from multiple transmission images. The
details of the stitched image are subsequently restored using
a deep learning strategy that exploits similarity measures
designed around frequency as well as spatial image content.

E. Deep Ultrasound Imaging

The two papers in this category focus on ultrasound imag-
ing. In [A18], Huang et al. work on an array transducer for
tumor tracking in image-guided radiotherapy, which reduces
user dependence and anatomical changes. Due to its flexible
geometry, conventional delay-and-sum (DAS) beamforming
produces B-mode images with considerable defocusing and
distortion. To address this problem, they propose an end-to-end
deep learning approach that modifies the conventional DAS
beamformer when the transducer geometry is unknown. The
proposed approach reduces the distortion and improves the
lateral resolution and contrast of the reconstructed B-mode
images. In [A19], Chen et al. introduce ApodNet, which is a
deep learning approach for high frame rate synthetic transmit
aperture (STA) ultrasound imaging. It contains an encoder to
train a set of optimized binary weights as the apodization of
high-frame-rate plane wave transmissions, and a decoder to
recover the complete dataset from the channel data and achieve
two-way dynamic focusing. ApodNet improves image quality
when compared with compressed-sensing (CS) based STA at
the same frame rate.
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F. Deep Microscopic Reconstruction

The first two papers in this part consider deep microscopic
imaging. In [A20], Chen et al. exploit morphological priors
from neurons for training a deep neural network to extract
neuron signals from optical microscopy images. They integrate
a deep segmentation network in a generative adversarial net-
work (GAN), expecting the segmentation process to be weakly
supervised by pseudo-labels at the pixel level while utilizing
the supervision of previously reconstructed neurons at the
morphology level. In their reconstruction GAN, the segmen-
tation network extracts neuron signals from raw images, and
the discriminator network encourages the extracted neurons to
follow the morphology distribution of reconstructed neurons.
In [A21], Zhang et al. produce images with fluorescence
molecular tomography (FMT), which is a promising and high
sensitivity modality that can reconstruct the 3-D distribution
of interior fluorescent sources. They present a 3-D fusion
dual-sampling convolutional neural network (UHR-DeepFMT)
to achieve ultra-high spatial resolution reconstruction. Experi-
ments demonstrate that the proposed UHR-DeepFMT method
achieves an ultra-high spatial resolution, higher than 0.5mm.
Finally, in [A22], Li et al. propose a fast quantitative differ-
ential phase-contrast imaging method with a half-circle pupil.
Typically, to generate an isotropic phase, many images are
required. Here, a deep learning method is applied to alleviate
the slow data acquisition process and generate sufficiently
accurate phases from a small number of measurements. The
model is tested on seven different types of biological cells.

G. Deep Image Reconstruction

In [A23], Lee and Jeong propose an image denoising
method, Interdependent Self-Cooperative Learning (ISCL),
that leverages unpaired learning by combining cyclic adver-
sarial learning with self-supervised residual learning. Unlike
the existing unpaired image denoising methods relying on
matching data distributions in different domains, the two
architectures in ISCL, designed for different tasks, comple-
ment each other and boost the learning process. The paper
includes various biomedical image denoising experiments.
Finally, in [A24], Bhadra et al. address a critical issue of
tomographic image reconstruction, that is, the robustness of
the imaging performance with respect to perturbation. They
introduce the concept of a hallucination map in order to
understand the effect of the prior in regularized reconstruction
methods. Clearly, this is a major direction for further research.

I1l. TESTING OF THE METHODS

Eighteen of 24 accepted papers publicly released the asso-
ciated source codes for reproducible research, among which
eight for CT, four for MRI, two for ultrasound imaging, two
for optical microscopy, one for PET, and one for electron
microscopy. Also, 11 of these 18 groups used PyTorch, five
of them used TensorFlow, one of them used Matlab, and one
only provided the trained network without any runnable code.
In the cases of trained networks or the trainable code available,
we tested them systematically.

A. Guideline for Verification

In our evaluation, we made the best effort to verify
the shared codes objectively and quantitatively. Specifically,
we took the following steps.

