
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Impedance-optical Dual-modal Cell Culture Imaging with
Learning-based Information Fusion

Citation for published version:
Liu, Z, Bagnaninchi, P & Yang, Y 2021, 'Impedance-optical Dual-modal Cell Culture Imaging with Learning-
based Information Fusion', IEEE Transactions on Medical Imaging, pp. 1-1.
https://doi.org/10.1109/TMI.2021.3129739

Digital Object Identifier (DOI):
10.1109/TMI.2021.3129739

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Medical Imaging

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 23. Apr. 2024

https://doi.org/10.1109/TMI.2021.3129739
https://doi.org/10.1109/TMI.2021.3129739
https://www.research.ed.ac.uk/en/publications/56cb595d-daf1-44e6-89c2-419767ccc999


 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. xx, NO. X, NOVEMBER 2021                      1 

  
      

Impedance-optical Dual-modal Cell Culture 
Imaging with Learning-based Information Fusion 
 

Zhe Liu, Student Member, IEEE, Pierre Bagnaninchi, Yunjie Yang, Member, IEEE 
 

 
Abstract—While Electrical Impedance Tomography (EIT) 

has found many biomedicine applications, better image 
quality is needed to provide quantitative analysis for tissue 
engineering and regenerative medicine. This paper reports 
an impedance-optical dual-modal imaging framework that 
primarily targets at high-quality 3D cell culture imaging and 
can be extended to other tissue engineering applications. 
The framework comprises three components, i.e., an 
impedance-optical dual-modal sensor, the guidance image 
processing algorithm, and a deep learning model named 
multi-scale feature cross fusion network (MSFCF-Net) for 
information fusion. The MSFCF-Net has two inputs, i.e., the 
EIT measurement and a binary mask image generated by 
the guidance image processing algorithm, whose input is 
an RGB microscopic image. The network then effectively 
fuses the information from the two different imaging 
modalities and generates the final conductivity image. We 
assess the performance of the proposed dual-modal 
framework by numerical simulation and MCF-7 cell imaging 
experiments. The results show that the proposed method 
could improve the image quality notably, indicating that 
impedance-optical joint imaging has the potential to reveal 
the structural and functional information of tissue-level 
targets simultaneously.    

 
Index Terms—Cell culture, dual-modal imaging, 

electrical impedance tomography, deep learning, image 
processing  

 

I. INTRODUCTION 

D cell culture has far-reaching significance because it can 
better mimic the function of living tissues compared with 

cell monolayers, which has a significant impact on drug 
screening [1][2]. Providing better models of cell behaviors may 
benefit the research and treatment of human diseases and reduce 
animal testing. A key challenge in 3D cell culture is to 
determine the cellular state in depth and across time. Therefore, 
a suitable imaging technique is desired to monitor 3D cell 
culture continuously and non-destructively. Electrical 
Impedance Tomography (EIT) is a tomographic imaging 
technique that can recover the conductivity distribution within 
the interior of a domain through boundary current injection and 
induced voltage measurements [3]-[5]. It is proved that cell 
viability can be inferred by measuring its cellular electrical 
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parameters [6]. Recently, miniaturized EIT has been introduced 
to image the conductivity distribution of the 3D cultivated cells 
in both static and dynamic setups [7]-[10]. However, the low 
image quality of EIT has become a critical limiting factor for 
quantitatively analyzing the properties and behaviors of 3D 
cultivated cells in tissue engineering applications. 

Thus far, efforts to improve EIT image quality have been 
primarily focused on advancing the image reconstruction 
algorithm. A prevailing type of EIT image reconstruction 
methods is based on regularization, which imposes certain prior 
knowledge in solving the problem. The state-of-the-art 
regularization methods include Total Variation (TV) 
regularization [11]-[13], Fidelity-Embedded Regularization 
[14], sparse regularization [15][16] and Adaptive Group 
Sparsity (AGS) regularization [17][18]. These elaborate model-
based algorithms have proven effective in obtaining high image 
quality, but at the expense of computational efficiency or 
intricate parameter tuning. Deep learning [19] has recently 
demonstrated its potential in solving the nonlinear EIT inverse 
problem. A number of end-to-end deep-learning-based 
approaches have been reported for high-quality EIT image 
reconstruction [20]-[22], while the performance of such 
methods has a strong dependency on the quality of training 
datasets. An alternative is to combine model-based methods and 
deep learning to synthesize the strength of both approaches. 
Existing work includes using deep learning to assist model error 
compensation [23] or boost the performance of the model-based 
method [24]-[27]. Though these efforts lead to noteworthy 
advancements in EIT imaging, they mainly focus on solving the 
single-modal imaging problem. 

Recently, dual-modal or multi-modal methods have also 
been explored to supplement EIT. For instance, the joint 
imaging of EIT and ultrasound tomography was investigated 
and showed improved image quality and structure preservation 
[28][29]. Gong et al. proposed a modified k-means based 
method to construct the regularization term to incorporate the 
prior information from the computed image into EIT image 
reconstruction [30]. Li et al. integrated structural information 
from X-ray tomography into EIT inversion by using the cross-
gradient method [31]. Ren et al. also reported a CT-guided 
method in which the mask image of the chest region from CT 
scanning was adopted to improve the robustness of the deep-
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learning-based EIT image reconstruction [32]. However, their 
method is not strictly a dual-modal imaging approach. 
Nevertheless, these predecessors have shown the evidence that 
combining information of other imaging modalities with EIT 
can improve the reconstructed EIT image quality. 

