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Abstract— Tuckerdecomposition can provide an intuitive
summary to understand brain function by decomposing
multi-subject fMRI data into a core tensor and multiple
factor matrices, and was mostly used to extract functional
connectivity patterns across time/subjects using orthogo-
nality constraints. However, these algorithms are unsuit-
able for extracting common spatial and temporal patterns
across subjects due to distinct characteristics such as
high-level noise. Motivated by a successful application of
Tucker decomposition to image denoising and the intrinsic
sparsity of spatial activations in fMRI, we propose a low-
rank Tucker-2 model with spatial sparsity constraint to ana-
lyze multi-subject fMRI data. More precisely, we propose to
impose a sparsity constraint on spatial maps by using an �p
norm (0 < p ≤ 1), in addition to adding low-rank constraints
on factor matrices via the Frobenius norm. We solve the con-
strained Tucker-2 model using alternating direction method
of multipliers, and propose to update both sparsity and low-
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rank constrainedspatial maps using half quadratic splitting.
Moreover, we extract new spatial and temporal features in
addition to subject-specific intensities from the core tensor,
and use these features to classify multiple subjects. The
results from both simulated and experimental fMRI data
verify the improvement of the proposed method, compared
with four related algorithms including robust Kronecker
component analysis, Tucker decomposition with orthogo-
nality constraints, canonical polyadic decomposition, and
block term decomposition in extracting common spatial
and temporal components across subjects. The spatial and
temporal features extracted from the core tensor show
promise for characterizing subjects within the same group
of patients or healthy controls as well.

Index Terms— Tucker decomposition, multi-subject fMRI
data, sparsity constraint, low-rank, core tensor.

I. INTRODUCTION

TENSOR decompositions have attracted increasing atten-
tion in blind source separation (BSS) of multi-subject

functional magnetic resonance imaging (fMRI) data, since
it can be readily represented by a three-way/mode tensor
(voxel × time × subject). Canonical polyadic decomposi-
tion (CPD), Tucker decomposition (TKD), and block term
decomposition (BTD) are commonly adopted forms for tensor
decomposition. CPD decomposes a three-way tensor into
a linear combination of a series of rank-one tensors, and
each rank-one tensor is the outer product of three loading
vectors [1], [2]. TKD decomposes a three-way tensor into
a core tensor and three factor matrices. It can be seen as
a complete form of CPD with polyadic but not necessarily
canonical expansion in rank-1 terms [3], and CPD is a special
case of TKD model with a diagonal core tensor [4], [5].
BTD decomposes a tensor into a sum of low multilinear rank
tensors [6]–[8], thus is a complete form of TKD [6], [7] or
a constrained TKD with a block diagonal core tensor [8].
Among the three forms, BTD was used to decompose 4-way
fMRI tensor (e.g., 2D slices × time × subject) [9], while
CPD and TKD were suitable to decompose three-way fMRI
data [1], [2], [10], [11]. CPD has found its effectiveness in
fMRI analyses by extracting spatial maps (SMs), time courses
(TCs), and subject-specific intensities from multi-subject fMRI
data [1], [2], which provide an intuitive decomposition for
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understanding brain function and mental disorders [12]–[16].
For TKD, the factor matrices reflect the affiliation of orthog-
onal bases along each mode [4], [13]. The model is named as
Tucker-2 when one of the factor matrices (commonly the third
mode) is an identity matrix, and Tucker-1 is a TKD model
with two identity matrices [4]. As a complete form of CPD [5],
Tucker-2 model can similarly obtain shared SMs and TCs from
the two factor matrices and subject-specific intensities from the
core tensor. But the biggest difference with CPD is that the
core tensor of Tucker-2 model contains additional interactions
between different components [4], [13] and highly compressed
information for subjects [3], [17]. Some researchers studied
the dynamic functional connectivity networks of fMRI using
the core tensor of TKD [10], [11], [18], [19] and the core
tensor was proven to carry features of original data in image
processing [20] and analyses of electroencephalography (EEG)
data [3], [17].

However, the decomposition of the TKD model without
constraints is not unique; constraints should be imposed on
factor matrices and/or the core tensor [4], [13], [17], [21].
Among other constraints, higher-order SVD (HOSVD) and
higher-order orthogonal iteration (HOOI) are two TKD models
with orthogonality constraints on the core tensor and factor
matrices [13]. HOSVD decompose a tensor into orthogonal
matrices and all-orthogonal core tensor, while HOOI itera-
tively updates an orthonormal basis of the dominant sub-
space [4]. HOSVD has been utilized to identify dynamic
functional connectivity (FC) patterns of multi-subject fMRI
data from a third-order [10] or a fourth-order tensor [18]
(1D/2D connection × time × subject), or to extract connectiv-
ity networks from a fourth-order fMRI tensor computed from
a single-subject fMRI data [19]. Al-Sharoa et al. proposed
to extract FC patterns across time and subjects using HOOI
based on the tensor formed by adjacency matrices [11]. HOOI
was also applied to decompose four-way EEG data to obtain
a core tensor and factor matrices in each mode [5], [21].
The core tensor can be sequentially used to train a standard
classifier [5] or seen as the links among the components
from different modes [21], and the factor matrices can be
utilized to extract the components of frequency/time/channel/
trial [21].

In addition to the orthogonality constraint, other constraints
were also used in TKD-based image processing. Lu et al.
proposed to recover clear images based on TKD, which obtains
underlying tensor (clear image) with a low-tubal-rank using
nuclear norm constraint, and a sparse residual tensor using
sparsity constraint [22]. Besides the nuclear norm, Frobenius
norm (�F norm) regularization can also improve low-rankness.
Grussler et al. verified that the rank-constrained Frobenius
norm can outperform the nuclear norm [23]. Traoré et al.
proposed to enforce a sparsity constraint on the core tensor
and low-rank (�F norm) constraints on factor matrices, and
learnt reconstructed patch for inpainting images using the
factor matrices and the core tensor [24]. The approach was
also flexible to incorporate non-negativity and orthogonality
constraints [24]. Bahri et al. proposed Kronecker compo-
nent analysis (RKCA) method for image denoising. They

justified that �F norm and nuclear norm penalties can yield
the same optimal solutions of low-rank factor matrices. The
model was established by imposing �F norm constraints on
the separated dictionaries (Kronecker product of two factor
matrices) and sparsity constraints on the core and residual
tensors [25].