First, we checked the consistency of the shared network. The
work can be divided into two parts: (1) In the studies where the
training code, testing code, trained network, and testing dataset
were made available, all the items were tested. This means
that the training process of the network was evaluated, and
the trained network was tested on the testing dataset; and (2)
In the studies where training and testing codes are available,
we learned a trained network based on the same dataset used
by the authors (referred to as the reproduced network here),
and evaluated whether the reproduced network performed as
well as the authors’ trained network reported in their paper.

Second, to assess the network generalizability, we can
use some commonly used new test items, such as a dataset
different from the dataset mentioned in the associated paper; a
dataset acquired/simulated at a different dose-level; a different
imaging geometry (e.g., a different source to detector distance
for CT imaging); a different region of interest (ROI) for
interior tomography; and a different amount of data (e.g.,
a different number of views or a different number of k-space
samples). Given the time limitation, we only tested the gen-
eralizability of the deep CT networks at different dose levels
to have a feeling regarding the generalizability of deep CT
reconstruction and as a precursor for further efforts along
this direction. When we report on our experimental results,
the papers are referenced as items No. 1-18.

B. Shared Codes and Code Sharing

In our evaluation, it was found that there were four problems
with the 18 available codes: (1) four source codes cannot work
correctly due to lack of codes to run the project, such as
the code for loading data, and the code to call the trained
network; (2) one code failed to calculate the quantitative
metrics due to the lack of reference images; (3) one code did
not run successfully because the dependency information of
the software platform was not precisely specified; and (4) one
code cannot run because the authors did not provide the trained
network, and the dataset is private. As a result, seven of
the aforementioned codes cannot work because of missing
information.

In addition to verifying the reproducibility and generaliz-
ability of the deep networks, another purpose of this evalu-
ation is to expose problems in code sharing. Based on our
experience, we would like to suggest the following points for
code sharing: (1) training code; (2) testing code; (3) training
dataset (if possible); (4) testing dataset (provide at least the
test data used in the paper); (5) the trained network; (6) the
code for loading the original data (both for training and test-
ing); (7) images/data for quantitative evaluation; (8) the code
for calculating the quantitative metrics if there exist various
versions that would bring out different evaluation results (e.g.,
Structural Similarity (SSIM)); (9) the dependency of the code
(anything that the code needs to work correctly); and (10) the
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TABLE |
QUANTITATIVE RESULTS OF CONSISTENCE VERIFICATION OF THE SELECTED DEEP RECONSTRUCTION NETWORKS

Our Test/Difference

No. Metrics  Visual Inspection  Results from the Paper Remarks
RN AN

1 RMSE Y 26.7 NA 24.5/8.24% AC
2 PSNR Y 335 NA 31.3/6.57% AC
3 PSNR Y 36.75 NA 40.28/9.61% AC
4 SSIM Y 0.8491 0.8022/5.52%  0.8008/5.69% AB
5 PSNR Y 26.63 NA 25.35/4.81% AD
6 RMSE Y 42.1 45.6/8.31% NA B
7 CNR Y 7.44 NA 5.41/27.28% AD
8 SSIM Y 0.76 0.70/7.89% 0.73/3.95% AB
9 PSNR Y 28.34 NA 28.50/0.56% AE
10 PSNR Y 27.0 27.1/0.37% NA B
11 SSIM Y 0.86 NA 0.79/8.14% AC

12 Codes incomplete to run the project.
13 Codes incomplete to run the project.
14 Codes incomplete to run the project.

15 No reference to calculate the quantitative metrics.

16  Dependency information of the software platform is insufficient.

17 No code other than the trained network.
18  Codes incomplete, dataset protected.

Note: NA: Not available;
RN: Using reproduced network;
AN: Using author-provided network;

Y: Visual inspection consistent with the results in the paper;

A: Author-provided network;
B: Network trained by us (reproduced network);

C: Network cannot be trained due to no code for loading data;

D: Network cannot be trained due to data privacy;

E: Network cannot be trained due to lack of the training code.