Inspired by multi-modal imaging and deep learning, and to 
improve EIT image quality and promote EIT-based quantitative 
cellular assay in tissue engineering, we propose an impedance-
optical dual-modal imaging framework to enable dual-modal 
cell imaging and learning-based information fusion. This work 
focuses on 2D imaging of the 3D cell culturing process, which 
reconstructs the cross section of 3D cell clusters. The imaging 
framework comprises the impedance-optical dual-modal 
miniature sensor for cell imaging, the guidance image 
processing algorithm for optical image preprocessing, and a 
dual-input deep learning model for information fusion and 
image reconstruction. The advantages of the proposed approach 
are: 

1) Compared with single-modal methods, the proposed 
framework can generate EIT images with more accurate 
shapes by introducing optical imaging, thereby leading to 
more precise conductivity distribution estimation. 

2) The framework develops a new indirect information 
fusion approach that addresses the challenge of directly 
using the optical image to train the deep learning model. 
This approach can be extended to other learning-based 
multi-modal image reconstruction scenarios with similar 
issues, e.g., where it is impossible to collect auxiliary 
images for training, or there are insufficient auxiliary 
images.  

The remainder of the paper is organized as follows. Section 
II states the principle of EIT inverse problem. Section III 
describes the proposed framework. Section IV elaborates 2D 
simulation data generation and experiment setup. Section V 
illustrates simulation and experimental results. Finally, Section 
VI draws the conclusion and discusses future work. 

II. INVERSE PROBLEM OF EIT 

We describe the principle of EIT image reconstruction based 
on the 16-electrode configuration; as in this work, we adopt a 
16-electrode miniature sensor and conduct 2D imaging. 
Suppose the sensing area occupies a 2D circular region Ω ⊂ ℝ  
(see Fig. 1). Sixteen electrodes denoted by (𝑒 , 𝑒 , … , 𝑒 ) are 
attached around the boundary 𝜕Ω  (see Fig. 1). Adjacent 
protocol [33] is adopted, where a specified current is applied 
successively to the electrode pairs (𝑒ℓ, 𝑒ℓ ), ℓ =
1, … ,16, 𝑒 ∶=  𝑒 ; and the voltage difference between all 
other pairs of neighboring electrodes are collected. For each 
current injection, letting 𝜎 = 𝜎(𝑥)  and 𝑢 = 𝑢(𝑥)  denote the 
conductivity distribution and the electrical potential distribution 
in Ω respectively, the forward problem of EIT based on the 
Complete Electrode Model (CEM) [34] can be expressed as:  

               ∇ ∙ 𝜎(𝑥)∇𝑢(𝑥) = 0,    𝑥 ∈ Ω                                      (1)                                  

      𝑢(𝑥) + 𝑧ℓ𝜎(𝑥)
𝜕𝑢(𝑥)

𝜕𝑛
= 𝑈ℓ,    𝑥 ∈ 𝑒ℓ, ℓ = 1,2, … ,16       (2) 

            ∫
ℓ
𝜎(𝑥)

𝜕𝑢(𝑥)

𝜕𝑛
𝑑𝑆 = 𝐽ℓ,    ℓ = 1,2, … ,16                      (3) 

                           𝜎
𝜕𝑢(𝑥)

𝜕𝑛
= 0,    𝑥 ∈ 𝜕Ω\ 𝑒ℓ                         (4) 

where n is the outward unit normal of 𝜕Ω. 𝑈ℓ, 𝐽ℓ and 𝑧ℓ denotes  
the electrical potential, the injected current, and the contact 
impedance on the electrode 𝑒ℓ, respectively.  

The existence and uniqueness of the solution 𝑢 should also 
be ensured by the charge conservation and the choice of the 
ground voltage defined respectively by the left and right 
equations below. 

                               𝐽ℓ

ℓ

= 0, 𝑈ℓ

ℓ

= 0                            (5) 

We define the measured voltage difference between 
electrode pairs (𝑒ℊ, 𝑒ℊ ), ℊ = 1,2, … 16, 𝑒 ∶=  𝑒 , subject 
to the ℓth current injection as: 

                                    𝑉ℓ,ℊ: =  𝑈ℊ
ℓ − 𝑈ℊ

ℓ                                      (6) 

where 𝑈ℊ
ℓ and 𝑈ℊ

ℓ  denote respectively the measured potential 

on the ℊ  and (ℊ + 1)  electrode. 
    Time-difference EIT (td-EIT) reconstructs the conductivity 
variation in Ω  through boundary voltage variation 
measurements. In this work, the electrodes directly contact the 
highly conductive cell culture media, and the contact 
impedance is negligible. Therefore, the boundary voltage 
variation on the ℊ  electrode pair subject to the ℓ  injection 
can be formulated as: 

                    𝑉
ℓ,ℊ

− 𝑉
ℓ,ℊ

= −∫ (𝜎 − 𝜎 )∇𝑢ℓ ∇𝑢
ℊ

𝑑𝑥           (7) 

where 𝜎  denotes the conductivity distribution at the 
observation time point and 𝜎 represents the conductivity 

distribution at the reference time point. 𝑉
ℓ,ℊ  is the 𝑉ℓ,ℊ 

corresponding to 𝜎 , and so does  𝑉ℓ,ℊ . 𝑢ℓ  is the electrical 

 
Fig. 1. Sixteen-electrode circular EIT sensor with two inclusions in 
it. 
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potential distribution subject to the ℓ  injection and 𝜎 . The  
definition of 𝑢