As mentioned above, existing TKD algorithms for fMRI
analyses mostly utilize orthogonality constraints to extract FC
patterns across time and subjects. These algorithms, however,
are unsuitable for extracting common spatial and temporal
patterns across subjects due to distinct characteristics such
as high-level noise [26]. Motivated by the success of TKD-
based image denoising algorithms such as RKCA, we propose
to enforce fMRI-specific constraints on Tucker-2 model to
analyze three-way multi-subject fMRI data (voxel × time ×
subject). First, the spatial activity of fMRI is proven to be
sparse. Xu et al. investigated that only a small percentage
(<10%) of the entire neuronal population can be fired in
any brain region at any moment [27]. Lennie found that the
number of activated neurons accounted for less than 1% in
human cortex [28]. The sparsity characteristic of fMRI signal
is more promising [29]. As such, we propose to impose a
spatial sparsity constraint on the shared SMs, which to our best
knowledge has not been used in TKD-based fMRI analyses.
In addition, the factor matrices representing the shared SMs
and TCs should be low-rank in order to extract principal spatial
and temporal components, and the core tensor should be sparse
to improve the uniqueness of the TKD solution [4]. Therefore,
imposing low-rank constraints on factor matrices and adding
sparsity constraint on the core tensor are essential in TKD of
fMRI data.

In this study, we build a Tucker-2 model with both sparsity
and low-rank constraints to represent the characteristics of
three-way fMRI data (voxel× time× subject). More precisely,
we propose to impose sparsity constraint on SMs via an
�p norm regularization (0< p ≤1), which is often used in
place of �0 norm [30]. Besides, since previous researches
have justified that low-rankness can be promoted by Frobenius
norm [22]–[25], we impose low-rank (�F norm) constraints
on factor matrices to detect principal SM and TC compo-
nents shared by all subjects, and impose sparsity constraints
via an �1 norm regularization on the core tensor and the
residual tensor to improve the uniqueness and performance.
We estimate the core tensor and factor matrices by alternating
direction method of multipliers (ADMM) and half quadratic
splitting (HQS). In addition to the shared SMs and TCs
estimates, we propose to explore novel information from
the core tensor, and extract spatial and temporal features
as well as individual intensities. These spatial and temporal
features extracted from the core tensor are sequentially used
to cluster multiple subjects into different groups. Simulated
and experimental fMRI data are used to evaluate the proposed
method.

To summarize, our contributions are as follows:
(1) We propose a low-rank Tucker-2 model with a spa-

tial sparsity constraint to decompose multi-subject fMRI
data into shared SMs, shared TCs, and a core tensor
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TABLE I
DEFINITIONS OF NOTATIONS

including novel information in addition to subject-specific
intensities.

(2) We propose to enforce the sparsity constraint on SMs via
an �p (0 < p ≤ 1) norm regularization, and adopt low-rank
constraints on the two factor matrices via the Frobenius norm
regularization and impose sparsity constraints on the core
and residual tensors via the �1 norm regularization. We solve
the proposed Tucker-2 model using ADMM, and propose to
update SMs with both sparsity and low-rank constraints using
HQS.

(3) We propose to explore the novel information embedded
in the core tensor. In addition to the recovery of subject-
specific intensities, we extract spatial and temporal features,
which are then used to classify multiple subjects.

The rest of this paper is organized as follows.
Section 2 describes the proposed method in detail.
Section 3 presents the fMRI data used in our experiments
and performance metrics adopted. Section 4 has the results
from both simulated and experimental fMRI data. Section 5
includes the discussion of this study.

II. METHODS

In this section, we first describe the proposed method,
named as slcTKD (sparsity-low rank-constraints TKD). After-
wards, we introduce the update rules of factor matrices,
core and residual tensors, as well as multipliers and penalty
parameters. We then present a detailed implementation of the
proposed slcTKD algorithm. Finally, we present the method
of extracting the subject-specific intensities as well as spatial
and temporal features.

A. Notations

In the proposed method, tensors, matrices, and vectors are
denoted by underlined bold capital letters (e.g., X), bold upper-
case letters (e.g., B), and bold lowercase letters (e.g., b),
respectively. Frontal (mode-3) slices of tensor X are defined
as Xk = X (:, :, k), where “:” means that all samples are used.
We denote the norm of tensor as ||X|| = ∑

k ||Xk ||, where
“|| · ||” represents an �p , �1, or �F norm regularization. Table I
includes the definitions of other notations used in this study.

B. The Proposed slcTKD Model

Given a three-way (voxel × time × subject) multi-subject
fMRI data X ∈ R

V×T×K , where V is the number of in-brain

voxels, T is the number of time points, and K is the number
of subjects. The Tucker-2 model of X is built as follows:

X = G×1 S×2 B+ E (1)

where S ∈ R
V×N and B ∈ R

T×N are two factor matrices
corresponding to the shared SMs and TCs, and N is the
number of components (i.e., the model order); G ∈ R

N×N×K

is the core tensor including subject-specific intensities, and
spatial and temporal features; and E ∈ R

V×T×K is the residual
tensor.

Taking into account all sparsity and low-rank con-
straints imposed on each of factor matrices and tensors in
the model (1), we propose slcTKD model for analyzing
multi-subject fMRI data as follows:

min
S,B,G,E

∥∥X−G×1 S×2 B− E
∥∥2

F + �S�2F + �B�2F
+ δ �S�p + λ

∥∥G
∥∥

1 + γ
∥∥E

∥∥
1 (2)

where the sparsity constraint on S is imposed via the �p norm
(0 < p ≤ 1); sparsity constraints on the core and residual
tensors are imposed by the �1 norm. Positive parameters δ, λ,
and γ control the effects of the sparsity constraints, and the
use of both p and δ makes the spatial sparsity level closer to
that of actual SMs. The Frobenius norm of factor matrices S
and B promote the low-rankness of shared SMs and TCs [25].