README file that contains sufficient information for the
readers to know about the project, code, and instructions.

C. Results Using Trained/Reproduced Networks

We compared the results reported in the papers with what
we obtained using either the trained networks provided by
the authors and/or our reproduced networks. In the case that
there was no trained network provided by the authors or
the author-provided network failed to work correctly, we just
produced the results using our reproduced networks. The
comparative results are presented in the following table using
the quantitative indexes consistent with what were used in
the papers, including PSNR (Peak to Noise Ratio), CNR
(Contrast to Noise Ratio), RMSE (Root Mean Square Error),
and visually based remarks.

When evaluating the codes, we selected one of the repre-
sentative results from the paper. It can be seen in Table I that
the test results are comparable in terms of visual inspection
and generally consistent quantitatively with what was reported
in the paper. Nevertheless, we still found certain numerical
fluctuations, and possibly some biases, for the following
reasons: 1) the exact ROI position was not always given in
the paper; 2) the authors just gave the average metrics of a
set of test data; 3) the test samples were not always specified;
and 4) the training dataset was not always the same as that
used in the paper.

D. Generalizability Testing

To test generalizability, we only tested the generalizability
of six trained deep CT reconstruction networks with different
noise levels. L1-L5 represent the noise background from low
to high. It is worth noting that the authors usually used test data
at different dose levels in various papers. Hence, we estimated
the number of photons emitted from the X-ray source at the
dose level involved in the test data. Then, we add Poisson noise
by assuming that the noise level is the same, or 1.25, 1.5, 1.75,
and 2 times of the reference level (corresponding to L1-L5),
respectively. The PNSR results are shown in Table II. For
comparison, we used the same metric to evaluate the gener-
alizability. The mean and SD (Standard Deviation) values are
listed in the rightmost column. Specifically, the SD of PSNR
for the six shared networks varies from 0.07 to 1.75. Among
these codes, code No. 4 enjoys the smallest SD of 0.07, while
code No. 5 is subject to the largest SD of 1.75.

Some comments on these two extremes are in order. For
code No. 4, other compromising factors dominate the image
quality, making the impact of noise on images relatively small.
In the case of code No. 5, the network was trained on a
normal-dose dataset for CT reconstruction, and consequently,
the network has a poor anti-noise ability. All of the other four
codes were designed for low-dose CT reconstruction. The SD
of PSNR for these four codes is less than 1.0, which to some
extent demonstrates the robustness of the codes against varying
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TABLE Il
QUANTITATIVE RESULTS OF CONSISTENCY VERIFICATION OF THE
SELECTED DEEP RECONSTRUCTION NETWORKS

No. L1 L2 L3 L4 L5 Mean+SD
1 293  29.02 28.65 278 26.8  28.314+0091
2 31.6 3176 3099 30.14 29.81 30.86+0.77
3 33.61 3327 3248 3227 31.07 32.54+0.88
4 33.64 3359 33,57 3351 3345 33.55+0.07
5 25.02 2429 2326 21.87 20.14 2292+1.75
6 313 31.09 3087 30.61 3022 30.82+0.38

noise levels. To various degrees, the generalizability of these
networks is not perfect and could be further improved. Such
phenomena are not surprising, given the inherent randomness
in the training strategy and the well-known instability of
deep networks (see the last section of this editorial on future
directions for deep reconstruction research).

IV. CHALLENGES AND PERSPECTIVES

A. Generative Models in Relation to Compressive
Sensing

The theoretical guarantees and efficient algorithms in
compressive sensing have generated significant excitement
in several biomedical tomographic imaging areas including
MRI [6]. While deep learning methods often offer improved
performance over CS methods, they are less theoretically
understood. Recently, several authors have shown that algo-
rithms that iteratively project intermediate tomographic solu-
tions to the range of a generative model learned from big
data enjoy robustness guarantees, in addition to the benefits
achievable using CS algorithms [7], [8]. Learning projection-
based deep-learning algorithms as well as optimizing sampling
patterns for the best performance are important further direc-
tions.