ℊ  is similar with 𝑢ℓ . Therefore, (7) can be 

reformulated as: 

                                       ∆𝑉ℓ,ℊ = 𝐻ℓ,ℊ(∆𝜎)                                   (8) 

where ∆𝜎 is the conductivity variation in Ω and 𝐻ℓ,ℊ is the non-
linear mapping from ∆𝜎  to ∆𝑉ℓ,ℊ . By eliminating repetitive 
data according to the reciprocity principle [35], we can obtain a 
frame of independent measurements, i.e. ∆𝑉 ∈ ℝ . Therefore, 
the forward mapping can be ultimately expressed as ∆𝑉 =

[𝐻 , , … , 𝐻 , , 𝐻 , , … , 𝐻 , , … , 𝐻 , ] ≜ 𝐻(∆𝜎) , 𝐻  is the 
non-linear mapping from ∆𝜎 to ∆𝑉. The inverse problem can 
be formulated as:  

                                           ∆𝜎 = 𝐻 (∆𝑉)                                  (9) 

where 𝐻  is the inverse mapping operator of 𝐻, which is to be 
approximated. 

III. IMPEDANCE-OPTICAL DUAL-MODAL IMAGING 

FRAMEWORK 

This section proposes an impedance-optical dual-modal 
imaging framework (see Fig. 2) to improve EIT image quality 
for 3D cell imaging. It consists of three components, i.e., the 
impedance-optical miniature sensor, the guidance image 
processing algorithm, and a deep learning model. First, the 
impedance-optical sensor will simultaneously output a frame of 
voltage measurements and an RGB microscopic image named 
the guidance image (Ig). Then, the guidance image processing 
algorithm will convert Ig into its corresponding mask image 
(Im).  Finally, Im and the voltage measurements are fed into a 
deep learning model to generate the reconstructed EIT image.  

A. Impedance-optical Dual-modal Sensor 

The dual-modal sensor (see Fig. 3) combines a miniature 16-
electrode EIT sensor with a digital microscope (Digital USB 
Microscope 1.3M, RS Components Ltd). The EIT sensor is 
manufactured on a Printed Circuit Board (PCB). A transparent  

glass substrate is attached at the bottom of the sensing area to 
support cells and enable optical imaging. The height and 
diameter of the sensing chamber are 1.6 mm and 14 mm, 
respectively. The 16 gilded microelectrodes are manufactured 
using the half-hole process and distributed at the periphery of 
the sensing area. The digital microscope is placed over the 
sensing chamber and is calibrated well to make its view field 
the same as the sensing area. This dual-modal sensor can then 
simultaneously record the cells’ visual profiles and EIT 
measurements.  

B. Guidance Image Processing 

Guidance image processing containing four steps converts 
the guidance image Ig into its corresponding mask image Im (see 
Fig. 4). The size of Im is the same as that of the expected EIT 
image, which occupies a circular region inscribed in a 64 × 64 
square region, while the size of Ig is much larger than it. Ig also 
occupies a circular region, but this circle inscribes in a 
406 × 406 square region. It should also be noted that Ig has 
three color channels, i.e., R, G and B. Therefore, this algorithm 
starts with the processing of the high-resolution RGB image Ig.  

 
Fig. 2. Schematic of the impedance-optical dual-modal imaging framework. 

 

 
Fig. 3. Impedance-optical dual-modal sensor. (a) EIT sensor 
structure. (b) The manufactured dual-modal sensor. 

 
Fig. 4. An illustration of the guidance image processing procedure. 
The dashed square represents the circumscribed square region of 
the circular sensing region. The numbers mean the number of pixels 
for each side of the square.  
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 In Ig, the illumination often causes shadow, which is invalid 

information and significantly affects the target segmentation. 
Besides, as the structure of the targets is only desired, 
preservation of color has seldom significance. Therefore, the 
first step is to obtain the 1D illuminant invariant image Iinv of Ig 
following the methods proposed by Finlayson et al. [36] in 
order to convert Ig into a grey-scale image while removing the 
influence of illumination. The equation is formulated as:  

    𝐼 (𝑟, 𝑐) = exp (𝜒 (𝑟, 𝑐) 𝑐𝑜𝑠(𝛩) + 𝜒 (𝑟, 𝑐) 𝑠𝑖𝑛(𝛩))    (10) 

where r and c are pixel indexes. Θ is the projection direction in 
the 2D log-chromaticity space of Ig which is a constant for a 
specific camera. This direction leads to the minimum 
Shannon’s entropy for Iinv and can be approximately obtained 
by traversing every integer angle from 1o to 180o. 𝜒 (𝑟, 𝑐) and 
𝜒 (𝑟, 𝑐) is expressed as:  

                           [𝜒 (𝑟, 𝑐), 𝜒 (𝑟, 𝑐)] = 𝑈𝜌(𝑟. 𝑐)                    (11) 

Here, 𝑈 is a 2 × 3 orthogonal matrix and take the value of 𝑈 =

[𝜈 , 𝜈 ] , 𝜈 =
√

, −
√

, 0 , 𝜈 =
√

,
√

, −
√

. 𝜌(𝑟. 𝑐)  is 

defined by:  

               𝜌(𝑟, 𝑐) = ln
( , )

( , )
, ln

( , )

( , )
, ln

( , )

( , )
      (12)  

where Ξ(𝑟, 𝑐) = 𝑅(𝑟, 𝑐)𝐺(𝑟, 𝑐)𝐵(𝑟, 𝑐). R(r, c), G(r, c) and 
B(r, c) are the three components of a color image. 
    Then, the binary version of Iinv can be generated by using the 
following thresholding segmentation method: 