The problem in (2) is a convex optimization problem for
each component individually. The work in [22], [31], and [32]
exhibited the efficiency of ADMM in solving similar problems.
We also take advantage of ADMM to update the factor
matrices and tensors. By introducing a split variable R for
the core tensor [31], the slcTKD model in (2) is rewritten as
follows:

min
S,B,G,E,R

�S�2F + �B�2F + δ �S�p + λ
∥∥G

∥∥
1 + γ

∥∥E
∥∥

1

s.t . X = R×1 S×2 B+ E

s.t . G = R (3)

The mode-1 and mode-2 product of factor matrices with
the core tensor can be expressed in terms of matrices
multiplication:

R×1 S×2 B =
∑

k
SRkBT (4)

As such, the augmented Lagrangian method [25], [31]
derived from (3) is formulated as follows:
L

(
S, B, G, E, R, U, W, α, β

)

= �S�2F + �B�2F + δ �S�p + λ
∥∥G

∥∥
1

+ γ
∥∥E

∥∥
1 + α

∑
k

∥∥∥Xk − SRkBT − Ek

∥∥∥
2

F
+β

∥∥G− R
∥∥2

F

+
∑

k

〈
Xk − SRkBT−Ek, Uk

〉
+

∑
k

〈
Gk − Rk, Wk

〉
(5)

where U and W are Lagrangian multipliers, and α, β are
penalty parameters. By minimizing the augmented Lagrangian
problem in (5), the factor matrices, tensors, multipliers, and
penalty parameters are iteratively updated until convergence.
We present update rules in detail in the following sub-sections.
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C. Update Rules of the Proposed slcTKD Model

1) Updates of Two Factor Matrices B and S: The update of
factor matrix B can be derived from (5) by matrix algebra as
follows:

B =
∑

k

(
α

(
Xk − Ek

)+ Uk/2
)T SRk

I+ α
∑

k RT
k ST SRk

(6)

Regarding the factor matrix S imposed both �F and �p

constraints, it is difficult to be directly determined by matrix
algebra. As such, we propose to utilize HQS algorithm to
simplify the update of S. We add a variable Y into (5) and
replace the �p norm regularization on S with a function of Y.
The augmented Lagrangian approach for updating S and Y are
in the following:

L
(
S, B, G, E, R, U, W, Y, Q, α, β

)

= �S�2F + δ �S− Y�2F + ξ �Y�p

+ α
∑

k

∥∥∥Xk − SRkBT − Ek

∥∥∥
2

F

+
∑

k

〈
Xk − SRkBT − Ek, Uk

〉

+�S− Y, Q� + L1
(
B, G, E, R, U, W, α, β

)
(7)

where ξ > 0, Q is a Lagrangian multiplier, and L1 is a part
of L in (5) without S. Then we update S by an algebraic
calculation as follows:

S =
∑

k

(
α

(
Xk − Ek

)+ Uk/2
)

BRT
k + δY+Q

(δ + 1) I+ α
∑

k RkBT BRT
k

(8)

The variable Y can be obtained using Newton-Raphson
method [33], which is carried out by several number of
iterations. We calculate Y in each iteration as follows:

Yd = ξp · sgn(Y) ◦ |Y|p−1 + δ(S− Y)−Q (9)

Ydd = ξp(p − 1)|Y|p−2 − δ1 (10)

Y = Y− Yd ./Ydd (11)

where p is the value of p in �p norm, and 1 is an unit matrix
which has the same size with Y, and the elements are all 1.

2) Updates of Core Tensor G and Residual Tensor E: We
update the core tensor G using the soft-shrinkage method as
follows:

G =
∑

k

(
sgn(G̃k) ◦ max

{
|G̃k | − λ/2β, 0

})
(12)

where G̃k = Rk −Wk/2β.
The split variable R in (5) satisfies discrete-time Sylvester

equation [25] in the following form:
αST SRkBT B+ βRk + βGk +Wk/2− R̃k = 0 (13)

where R̃k = ST
(
αXk − αEk + Uk/2

)
B. In the proposed

algorithm, equation (13) can be solved by solvers for
discrete-time Sylvester equations [25], such as Hessenberg-
Schur method [34] or Bartds-Stewart algorithm [35].

Based on (5), we can also update the residual tensor E by
soft-shrinkage method via the following:

E =
∑

k

(
sgn(Ẽk) ◦ max

{
|Ẽk | − γ /2α, 0

})
(14)

where Ẽk = Xk − SRkBT + Uk/2α.

TABLE II
IMPLEMENTATION OF THE PROPOSED SLCTKD ALGORITHM

3) Updates of Multipliers and Penalty Parameters: In the
proposed slcTKD algorithm, we update the multipliers and
parameters after updates of all factor matrices and tensors in
each iteration. Specifically, the multipliers U, W, and Q are
updated in each iteration of ADMM method as follows:

U ← U+ α
(
X− R×1 S×2 B− E

)
(15)

W ← W+ β
(
G− R

)
(16)

Q ← Q+ δ (Y− S) (17)

The penalty parameters α and β are updated using the
parameter tuning method proposed in [25] as follows:

α ← ηα (18)

β ← ηβ (19)

where η > 1 is a fixed parameter representing the increase
rates of α and β.

D. Implementation of the Proposed slcTKD Algorithm

We use the result from HOSVD, which better matches
Tucker-2 model than CPD-related algorithm such as CPD-
GEVD [36], as the initialization values of S, B, and G to
accelerate the convergence, and let U = W = 0, Q =
0, α0 = K/||X||F, and β0 = K/||R||F. We fix the parameters
δ, p, λ and γ in the algorithm, and discuss the selection of
four parameters in Section V. The implementation of slcTKD
algorithm is summarized in Table II.

E. Extraction of Subject-Specific Intensities and Spatial
and Temporal Features From the Core Tensor

The slcTKD model provides a sparse, non-diagonal core
tensor, which consists of spatial-temporal-subject information
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Fig. 1. Fibers of the core tensor.

of the multi-subject fMRI data. When fixing the index of
two modes, the three-way core tensor can be represented
by fibers [4]. As Fig. 1 shows, we abbreviate the mode-
1 (space mode), mode-2 (time mode) and mode-3 (subject
mode) fibers as g(1) = G(:, j, k), g(2) = G(i, :, k), and
g(3) = G(i, j, :), respectively, where i , j = 1, 2, . . . , N ,
and k = 1, 2, . . . , K . Based on the fibers in different modes,
we next extract the subject- specific intensities and the spatial
and temporal features.