The theoretical robustness guarantees of generative models
discussed above have prompted researchers to use pre-learned
generative models for image recovery, which is similar in
concept to CS algorithms. Current schemes often alternate
between enforcement of data consistency and projection to
the range of the generator; the projection step replaces the
proximal operator used in CS algorithms to enforce sparsity.
While such generative models may be ideally suited to model
the physics (e.g., learning the spectra [9] or diffusion sig-
nal [10] in MRI), a challenge with directly using generative
models to represent images is the limited generalizability [11].
Specifically, the restriction of the images to the range space
of the generator could make it challenging to recover arbitrary
images, which are not necessarily always in the range [8].
More investigation is needed to reconcile the tradeoff between
accuracy, robustness, and generalizability.

Another trend is to use untrained generative models for
image recovery. Deep image priors [12] and their extensions
have been used in a variety of applications with initial suc-
cess. These schemes use the inherent bias of convolutional
networks to natural image content, rather than noise, to recover
features from partial data. While the performance of the early
methods was not competitive compared to the ones trained

with extensive data, recent advances are promising. Similar
methods are now emerging for the recovery of dynamic data,
where the same generator is shared across time-frames [13],
[14]. These approaches enable the recovery of images in
a low-dimensional manifold, offering improved performance
compared to low-rank methods for dynamic imaging. More
efforts are needed to understand these models and enhance
their performance.

Finally, there has been growing interest in unrolling or
unfolding methods, which are based on unrolling iterations
of a given iterative method while learning parameters related
to the model and physics of the problem [15]-[18].

B. Robustness of Deep Learning Methods

It is well known that deep learning classification algorithms
are sensitive to adversarial perturbations. Recently, several
researchers have reported that deep image reconstruction algo-
rithms are also vulnerable to perturbations to the measurement
data [19]. It is argued that deep-learning algorithms possess a
fundamental tradeoff between increased performance and com-
promised robustness. However, these studies do not consider
the restrictive settings considered in the context of generative
models, where robustness is guaranteed [7], [8]. More work
is needed to integrate these complementary algorithmic ingre-
dients; for example, adversarial training strategies have also
been suggested to improve the robustness of deep learning
algorithms [20].

A special challenge in the context of image reconstruction is
the sensitivity to model-mismatch [21]. In particular, the net-
work may be trained assuming a specific forward model (e.g.,
Fourier sampling in MRI) but when the acquisition scheme
differs from the assumed model (e.g., scanner non-idealities,
differences between scanners, change in sampling patterns in
MRI), the reconstruction performance has been reported to
degrade more significantly than traditional approaches such as
compressed sensing [21]. A possibility is to train the networks
with different expected acquisition schemes (e.g., different
sampling patterns as in [22]) to minimize the vulnerability to
model mismatches. However, this may come at the expense of
performance, or it may be challenging to foresee the different
acquisition schemes during training. Model adaptation [21]
and domain adaptation [23] seem promising directions to
mitigate the above challenges.

C. UnSupervised/Semi-Supervised Training

Large fully sampled and high-quality datasets are becoming
available to train deep networks [24], [25] in certain settings,
which are great research resources. However, such datasets
are not always widely available or are impossible to collect in
challenging applications such as ultra-high-resolution imaging
or imaging of moving objects due to dose, time, or cost
restrictions. Similarly, in image deblurring problems, one
may not have access to blur-free images. One possibility
in this context is to use transfer learning to adapt learned
models from another domain or a simulated dataset. Another
interesting opportunity is to develop unsupervised or weakly
supervised learning methods. Blind-spot-based methods such
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as Noise2Void [26] and statistical approaches such as Stein’s
unbiased risk estimate (SURE) [27] have been proposed to
learn deep denoisers without noise-free data. Similar methods
are now emerging to solve inverse problems, which is more
challenging due to the quality and incompleteness of data
coupled with noise. Extensions of blind-spot methods (e.g.,
SSDU [28]) and statistical approaches (e.g., ENSURE [29],
[30]) are encouraging along this direction.