         𝐼 (𝑟, 𝑐) =    
0,         if  𝐼 (𝑟, 𝑐) < 𝛽

1,         if  𝐼 (𝑟, 𝑐) ≥ 𝛽
                    (13)            

where Ibw denotes the binary image after thresholding. The 
threshold value 𝛽  is selected based on empirical trials. 
However, such method may lead to irregular boundary and 
randomly distributed white pixels. To address this issue, the 
third step applies morphological operations to Ibw to acquire a 
clean binary image with boundary-regular targets. In this paper, 
open operation (14) and dilation operation (15) are successively 
applied to reduce background irrelevant information and 
recover accurate target profiles. The two operations are defined 
as [37]: 

                 𝐼 = 𝐼 ∘ 𝑆 =∪ {(𝑆) |(𝑆) ⊆ 𝐼 }             (14)             

                 𝐼 = 𝐼 ⨁ 𝑆 = 𝑧 𝑆 ⋂𝐼 ≠ ∅          (15)         

where, 𝐼 ∘ 𝑆 means Ibw is opened by the structuring element 
S and 𝐼 ⨁ 𝑆 means Ibw1 is dilated by S. (S)z and 𝑆 are defined 
as [37]: 

                       (𝑆) =   {𝑘|𝑘 = 𝑎 + 𝑧, 𝑎 ∈ 𝑆}                     (16)                      

                         𝑆     =   {𝑤|𝑤 = −𝑎, 𝑎 ∈ 𝑆}                       (17)                        

where 𝑧 = (𝑧 , 𝑧 ) is a fixed point in the image space where  Ibw 

and Ibw1 exist.  
Ibw2 already provides the expected structural information, but 

it cannot be directly used as the input of the MSFCF-Net. As 

stated at the beginning of this subsection, the size of Im is 
required to be the same as that of the EIT image. In addition, 
the height and width of images generated by the first three steps 
(i.e., Iinv, Ibw and Ibw2) is the same as those of Ig. Therefore, the 
final step is to down-sample Ibw2 into a smaller circular image 
internally tangent with a 64 × 64 square region. The resulting 
smaller image is the Im, and it is exactly the tiny version of Ibw2. 

C. Multi-scale Feature Cross Fusion Network 

MSFCF-Net reconstructs an EIT image Ieit from a frame of 
voltage measurements ∆𝑉∗ ∈ ℝ  and a mask image Im. We 
describe Ieit and Im with a tensor of size 𝐶 × 64 × 64, where 
𝐶 = 1  denotes the number of channels for a multi-channel 
image. ∆𝑉∗ and Ieit are defined by: 

                                       ∆𝑉∗ =
𝑉 − 𝑉

𝑉
                                   (18) 

                                        𝐼 = −
𝜎 − 𝜎

𝜎
                                  (19) 

As stated in Section II, td-EIT aims to recover ∆𝜎 = 𝜎 − 𝜎  
from ∆𝑉 = 𝑉 − 𝑉 . In this work, we adopt the relative 
changes format to facilitate the training of the deep learning 
model [38].  

Our goal is to learn an end-to-end mapping 𝐹 from ∆𝑉∗ and 
Im to Ieit. Given a training dataset {∆𝑉∗,  𝐼 ,  𝐼 } , the 
problem can be described as: 

        𝜃 = arg min
   

 
1

𝑁
𝐿(𝐹 (∆𝑉∗, 𝐼 ), 𝐼 ) +

𝜆

2
‖𝜃‖      (20) 

where the second term is l2 regularization with a penalty 
parameter 𝜆 , which can reduce over-fitting. 𝜃 = {𝑊, 𝑏} 
represents the weights and bias of MSFCF-Net. L is the loss 
function to minimize the difference between 𝐼  and 
𝐹 (∆𝑉∗, 𝐼 ) . As EIT image reconstruction is a regression 
problem, the mean squared error loss function is used, and L is 
defined as:  

             𝐿 𝐹 (∆𝑉∗, 𝐼 ), 𝐼 = 𝐹 (∆𝑉∗, 𝐼 ) − 𝐼         (21) 

The architecture of MSFCF-Net is shown in Fig. 5. 
Subnetworks in MSFCF-Net can be divided into three 
categories, i.e. the backbone networks, dual-modal feature 
fusion modules, and multi-scale feature fusion modules.  

1)  Backbone Networks (BN) 
The backbone network extracts latent features from inputs. 

Thus, this network should have a good ability of feature 
extraction. The Darknet as the backbone of YOLOV3 is proved 
effective and powerful in feature extraction [39]. Inspired by its 
architecture, we designed the Darknet-like backbone networks 
for our application. The backbone network for voltage 
measurements (BN-V) has three additional fully connected 
layers followed by a reshape operation because of the 
dimension difference between Q and Im (see Fig. 5). The output 
of the reshape operation is a feature map with the size of 
1 × 64 × 64. The rest of BN-V is the same as the backbone 
network for mask image (BN-M), which consists of five 
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residual blocks denoted by Res(n). Res(n) starts with left-and-
upper zero padding followed by a Conv + Leaky ReLU unit with 
𝐾𝑒𝑟𝑛𝑒𝑙 𝑆𝑖𝑧𝑒 = 3 × 3, 𝑆𝑡𝑟𝑖𝑑𝑒 𝑆𝑡𝑒𝑝 = 2 , and the number of 
kernels is twice as that of input feature maps. Then n residual 
units (represented by Res Unit, see Fig. 2) follow. The idea of 
Res Unit is proposed in [40], in which the short connection can 
make the deep network easier to train. Therefore, the 
combination of mentioned components in Res(n) will make the 
height and width of the output feature maps half than those of  
input feature maps while the number of feature maps doubles.  