1) Subject-Specific Intensities: We first extract
subject-specific intensities by analyzing the core tensor.
We rewrite the model in (1) by the form of frontal slices as
follows:

Gk = S†(Xk − Ek)(B
T )† (20)

where Gk ∈ R
N×N , Xk ∈ R

V×T , Ek ∈ R
V×T . We denote

S̃ = S†, B̃ = (BT )†, then we can extract the kth component
of mode-3 fibers of the core tensor as follows:

g(3)k = s̃i (Xk − Ek)b̃ j = Gk(i, j) (21)

where g(3)k = g(3)(k), s̃i = S̃(i, :), b̃ j = B̃(:, j). We assume
si = S(:, i) and obtain s̃i · si = 1, where si is a spatial
component in S, thus, s̃i is a spatial component related vector.
Similarly, since b j = B(:, j) and b̃

T
j · b j = 1, b̃ j is a

temporal component related vector. Therefore, g(3)k defined
in (21) reflects the intensity of subject k under specific spatial
(i) and temporal ( j) components, and mode-3 fibers of the
core tensor consist of subject-specific intensities:

c = [g(3)1, g(3)2, . . . , g(3)K ] (22)

2) Spatial and Temporal Features: We exploit the relation-
ship of core tensor G and spatial components S by rewrit-
ing (20) as follows:

Gk = S̃ · Zk (23)

where Zk ∈ R
V×N is given by Zk = (Xk − Ek)(B

T )†, repre-
senting temporal component related information for subject k.
For a specific temporal component Z j

k = Zk(:, j), the spatial
features can be extracted based on (23):

g(1)i = s̃i · Z j
k (24)

where g(1)i = g(1)(i), i = 1, 2, . . . , N , so spatial features can
be represented by mode-1 fibers of the core tensor. Further-
more, the spatial feature matrix GS ∈ R

N×K is obtained as
follows:

GS(i, :) = [s̃i · Z j
1, s̃i · Z j

2, . . . , s̃i · Z j
K ] (25)

Since GS consists of spatial features of all subjects, its
straightforward application is to classify multiple subjects
within the same group to emphasize the intra-group difference.

When extracting temporal features from the core tensor,
we rewrite (20) to highlight temporal components B as
follows:

Gk =Mk(B
T )† (26)

where Mk ∈ R
N×T is represented by Mk = (S)†(Xk − Ek)

and includes spatial component related information for subject
k. For a specific spatial component Mi

k = Mk(i, :), temporal
features can be represented by mode-2 fibers of the core tensor:

g(2) j =Mi
k · b̃ j (27)

where g(2) j = g(2)( j). Similar to the spatial features defined
in (25), we have the temporal features of all subjects as
follows:

GB ( j, :) = [Mi
1 · b̃ j , Mi

2 · b̃ j , . . . , Mi
K · b̃ j ]T (28)

where GB ∈ R
N×K is the temporal feature matrix. This

can also be utilized to cluster multiple subjects into different
groups.

III. EXPERIMENTAL METHODS

To evaluate the efficiency of the proposed slcTKD model,
we carry out experiments on both simulated and exper-
imental fMRI data. We compare the slcTKD algorithm
with four related algorithms including RKCA [25], [31],
TKD (HOOI) [37], CPD determined using nonlinear least
squares [38], and the multilinear rank-(L, L, 1, 1) BTD pro-
posed in [9] for decomposing 4-way multi-subject fMRI data
X ∈ R

Ix×Iyz×T×K (Ix × Iy × Iz denotes spatial dimensions).
By formulating the matrix representation of each shared SM
component into a low-rank matrix (of rank L), the multilinear
rank-(L, L, 1, 1) BTD gives more flexibility in the spatial
domain, compared to 3rd-order CPD.

We compute the multilinear rank-(L, L, 1, 1) BTD as
follows: first, we combine the first and second dimensions
of the 4-way fMRI data tensor to obtain a 3-way tensor and
perform 3rd-order CPD for this tensor. Second, we matricize
each column vector of the SM matrix, obtained as the first
CPD factor matrix, into a matrix in an inverse manner to how
the first and second dimensions of the 4-way fMRI data tensor
are combined, and perform rank-L approximation to this
matrix to obtain each rank-L component. Finally, we combine
the two rank-L components to obtain the shared SM, and
have the shared TC and the subject-specific intensity from the
two rank-one modes. We determine L via testing all possible
choices, and select L = 6 (from 2 ∼ 30) for the simulated
fMRI data and L = 10 (from 2 ∼ 45) for the experimental
fMRI data.

Each algorithm is run 10 times for each case. For CPD
and BTD, subject-specific intensity is directly obtained. For
slcTKD, RKCA, and TKD, we extract subject-specific inten-
sities from the core tensor using (22). The initialization
values of λ and γ of RKCA are the same as the proposed
slcTKD method for a fair comparison. In the implementation
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Fig. 2. Eight simulated fMRI sources.

of slcTKD, we use p = 0.3, γ = 0.6, λ = 0.4 for
both simulated and experimental fMRI data. In addition,
we select δ = 2.5 for simulated data and δ = 0.4 for
experimental data. For other parameters, we set η = 1.3,
the iteration number of Newton-Raphson method iter_y = 10,
ξ = 0.4, and the stop criterion i termax = 300, εmin =
10−7, �εmin = 10−4. Note εiter is calculated using εiter =
||X − G ×1 S ×2 B − E||F/||X||F for slcTKD and RKCA,
εiter = ||X−G×1 S×2 B||F/||X||F for TKD and CPD, and
εiter = ||X−∑N

n=1 (S1n ST
2n

) ◦ bn ◦ cn ||F/||X||F for BTD (S1
and S2 are two spatial factors of low-rank L). The same stop
criterion is used for all the algorithms, i.e., i ter ≥ i termax,
εiter ≤ εmin, or �εiter ≤ �εmin.

A. Simulated fMRI Data

We generated 10 simulated fMRI subjects with each subject
including eight fMRI-like sources, based on the benchmark
data at http://mlsp.umbc.edu/resources.html [39], as shown
in Fig. 2. 8 sources include task-related component (S1),
transiently task-related components (S2 and S6), and artificial
related components (S3, S4, S5, S7 and S8). Each spatial
source contains 60 × 60 voxels with 100-point time courses.
Each spatial map is reshaped into a one-dimensional vector
(8× 3600) and mixed with time courses (100× 8). We obtain
the real-valued simulated fMRI datasets (3600 × 100 × 10),
each of which has randomly different activated SM voxels,
i.e., randomly decrease of the activated SM voxels in the
range of 10% [26]. In order to test the noise robustness
of the slcTKD algorithm, we add Gaussian noise to the
simulated fMRI data with different noise level. The signal-
to-noise ratio (SNR) levels range from −10 dB to 10 dB with
a 2.5 dB interval. The SNR is defined as 20 log(σs/σn), where
σs and σn are the temporal standard deviations of the source
signal and Gaussian noise, respectively. Since components of
interest cannot be well extracted by CPD and TKD when the
model order is the same as the true number of components
(N = 8), we choose a larger model order N = 20 for a fair
comparison. Moreover, we test the effect of the model order on
all algorithms by changing the model order in a range of 20 to
80 with an interval of 10.