D. End-to-End Mapping

Early deep learning methods relied on training a generic
model (e.g., UNET) to recover images from tomographic
projections. Motivated by LISTA [15] and related works [22],
[31], many of the better-performing algorithms in the fast-MRI
challenge [25] are model-based techniques. These methods
rely on the unrolling of CS-like iterative algorithms, which
alternate between enforcement of data consistency and projec-
tion/denoising with a learned model [16]. Such model-based
techniques have also been applied successfully to ultrasound
imaging [18], [32], [33]. Since the forward model and its
adjoint that capture imaging physics are used within the data-
consistency blocks, smaller learnable models are often suffi-
cient to offer good performance. This translates to reducing
the training data burden. A challenge with these schemes in
some settings can be the large memory demand to hold the
unrolling steps in large-scale tasks. However, recent exciting
results show that such algorithms can be implemented and
trained using the concept of implicit layers [34], [35]. While
these approaches are inspiring, the convergence issues and
tradeoffs between computation and performance need to be
further addressed.

The auto-differentiation toolboxes within modern deep
learning software have recently been capitalized to optimize
the acquisition schemes in different imaging areas [36]-[39].
Many of these methods use differentiable forward models as
a layer in the deep network, followed by joint optimization
of the parameters. The joint optimization is observed to
improve image quality. Similarly, while the main focus of
this special issue is on medical image reconstruction, the data
preprocessing task is often the first step in the reconstruction
pipeline and can be performed via deep learning such as
photon-counting data calibration. The reconstructed images
are often post-processed (e.g., segmentation, registration, and
classification) to extract information, which is then used for
diagnosis. The quality of these images can impact the down-
stream tasks. Similar to image reconstruction, deep learning
methods have been making rapid advances in the above steps
as well.

There are unprecedented opportunities to combine the
different tasks into a unified framework. Early works in
this regard show the benefit of synergizing related tasks
together including image reconstruction [40], [41]. Surpris-
ingly, the addition of the tasks can also lead to improvement
in image quality [40]. The coordination of these tasks may
optimize the design of a system that is the most sensitive to
the goal at hand (e.g., can improve the early detection of a
disease).

E. Explainability

The use of a deep learning model to achieve the final
objective (e.g., diagnosis) from noisy measurements has shown
to be successful in many cases. However, a challenge with this
approach is the general lack of explainability. In particular, it is
often difficult to understand why or how the deep network is
providing specific results. This is not desirable in a medical
imaging setting, especially when the model fails. In addition,
large models may require large training datasets and may
suffer from a lack of generalizability. A potential alternative
may be to combine well-understood modules with task-specific
objectives (e.g., reconstruction, followed by segmentation,
and finally diagnosis) with associated penalties for each of
the objectives. For more details on network interpretation
methods, please read a recent review article [42]. Methods
such as unrolling also attempt to address this challenge.

F. Reproducibility

The rapid advancement of the deep reconstruction field also
faces challenges in reproducibility. It is encouraging to see that
more and more groups are making their codes and data pub-
licly and freely available, which is really helpful in improving
reproducibility. Similarly, open challenges (e.g., [24], [25])
ensure consistent testing and benchmarking of algorithms.
Image processing toolkits, such as Project-MONALI, are instru-
mental in image post-processing. Similarly, an open-source
computational imaging toolkit, where there is commitment
from researchers across medical imaging modalities, could be
a powerful platform to bring together researchers in this field.
For instance, the availability of consistent forward models
and image display routines could be helpful in translating
the findings from one modality to another and eventually to
clinical practice.

V. CONCLUSION

Recent years have shown that the interest in deep learning
is steadily growing. We thus expect further improvements
of deep imaging techniques and extensions in biomedical
applications. Translation of these methods still demands major
efforts to address the challenges discussed above. Given the
synergy among and commitments from major stakeholders in
academia, industry, healthcare, regulation administration, and
patients, we are optimistic that the field will continue growing
and move in the directions required for implementation.
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