2)  Dual-modal Feature Fusion Module (DMFF) 
 Dual-modal Feature Fusion Modules (DMFF) fuse  

information from different sources (see Fig. 6). To maintain the 
main information and eliminate the trivial ones, the attention 
mechanism originally used in natural language processing [41] 
is adopted in DMFF. As the feature maps generated by each 
layer in CNN have both channel dimension and spatial 
dimension, there are two types of attention mechanism, i.e., 
channel-wise attention and spatial-wise attention. In BN-V and 
BN-M, the spatial dimension gradually decreases with the 
increase of the number of layers. For the feature maps with a 
small spatial dimension, the spatial information is lost, and 
information carried by this type of feature maps is usually 
called semantic information. The spatial relationship between 
each element of the feature maps is trivial. Therefore, there are 
two types of DMFF in MSFCF-Net, i.e., DMFF-V1 and DMFF-
V2 (see Fig. 5). DMFF-V1 corresponds to the feature maps with 
large spatial dimension, and it will incorporate both channel-

wise attention and spatial-wise attention. DMFF-V2 
corresponds to the feature maps with small spatial dimension, 
and it will only incorporate channel-wise attention. The 
implementation of attention mechanisms adopts the 
convolutional block attention modules proposed in [42], which 
is proved to be an effective and efficient method. Suppose the 
mapping of channel attention module in CBAM is denoted by  
𝑓  and that of spatial attention module is denoted by 𝑓 , the 
mappings of both DMFF-V1 and DMFF-V2 can be uniformly 
expressed as:  

                        𝑆    = 𝑓 𝑓 , 𝑓 , 𝑓 , (𝑀 )             (22)               

                       𝑆    =  𝑓 𝑓 , 𝑓 , 𝑓 , (𝑀 )           (23)                    

                       𝑀 = 𝑅 ([𝑆 , 𝑆 ])                                        (24)                                    

where 𝑀  is the feature map from BN-V and 𝑀  is the feature 
map from BN-M. The size of the feature maps 𝑆 , 𝑆 , 𝑀 , 𝑀  
and 𝑀  is the same. 𝑓  equals to 𝑓  for DMFFM-V1 and 
equals to 𝑓 ∘ 𝑓  for DMFFM-V2, which is the only 
difference between the two modules.  𝑓.,.  denotes the mapping 
for Conv + Leaky ReLU unit. The first subscript means the 
kernel size and the second means the convolution step used in 
the convolution layer in this unit. [⋅,⋅] denotes the concatenation 
operation and 𝑅  means the mapping of Res(3).  

3) Multi-scale Feature Fusion Module (MSFF) 
Feature maps of different scales will provide information on 

different scales. It will generate a more precise result if the 

    
Fig. 5 Architecture of MSFCF-Net. Note, the color of arrow is only for indicating the feature maps flowing to different function block. BN-V and 
BN-M are the layers in dashed black squares. 
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information of different scales can be integrated together. Many 
work in computer vision and image processing demonstrates  
that fusing feature maps of different scales is an efficient way  
to improve the performance of the network [39][43][44]. In 
addition, Chen et al. [21] and Li et al. [20] both adopted this 
method in their work on EIT image reconstruction and showed  
good results. MSFCF-Net also adopts the same idea and the 
multi-scale feature fusion module (MSFF, see Fig. 7) 
undertakes this function. MSFF module uses a simple way to 
perform information fusion. First, the spatial dimension of low 
scale feature maps will be enlarged twice by transposed 
convolutional layers followed by the Leaky ReLU layer. Then, 
the output of Leaky ReLU layer and the output of the network 
block before the current block will be added together in MSFF. 
The addition operation here is inspired by the work on human 
eye-fixation prediction, where the authors also face a dual-
modal information fusion problem and fuse information of 
different scales by addition operation [45]. Like YOLOV3, the 
initial fused feature maps will be fed into multiple layers for 
thorough information fusion. Instead of using successive 
convolutional layers, the basic module in BN, i.e. Res(n), is 
used in MSFF to conduct post information fusion. Because this 
module has a satisfactory feature extraction ability while it can 
prevent the degradation of the network [40]. Finally, the output 
of the current MSFF will be the input of the next MSFF. The 
mapping of MSFF can be represented as:  

                        𝑀 = 𝑅 𝑀 + 𝑓 , (𝑀 )                     (25)                

where, 𝑀  is the low-scale feature map and 𝑀  is the high-scale 
feature map. The size of the output feature map 𝑀  is the same 
with that of 𝑀 . 𝑓 ,  represents the mapping for Transposed 
Conv + Leaky ReLU unit. The first subscript means the kernel 
size and the second represents the convolutional step in the 
convolution layer of this unit. 𝑅  means the mapping of Res(3).  

IV. DATA GENERATION AND EXPERIMENTAL SETUP 

A. Sensor Modelling and Dataset Generation  

We establish the training, validation and test sets to train and 
evaluate the proposed MSFCF-Net. In COMSOL Multiphysics 
we modelled the same 2D 16-electrode circular EIT sensor as 
that in Fig. 1 and solved the forward problem of EIT to generate 
simulation data. The EIT forward problem is approximately 
solved by the Finite Element Method (FEM), which is the 
primary source leading to the modelling error. We adopted the 
time-difference imaging method, which could eliminate the 
common errors to a certain extent. 