B. Experimental fMRI Data

The experimental fMRI dataset was collected from 10 sub-
jects performing a finger-tapping motor task while receiv-
ing auditory instructions [16], [26]. All participants signed
IRB-approved informed consent at the University of New
Mexico. The experimental paradigm is a block design with
alternating periods of 30 seconds on (finger tapping) and
30 seconds off (rest). The experiments were performed with a
3T Siemens TIM Trio system with a 12-channel receive coil.

The fMRI experiment used a standard Siemens gradient-echo
EPI sequence modified to store real and imaginary data
separately, and we used the magnitude data in our exper-
iment. The following parameters were used: field-of-view
= 24 cm, slice thickness = 3.5 mm, slice gap = 1 mm,
number of slices = 32, matrix size = 64 × 64, TE =
29 ms, TR = 2 s, flip angle = 70 degrees. The preprocessing
of the data is carried out using Statistical Parametric Map-
ping (SPM) software package. The magnitude datasets were
co-registered to compensate for movements in the fMRI time
series images using INRIAlign. Images were then spatially
normalized into the standard Montreal Neurological Insti-
tute space. Following spatial normalization, the data (orig-
inally acquired at 3.75 mm × 3.75 mm × 4.5 mm) were
slightly sub-sampled to 3 mm × 3 mm × 3 mm, resulting
in 53 × 63 × 46 voxels. Then, the images were spatially
smoothed with a 10 mm × 10 mm × 10 mm full width at
half-maximum Gaussian kernel.

After removing the voxels out of the brain and flattening
the volume image data of 165 time points for each subject,
we construct the three-way actual fMRI data of size 59610 ×
165× 10 (voxel× time× subject). The final model order N of
each algorithm is set to 50, which is consistent with [16], [26].

C. Performance Measures

For the simulated fMRI data, we choose the task-related
component (S1) and two transiently task-related components
(S2 and S6) as three components of interest. We calculate (1)
the absolute Pearson correlation coefficients |ρc| between the
SM and TC estimates and the ground truths; (2) the mean of
|ρc| across 10 runs, denoted as |ρ̄c|, and the standard deviation.

For the experimental fMRI data, we select the task-related
component and the default mode network (DMN) as two
components of interest for evaluating the proposed method.
For the task-related component, we utilize a group general
linear model (GLM) map [16], [26] as the SM reference and
the model TC as the TC reference. For DMN, we use the
DMN component provided by Smith et al. [40] as the SM
reference, and also use the model TC as the TC reference since
DMN has the opposite trend to the task-related component.
We calculate (1) the absolute Pearson correlation coefficient
|ρc| between the shared SM and TC estimates and their
references; (2) the mean and standard deviation of |ρc| values
across 10 runs; (3) the total number of activated voxels as well
as the voxels inside the spatial reference.

In addition, we test the performance of the subject-specific
intensities as well as the spatial and temporal features. We first
compare the subject-specific intensities among all five algo-
rithms and calculate |ρ̄c| values between each pair of the
algorithms. Then, we test the performance of spatial and
temporal features via k-means clustering [41]. The clustering
results are verified using individual SM and TC references
obtained by independent vector analysis [42].

IV. RESULTS

A. Simulated fMRI Data

We first test the noise effect on the proposed method. Fig. 3
shows the shared SMs and TCs estimated at SNR = 10dB
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and SNR = −5dB under the model order N = 20, since the
differences of the algorithms are easy to be observed. For each
algorithm, we select a run with the closest |ρc| value to |ρ̄c|,
i.e., the average of all runs, for both shared SMs and TCs.
We detrend the TCs by baseline correction [43] and make
normalization to the range of −1 to 1. From Fig. 3, we see that
slcTKD yields the best performance among the five algorithms
for both SMs and TCs; RKCA ranks second on average with
much better SM estimates for S1 and S2, followed by BTD,
CPD, and TKD.

Fig. 4 shows the means and standard deviations of the |ρc|
values for the shared SMs and TCs across 10 runs at different
noise levels when N = 20. We observe similar increasing
trends with the increase of SNRs for the five approaches,
but |ρ̄c| values of the proposed slcTKD are the highest for
both SMs and TCs from all three components. By contrast,
the other four algorithms illustrate varying performance when
estimating SMs and TCs for different components and under
different SNRs. Taking S1 as example, RKCA performs much
better than CPD when estimating SMs under higher SNRs,
but it may become worse than CPD when estimating TCs
under lower SNRs. The reason for this is that the low-rank
constraint helps RKCA to obtain a better SM estimate for a
sparse component (e.g., S1) at higher SNR levels, but cannot
capture the SM characteristic at lower SNR levels, as a noisy
SM is not sparse anymore. As a result, SM estimation degrades
and so also do the TC estimates. CPD has no requirement on
spatial sparsity; its degradation in SM estimation is slighter
than RKCA, thus may provide better SM and TC estimates.

Similarly, we test the model order effects on the proposed
algorithm. Fig. 5 shows an exampling comparison of the means
and standard deviations of |ρc| values across 10 runs for
SMs and TCs of the three components estimated by all five
algorithms under different model orders for SNR = 10dB.
We see that the proposed slcTKD algorithm generally achieves
the highest |ρ̄c| values and exhibits the least |ρ̄c| changes
with model order, while the other four algorithms cannot keep
consistent performance when examining SMs and TCs for the
three components.

B. Experimental fMRI Data

Fig. 6 shows shared SMs (|Z|>1.5) and shared TCs for
the task-related and DMN components estimated by slcTKD,
RKCA, TKD, CPD, and BTD, and their |ρc| values with the
spatial and temporal references. We show a single run with
the closest |ρc| value to the |ρ̄c| value, i.e., the average of
all runs, for both shared SMs and TCs. The TCs are baseline
corrected [43] and normalized to the range of −1 to 1. The
proposed slcTKD yields the best performance among the five
algorithms when estimating both SMs and TCs for the two
components, in terms of not only quantitative |ρc| values but
also qualitative observation (more similar to the SM and TC
references than the other methods, though the estimated TCs
of DMN are not so good as the task-related TC components
in general). Unlike the simulated results, BTD and CPD are
generally better than RKCA for both components and their SM
and TC estimates, in terms of both quantitative |ρc| values and
qualitative observation. The results reflect that BTD and CPD

Fig. 3. A comparison of shared SMs and TCs of S1, S2 and S6 estimated
at (A) SNR=10dB and (B) SNR=−5dB by (1) slcTKD, (2) RKCA, (3) TKD,
(4) CPD, and (5) BTD when N = 20. The maximum |ρc| values are shown
in bold.

are more suitable for modelling experimental fMRI data than
RKCA without a spatial sparsity constraint, and the multilinear
rank-(L, L, 1, 1) BTD improves SM estimation (e.g., DMN)
due to low-rank formulating. This also verifies the lower
SNR level of experimental fMRI data and the importance of
sparsity constraints on SMs in Tucker-2 model. TKD obtains
unsatisfactory results, suggesting its inadequate modeling for
highly noisy experimental fMRI data.