To make the deep learning model suitable for 3D cell culture 
imaging, specifically for 3D cell spheroids imaging, we 
consider multi-level, multi-circular-object conductivity  
distributions. In the sensing region, we generate four types of 
data and a sample belonging to a certain type of data includes a 
fixed number of objects (from one to four). For a certain type 
of data, for example, the one including three objects, we assign 
three non-overlapping circular objects with random diameters 
(from 0.07 d to 0.3 d, d is the diameter of the sensing area), 
positions, and conductivity values (from 0.0001 𝑆 ∙ 𝑚  to 
0.0475 𝑆 ∙ 𝑚 ). The background conductivity is 0.05 𝑆 ∙ 𝑚 . 
As the spatial resolution of EIT is about 10% of the sensor 
diameter [46], we cannot set the diameter of the object too 
small. The selection of 0.07 d alre  ady poses a challenge to 
image reconstruction. The maximum diameter of the objects 
can cover most 3D cell culturing situations. Thus, the setting of 
the object diameter range is reasonable. For conductivity 
settings, if the conductivity of a certain object is very close to 
the background conductivity, the voltage measurements can 
hardly be distinguished from those without such object in the 
sensing region. In this case, a frame of voltage measurements 
might correspond to two different mask images (one contains 
the object and the other does not), preventing the deep learning 
models from extracting the main features from the training set. 
Therefore, the criteria avoid that the conductivity of an object 
is too close to the background conductivity. Mask images for 
training and evaluation are also generated in simulation by a 
simple approach of assigning number one to pixels where there 
are objects and number zero to the rest of pixels. Four examples 
of the simulated conductivity images and corresponding binary 
mask images are illustrated in Fig. 8.  

 Based on the settings above, we built a dataset with 19,177 
samples. Each sample comprises a frame of voltage 
measurements, a ground-truth conductivity image, and a mask 
image. There are 4,691 1-object samples, 4,736 2-object 
samples, 4,936 3-object samples and 4,814 4-object samples. In 

 
Fig. 6. Architecture of DMFF. The purple block means the mapping 
𝑓 . 𝑓  equals to 𝑓  for DMFFM-V1 and 𝑓  equals to 𝑓 ∘ 𝑓  for 
DMFFM-V2. The meaning of other components is the same as 
those of legends in Fig. 5. 

 

 
Fig. 7. Architecture of MSFF. The green block means transposed 
convolution layer. The meaning of other components is the same as 
those of legends in Fig. 5. 
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order to maintain the data balance in training and evaluation, 
we randomly select 10% samples as the test set and 10% 
samples from the remaining data as the validation set for each 
type of data. The rest will serve as the training set. As a result,  
we have 15,537 samples for training, 1,724 samples for  
validation, and 1,916 samples for testing.  

 Moreover, to improve the robustness of our model, additive 
Gaussian noise is added to the voltage measurements to 
augment the original dataset. For each type of data (i.e. 1-object 
samples, 2-object samples, 3-object samples, and 4-object 
samples), we separately add noise with the Signal-to-Noise 
Ratio (SNR) of 50 dB  and 40 dB to a half of the data in the 
training and validation set. For the test data, the noise with the 
SNR of 50 dB, 40 dB and 30 dB is separately added to the entire 
test set. Fig. 9 displays the composition of the final dataset 
adopted to train and evaluate our model.  

B. Dual-modal Imaging System Setup 

The dual-modal sensor is connected to the in-house 
developed EIT system [47] to collect real-world experimental 

data. The frame rate of the system is set as 48 fps and its highest 
SNR is 82.82 dB [47]. In experiments, the frequency of the 
injected current is set as 10 kHz. In addition, the view field of 
the digital microscope and the sensing area of the impedance 
sensor coincide precisely. 

C. Network Training 

    The MSFCF-Net is implemented using Pytorch, trained and 
tested on a workstation with a GeForce RTX 2070 Super. 
AdamW [48] is employed for optimization. We use the whole 
training set (31,074 samples) and the whole validation set 
(3,448 samples) to train MSFCF-Net. Early stopping is adopted 
to mitigate overfitting. The hyper parameters are set as follows: 
the learning rate is 10  and the penalty parameter 𝜆 is set as 
10 ; the maximum number of training epoch is 200 and the 
batch size of each update is 120; the tolerance is set as 10 
epochs for early stopping. Finally, the training process is 
stopped at epoch 90 and the training time is 86.70 minutes. The 
model with minimum validation loss is selected as the final 
model.  

 

Fig. 8. Examples of simulated conductivity images and 
corresponding mask images. For each pair, the left is the binary 
mask image, and the right is the conductivity image. Green circle 
denotes the boundary of the sensing region. 

 

 

 Fig. 9. The composition of the final augmented dataset. 

 

TABLE I 
QUANTITATIVE METRICS FOR COMPARING DIFFERENT ALGORITHMS ON TEST SET 

 
Algorithms 

 Noise-free  50 dB  40 dB  30 dB 

M-RIE  M-MSSIM M-RIE  M-MSSIM M-RIE  M-MSSIM M-RIE  M-MSSIM 

TReg-GL 0.9481  0.3879 0.9481  0.3875 0.9484  0.3782 0.9494  0.3592 
SBL 1.5527  0.7553 1.5517  0.7546 1.5536  0.7389 1.5610  0.7140 
CG 0.9278  0.4035 0.9279  0.4028 0.9281  0.3975 0.9297  0.3774 

FC-UNet 0.4946  0.8708 0.4949  0.8707 0.4955  0.8703 0.5043  0.8665 
S-MSFCF-Net 0.5150  0.8453 0.5151  0.8453 0.5158  0.8451 0.5185  0.8432 
MSFCF-Net 0.3715  0.9387 0.3715  0.9387 0.3715  0.9387 0.3715  0.9387 

 
 

TABLE II 
COMPARISON OF DIFFERENT ALGORITHMS ON DIFFERENT TYPES OF SAMPLES 

 
Algorithms 

 1-Object  2-Object  3-Object  4-Object 

M-RIE  M-MSSIM M-RIE  M-MSSIM M-RIE  M-MSSIM M-RIE  M-MSSIM 

FC-UNet 0.2334  0.9817 0.4803  0.9096 0.6018  0.8286 0.6756  0.7562 

S-MSFCF-Net 0.2780  0.9644 0.4742  0.8868 0.6172  0.8008 0.7034  0.7214 

MSFCF-Net 0.0826  0.9920 0.4043  0.9478 0.4872  0.9182 0.5229  0.8940 
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V. RESULTS AND DISCUSSION 

 The proposed method is evaluated by numerical simulation 
and MCF-7 cell spheroids experiments. The performance of 
MSFCF-Net is compared with other widely used single-modal 
based EIT image reconstruction algorithms, i.e., Gaussian-
Laplace regularization (TReg-GL) [49] and Sparse Bayesian 
Learning (SBL) [50], and a dual-modal based image 
reconstruction algorithm using Cross-Gradient regularization 
(CG) [31]. In this work, the mask image replaces the CT image 
in [31] as the assisted image in both simulation and real 
experiments. We also compare with the recently proposed end-
to-end deep learning model FC-UNet [21] and the single-modal 
version of MSFCF-Net (named S-MSFCF-Net). FC-UNet is 
originally designed for pixel-level classification for EIT image. 
As we treat the conductivity distribution prediction as a 
regression problem, to make a fair comparison, we remove the 

activation function in the output layer of the FC-UNet. For S-
MSFCF-Net, we remove the BN-M and DMFF modules while 
the MSFF modules fuse different scales of feature maps from 
BN-V. Except for the tolerance of early stopping, FC-UNet and 
S-MSFCF-Net are also trained with the same loss function and 
settings as MSFCF-  Net. The early stopping tolerance for FC-
UNet and S-MSFCF-Net is set as 20 because it is beneficial to 
promote their convergence. It should be noted that in all 
reconstructed EIT images, the magnitude of each pixel denotes 
the quantity in (19).  

A. Numerical Simulation 

    Relative Image Error (RIE) and mean structural similarity 
index (MSSIM) [51] are used to quantitatively evaluate the 
image quality, which are defined as: 

TABLE III 
IMAGE RECONSTRUCTION RESULTS OF MODEL-BASED ALGORITHMS ON FIVE REPRESENTATIVE SAMPLES (LEFT COLUMN: RECONSTRUCTION; RIGHT 

COLUMN: ERROR IMAGE) 
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                                            RIE =
‖𝑨 − 𝑩‖

‖𝑩‖
                             (26) 

                               MSSIM =
1

𝑤ℎ
SSIM(𝑟, 𝑐)              (27) 

where A is the image to be evaluated and 𝑩 is the selected 
reference image. r and c are the position indexes of an image. 
w and h are the weight and height of an image, respectively. 
SSIM(𝑟, 𝑐) is the structural similarity index map [51], and is 
defined as:  

              SSIM(𝑟, 𝑐) =
(2𝜇𝑨𝜇𝑩 + 𝐶 )(2δ𝑨𝑩 + 𝐶 )

(𝜇𝑨 + 𝜇𝑩 + 𝐶 )(δ𝑨 + δ𝑩 + 𝐶 )
        (28) 

 where 𝜇𝑨, 𝜇𝑩, δ𝑨, δ𝑩, and δ𝑨𝑩 are the local means, standard 
deviations and cross-covariance for image A and B, which are  

also calculated following methods in [51]. 𝐶 = (𝐾 𝐿)  and 
𝐶 = (𝐾 𝐿) . 𝐾  and 𝐾  are constants whose values are 0.01 
and 0.03, respectively. As the range for reconstructed EIT 
images in this work is [0, 1], L is set as 1.  

RIE and MSSIM are the metrics for the evaluation of single 
image quality. Another two numerical metrics that evaluate the 
performance on the whole dataset level are the mean RIE (M-
RIE) and the mean MSSIM (M-MSSIM). During the evaluation 
process, we calculate RIE and MSSIM for each image in the 
test set and then average all values.  