Table III has results on the number of activated voxels
for the two shared SMs estimated by the five algorithms
displayed in Fig. 6. We compare the total number of activated
voxel and voxel number inside the spatial reference. Although
the proposed slcTKD does not detect the largest number of
voxels in total, it does extract the largest number of voxels
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Fig. 4. The comparison of |ρ̄c| values and standard deviations for
(A) shared SMs and (B) shared TCs of S1, S2 and S6 estimated by
slcTKD, RKCA, TKD, CPD, and BTD at different noise levels when
N = 20.

Fig. 5. The comparison of |ρ̄c| values and standard deviations for
(A) shared SMs and (B) shared TCs of S1, S2 and S6 estimated by
slcTKD, RKCA, TKD, CPD, and BTD in different model orders when
SNR = 10dB.

inside the spatial reference for both the task-related and DMN
components. More precisely, slcTKD detects 31.1%∼ 135.6%
more task-related voxels and 9.4% ∼ 49.8% more DMN-
related voxels, as compared to the other algorithms, providing
larger and more contiguous sub-regions such as the supple-
mentary motor area (SMA) of the task-related component
and the posterior cingulate cortex (PCC) and inferior parietal
lobule (IPL) for DMN.

Fig. 7 shows the mean and standard deviations of |ρc| values
for the shared SMs and TCs of the task-related and DMN
components estimated by slcTKD, RKCA, TKD, CPD, and
BTD, respectively, over all 10 runs for each algorithm. We can
see that the proposed slcTKD algorithm achieves higher |ρ̄c|
values with a smaller standard deviation than the other four
algorithms for both SMs and TCs of the task-related and
DMN components, while TKD ranks the last. BTD and CPD
performs better than RKCA for both SM and TC estimates of
the two components in terms of both |ρ̄c| values and standard
deviations.

C. Subject-Specific Intensities and Spatial and Temporal
Features Extracted From the Core Tensor

Fig. 8 shows results of subject-specific intensities extracted
from the core tensor for the task-related and DMN compo-

Fig. 6. The comparison of (A) Task-related component and (B) DMN
component estimated by slcTKD (b), RKCA (c), TKD (d), CPD (e), BTD
(f). The estimates of shared SMs (1) and shared TCs (2) and their
references (a) are shown. The maximum |ρc| values are also shown
in bold.

TABLE III
A COMPARISON OF THE PROPOSED SLCTKD, RKCA, TKD, CPD, AND

BTD IN TERMS OF THE TOTAL NUMBER OF ACTIVATED VOXELS AND

THE VOXEL NUMBER INSIDE THE SPATIAL REFERENCE FOR THE TWO

SHARED SM ESTIMATES DISPLAYED IN FIG. 6. THE MAXIMUM VALUES

ARE SHOWN IN BOLD

nents, which are selected from the same run as that used in
Fig. 6. They are normalized to the same range [−1, 1] for
comparisons. These subject-specific intensities show mostly
similar trends for both task-related component and DMN,
especially for those from slcTKD, RKCA and CPD. Fig. 8C
includes the |ρc| values between the subject-specific intensities
extracted by each pair of algorithms. It can be found that the
|ρc| values between slcTKD and RKCA are the largest (task-
related: 0.91; DMN: 0.93) among 10 pairs of algorithms, since
slcTKD and RKCA are based on a similar Tucker-2 model.
The |ρc| values between slcTKD and CPD rank the second
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Fig. 7. The comparison of |ρc| values and standard deviations for shared
SMs and shared TCs of task-related component and DMN component
estimated by slcTKD, RKCA, TKD, CPD, and BTD.

Fig. 8. The comparison of subject-specific intensities extracted from the
core tensor for (A) task-related component and (B) DMN component esti-
mated by slcTKD, RKCA, TKD, CPD, and BTD, and |ρc| values between
subject-specific intensities extracted by each pair of algorithms (C).

largest, which are 0.83 and 0.92 for the task-related and DMN
components, respectively. Note there can be large |ρc| values
between BTD and CPD (e.g., 0.92 for DMN) since we use
CPD to compute the subject-specific intensities for BTD.

Fig. 9 shows spatial and temporal feature matrices extracted
from the core tensor for the task-related component from the
10 subjects. Considering that intra-group spatial and temporal
differences exist among a group of either patients or healthy
subjects, due to individual anatomo-functional differences,
individual cognitive strategies and specific subject variability
(e.g., sex, age) [44]–[47], we utilize the spatial and temporal
feature matrices to cluster multiple subjects into different sub-
groups. For comparisons, we generate individual SM and TC
references by performing a group analysis on the experimental
fMRI data using IVA-GL algorithm [42]. We run IVA-GL
10 times and extract the individual SM and TC references
from the best run, as shown in Fig. 10. The |ρc| values of
these SM and TC references with the GLM reference and the
model TC are also shown.

We basically cluster the 10 subjects into two groups by
k-means clustering [41] based on the spatial and tempo-
ral feature matrices of the task-related component, respec-
tively. When clustering using the spatial features, we obtain
Group 1 = {subjects #1, #4, #7, #9, #10} and Group 2 =
{subjects #2, #3, #5, #6, #8}. We can see that subject #3 and
subject #4 are not in the same group though the |ρc| values
are the same (0.50), as shown in Fig. 10A. In fact, we can

Fig. 9. The spatial (A) and temporal (B) feature matrices extracted from
the core tensor for the task-related component from 10 subjects.

observe different task-related activations for subject #3 and
subject #4 from Fig. 10A. This difference agrees with the
inter-subject spatial variability reported in [44] and [45] and
can be well captured by the spatial features involved in the
core tensor.

When clustering subjects using the temporal features,
we have Group 1 = {subjects #4} and Group 2 = {subjects
#1, #2, #3, #5, #6, #7, #8, #9, #10}. This clustering is also
reasonable by examining the individual TC references shown
in Fig. 10B. The TC of subject #4 is significantly different
from the others in that its |ρc| value (0.54) is largely lower
than those for the others (0.70 ∼ 0.91). This result also agrees
with the inter-subject temporal variability published in [46]
and [47].

We also perform similar clustering based on the spatial
features of DMN extracted from the core tensor. Fig. 11 shows
the individual SM references separated from the experimental
multi-subject fMRI data by the IVA-GL algorithm [42]. As a
result, we obtain Group 1 = {subjects #1, #4, #5, #7} and
Group 2 = {subjects #2, #3, #6, #8, #9, #10}. We see that
subjects #1 & #2 and subjects #7 & #10 are not classified
into the same group based on spatial features though their
|ρc| values are the same (0.55 and 0.58, as shown in Fig. 11).
The spatial features extracted from the core tensor can capture
spatial differences across subjects, e.g., IPL activations in
Group 1.

V. DISCUSSION

This study proposes a constrained Tucker-2 model for
analyzing multi-subject fMRI data. We impose the sparsity
constraint on SMs to incorporate the intrinsic characteristics
of fMRI data, in addition to the low-rank constraint on
factor matrices and the sparsity constraint on the core tensor.
Compared with the mostly used CPD, the proposed method
can provide not only shared SMs, shared TCs, and subject-
specific intensities, but also the novel spatial and temporal
features capturing spatial and temporal intra-group differences.
The results from both simulated and experimental fMRI data
verify the advantage of the proposed slcTKD algorithm over
BTD, CPD, RKCA, and TKD.

While we can extract shared SMs, shared TCs, and subject-
specific intensities agreeing with previous results of CPD-
related methods [2], [12], [16], [26], we especially treasure the
rich and unique spatial-temporal-subject information involved
in the core tensor, which is missing in CPD of multi-subject
fMRI data. Previously, researchers have utilized Tucker core
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Fig. 10. The individual SM (A) and TC (B) references for the task-related
component. The |ρc| values of these SM and TC references with the GLM
reference and the model TC are also shown.

Fig. 11. The individual SM references for the DMN component.

tensor to build connectivity maps based on correlation matrices
of multi-subject fMRI data, but they rarely used the spatially
and temporally compressed information embedded in the core
tensor for individual subjects. We extract novel spatial and
temporal features apart from the subject-specific intensities
from the core tensor, and apply these spatial and temporal
features to make an intra-group clustering. The results show
that these features can identify detailed differences in spa-
tial activations or temporal responses across subjects, which
extensively existed [44]–[47] but is hard to be evaluated
by correlations with the references. Therefore, the proposed
method show promise for providing new and reasonable spa-
tial/temporal features to tell intra-group difference, as well as
the shared SMs and TCs to provide common spatial/temporal
features within a group.

A. Effects of Constraints

The sparsity and low-rank constraints on the spatial fac-
tors are both essential for the proposed model to success-
fully extract principal spatial components, and the spatial

Fig. 12. Comparison of the |ρ̄c| values and standard deviations of shared
SM and TC estimates over 10 runs of slcTKD-||S||F, slcTKD-||B||F,
slcTKD-||G||1, and slcTKD-||E||1, which remove ||S||2F, ||B||2F, ||G||1, and
||E||1 from slcTKD, respectively. The results of slcTKD and RKCA are
also shown for comparison.

sparsity constraint is vital for matching the spatial acti-
vation characteristics from fMRI data. This can be found
by comparing the proposed slcTKD algorithm and RKCA
using only a low-rank constraint on the spatial factors.
RKCA exhibited appealing properties in image processing
such as background subtraction and image denoising [25], [31]
but degraded in the fMRI analysis. The main reason is
that spatial maps of fMRI are much sparser than optical
images. Therefore, the sparsity constraint contributes more
to yield better SM estimates in the proposed algorithm.
As a result, the proposed slcTKD algorithm removes a larger
number of noisy voxels and recovers a larger number of
voxels inside the spatial reference with more contiguous
activations, as shown in Fig. 6. The high-quality SM esti-
mates would further improve the estimates of spatial-temporal
link and the shared TCs, which can be seen from their
relationship in (20).

In addition, the low-rankness and sparsity constraints
imposed on the factor matrices and the core and residual ten-
sors are also necessary for the proposed slcTKD model to get
good performance. The low-rank constraints ||S||2F and ||B||2F
ensure the extraction of principal spatial and temporal com-
ponents shared by all subjects, whereas sparsity constraints
||G||1 and ||E||1 improve the uniqueness and performance of
the proposed method. To test effects of each constraint on
the proposed algorithm, we respectively remove constraints
||S||2F, ||B||2F, ||G||1 and ||E||1 from slcTKD to have four
algorithms, named as slcTKD-||S||F, slcTKD-||B||F, slcTKD-
||G||1, and slcTKD-||E||1. We run each algorithm 10 times.
Fig. 12 shows the mean and standard deviations of |ρc| values
for the shared SMs and TCs estimated by each algorithm,
with comparison to the results of slcTKD and RKCA. Fig. 13
illustrates examples of shared SMs for DMN selected from
a run with the closest |ρc| value to |ρ̄c| shown in Fig. 12
for the experimental fMRI data. We see that slcTKD has
much higher |ρ̄c| values than the other five methods. The two
methods removing the sparsity constraints ||G||1 and ||E||1
from slcTKD result in lower |ρ̄c| and noisier SMs than those
removing the low-rankness constraints ||S||2F and ||B||2F, while
RKCA removing the sparsity constraint ||S||p from slcTKD
obtains a noisier SM than slcTKD-||S||F and slcTKD-||B||F.
These results verify that each constraint is necessary to the
proposed method, and the sparsity constraints are especially
essential for decomposing noisy multi-subject fMRI data using
a Tucker-2 model.
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Fig. 13. Comparison of the shared SMs of DMN estimated by (1)
slcTKD, (2) RKCA, (3) slcTKD-||S||F, (4) slcTKD-||B||F, (5) slcTKD-||G||1,
(6) slcTKD-||E||1. The maximum |ρc| value is shown in bold.

B. Effects of Parameters

The proposed method is mainly affected by parameters
from the model constraints (sparsity and low-rankness) and
the estimation algorithms (ADMM and HQS).

1) Sparsity Constraint Parameters: The sparsity constraint
parameters include δ, p, λ and γ , where δ and p are related
to the spatial sparsity, and λ and γ are related to the sparsity
of the core and residual tensors. Thus, we classify the four
parameters into two groups, i.e., group 1 = {δ and p} and
group 2 = {λ and γ }. We test the parameter effects in one
group by fixing the parameters in the other by using the
same initial values of B, S and G. We first test the parameter
effects in group 1. The parameter p is changed from 0.1 to
1 at an interval of 0.1 for both simulated and experimental
data. Considering the sparsity difference between two datasets,
we change δ from 0.5 to 5 at an interval of 0.5 for the
simulated data, while from 0.1 to 1 at an interval of 0.1 for
the experimental data. Fig. 14A shows the |ρc| values of
the task-related SMs with λ = 0.4 and γ = 0.6, which
are utilized in the experiments. We can see that the |ρc|
values are generally large and effects are slight. When testing
the parameter effects in group 2, we change both λ and γ
from 0.1 to 1 at an interval of 0.1 for both simulated and
experimental data. The results in Fig. 14B shows that the
parameters λ and γ have larger effects on the experimental
data than simulated data, which is reasonable because of the
different sparsity level of SMs from different subjects.

In summary, we use the same values of p, λ and γ for the
simulated and experimental data but different value of δ to
match their spatial sparsity difference. The sparser the spatial
activations of the dataset are, the larger the δ value is. A larger
δ is used for simulated fMRI data than for experimental fMRI
data ( δ = 2.5 vs. δ = 0.4) because the simulated data is much
sparser than experimental fMRI data in spatial activations.
Note the same sparsity parameters are effective to extract
all the sources for a specific (simulated/experimental) fMRI
dataset [48]. Thus, our choices (p = 0.3, δ = 0.4, γ = 0.6,
λ = 0.4) can be a good start to fine tune the four parameters
for analyzing other experimental fMRI data.

2) Low-Rank Constraint Parameters: The shared SMs and
TCs are extracted in pairs by the proposed method to represent

Fig. 14. Parameters δ and p (A), λ and γ (B), and μS and μB (C) effects
on the slcTKD model for simulated (1) and experimental (2) fMRI data.

associated spatial and temporal brain activity. Thus, we select
the same low-rankness parameters for the two factor matrices
S and B. We verify the effectiveness of doing this by rewriting
the two terms of low-rank constraints in (2) as μS ||S||2F and
μB ||B||2F, and by changing μS and μB from 0.1 to 1 at an
interval of 0.1 to test their effects. The |ρc| values are shown
in Fig. 14C. For both simulated and experimental fMRI data,
the larger the parameters μS and μB are, the larger the |ρc|
values are. Therefore, μS = μB = 1 is a good and simple
choice.

3) ADMM and HQS Parameters: The parameters from
estimation algorithms consist of η for ADMM in (18)
and (19), and ξ for HQS in (7). A previous η setting for
RKCA [25], [31] (η = 1.3) is recommended. Comparing (7)
with (2), the role of ξ is similar to that of δ, but its effects
on the proposed method is much slighter than that of δ, thus,
we select ξ = 0.4 for both simulated and experimental fMRI
data (δ = 0.4).

Note we have retuned the parameters for the four algorithms
obtained by removing each of constraints from the proposed
slcTKD, as shown in Fig. 12, which is based on the above-
mentioned parameter selection. We do not change the sparsity
constraint parameters δ and p representing the spatial sparsity
levels of the simulated (δ = 2.5) and experimental (δ = 0.4)
data (both: p = 0.3), and use the same ADMM and HQS
parameters (η = 1.3 and ξ = 0.4) as used by slcTKD. For
the sparsity constraint parameters λ and γ , previous choices
(γ = 0.6, λ = 0.4) also achieve better performance. Finally,
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TABLE IV
TIME AND SPACE COMPLEXITY OF MATRICES AND TENSORS PER

ITERATION OF THE PROPOSED METHOD. THOSE CAUSED BY ||S||p
ARE SHOWN IN BOLD

Fig. 15. Convergence (A) and time consumption (B) of slcTKD, RKCA,
TKD, CPD, and BTD for simulated data (1) and experimental data (2).

we change to select μS = 0.1 for slcTKD-||S||F, and μB = 0.1
for slcTKD-||B||F to achieve higher |ρ̄c| values for both shared
SMs and TCs from both simulated and experimental data.

C. Computational Complexity and Convergence

Based on the proposed slcTKD model in (2) and its algo-
rithm implementation in Table II, we derive the total time and
space complexity per iteration. They are O(K (N3 + TN2 +
VN+VT+VN2+VTN)) and O(N2+TN+KN2+VN+KVT)
(sorted from smallest to largest), respectively. Table IV shows
details for the two factor matrices and the core and residual
tensors. The spatial sparsity constraint ||S||p causes VN addi-
tional time and space complexity per iteration when estimating
the shared SMs, resulting in slight increases of time complex-
ity (approximately 1/T ; simulated data: 1%; experimental data:
0.6%) and space complexity (approximately N/KT ; simulated
data: 2%; experimental data: 3%).

We carry out experiments on Intel 6226R CPU, 256G RAM,
windows 10 (64-bit) using MATLAB 2020. Fig. 15 shows the
convergence (iter = 1 ∼ 300) of each algorithm in terms
of the residual ε and the time consumption (total and per
iteration) for both simulated and experimental fMRI data.
We normalize ε to the range of 0 to 1 and show its logarithm
value to have a clear visualization. CPD and BTD show faster
convergence, followed by the proposed slcTKD, RKCA and
TKD. However, slcTKD and RKCA consume similarly smaller
running time than TKD, BTD and CPD for the experimental
fMRI data, due to smaller time consumption per iteration.
The proposed slcTKD algorithm yields the smallest residual
among the five algorithms by incorporating the spatial sparsity

constraint conforming to the intrinsic characteristic of fMRI
data.

D. Future Work

Our future work includes the following. First, we will
further improve the Tucker-2 model to represent the multi-
subject fMRI data and to extract more information such as
individual time delays. Second, we will extend the proposed
method to complex-valued fMRI data since the fMRI data
is actually complex-valued and recent researches including
ours [26] decompose complex-valued fMRI data, yielding
promising results [26], [49]. Third, an adaptive sparsity con-
straint parameter selection method will be explored to dis-
cover the links between sparsity parameters and the exper-
imental fMRI data. Finally, we will apply the proposed
method to resting-state fMRI data or fMRI data based on
regions of interest (ROIs) to analyze patients with neurological
disorders.
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