TABLE IV 
IMAGE RECONSTRUCTION RESULTS OF LEARNING-BASED ALGORITHMS ON FIVE REPRESENTATIVE SAMPLES (LEFT COLUMN: RECONSTRUCTION; RIGHT 

COLUMN: ERROR IMAGE) 

 

 

Fig. 10. Mask images corresponding to samples in Table III and 
Table IV. 
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 Table I illustrates the quantitative evaluation results at 
different SNR levels on the test set. It is evident that the metrics 
of MSFCF-Net are superior to other given algorithms, 
indicating the robustness and effectiveness of the proposed  
dual-modal framework. Deep learning-based methods all show 
better voltage noise-resistance capability than conventional 
model-based algorithms. Especially, the M-MSSIM of deep 
learning models maintains a similar level with the decrease of 
SNR. Tables II compares the metrics of deep learning models 
on different types of samples with the SNR=50dB. As 
reconstructing multi-object and multi-level conductivity 
distribution is much more challenging, the metrics on 2-object 
samples have a big drop than those on 1-object samples for all 
deep learning models. For a specific type of samples, it is 
evident that the performance of MSFCF-Net is much better than 
the other two. Especially, though S-MSFCF-Net only removes 
the mask image related struc  tures from MSFCF-Net, it still 
cannot reach the performance of MSFCF-Net. The reason is 
that: single-modal deep learning models will take the duty on 
both position and structure prediction and conductivity value 
prediction. But the proposed dual modal deep learning model in 
essence utilizes more structural information; thus, better 
conductivity prediction can be expected.  

 Table III and Table IV compare five representative 
phantoms reconstructed from test data with SNR=50dB. GT 
denotes the ground truth image. The left column under each 
algorithm is the reconstructed EIT image and the right one is 
the error image which is the absolute difference between the 
reconstructed image and the ground truth image. Mask images 
(from left to right) corresponding to samples in Table III and 
Table IV (from top to bottom) are illustrated in Fig. 10. 
Although both TReg-GL and SBL can predict the position of 
objects, the shape and conductivity values are always inaccurate 
(see their error images, RIE and MSSIM). For CG, the 
reconstructed images are very similar to images by TReg-GL 
and the quality of images is not improved noticeably according 
to their error images and numerical metrics. However, if the 
image generated by CG is zoomed, it is obvious that clear 
boundaries of objects are visible, which is exactly the result of 
introducing Cross-Gradient regularization. Thus, the Cross-
Gradient regularization can only augment the object boundaries 
based on the assisted image while it cannot essentially improve 
the EIT image quality. For deep learning-based approaches, 
FC-UNet and S-MSFCF-Net can generate more accurate 
position, shape and conductivity values, but the errors are still 
more significant than those of the MSFCF-Net. Only MSFCF-
Net can reconstruct the best EIT images among the given 

 
Fig. 11. Modelling of the quasi-2D EIT sensor equipped with two 
scaffolds. 

 

TABLE V 
IMAGE RECONSTRUCTION RESULTS BASED ON QUASI-2D EIT SENSOR 

 

TABLE VI 
IMAGE RECONSTRUCTION RESULTS BASED ON PERTURBED MASK IMAGES 
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algorithms with the most accurate position, shape, and 
conductivity values. Especially, the results of the second row 
and the fourth row indicate that the MSFCF-Net can reconstruct 
images correctly that the other two networks cannot do, which 
benefits from introducing another imaging modality.  

 In this study, all model-based algorithms are based on the 
linearized EIT forward model introducing intrinsic model error. 
Therefore, it is difficult for these linearized model-based 
methods to predict accurate results, which may lead to under or 
over estimation of conductivity values. Deep-learning-based 
methods directly fit the non-linear mapping of the EIT inverse 
problem, which can theoretically generate more accurate 
predictions. However, the performance of learning-based 
methods highly depends on the quality of training datasets and 
training strategies. We produce a large dataset and carefully 
train the proposed network (depicted in Section IV-C) to 
mitigate the adverse effect caused by such limitations.  

In many tissue engineering applications, cells are cultured 
within the scaffold and monitoring of cell growth is vital to the 
process [8]. Cell growth at different stages within the scaffold 
will decrease the conductivity of various levels, which can be 
mapped by EIT [9]. To further demonstrate the effectiveness of 
the proposed framework, we simulated the imaging of cell 
growth within bio-scaffolds [8][9] by using EIT. We modelled 
a regular-shape scaffold, a quasi-2D EIT sensor with 16 
electrodes and a cell culture model with two cell clusters (see 

Fig. 11). The modelled sensor has the same dimension as the 
real sensor in Fig. 3. The height and diameter of the scaffold are 
1.2 mm and 3 mm, respectively. The background conductivity 
is set as 0.05 S/m and the conductivity of the scaffold material 
is set as 10-8 S/m. The cells are modelled as evenly distributed 
in the space among scaffolds. We modelled two scenarios. The 
first contains one cell cluster and the conductivity of the cells 
cluster is set as 0.025 S/m. The second has two cell clusters to 
simulate cell growth at two different stages. The conductivities 
in cell cluster 1 and cell cluster 2 are set as 0.02 S/m and 0.04 
S/m, respectively. In these cases, the reference conductivity 
distribution for the first scenario is the homogeneous medium 
whose conductivity is 0.05 S/m with a scaffold and the 
reference conductivity distribution for the second scenario is 
the same homogeneous medium including two scaffolds. 
Therefore, only the cell’s conductivity contributes to the 
predicted conductivity variation, which is also indicated in [8].  

Table V gives the image reconstruction results under settings 
described in last paragraph. By using the proposed approach, 
we could obtain reconstruction images with RIE lower than 
0.22 and SSIM larger than 0.96. The results show strong 
evidence that the proposed framework can generate accurate 
conductivity distribution under a different setting. It also 
presents good generalization ability when dealing with the 
challenging scenario of scaffold-based cell culturing imaging.  

  It is worth further discussing the generalization ability and 
the limitations of our method. In practical applications of the 

 

Fig. 12. MSFCF-Net image reconstruction results of six phantoms (a)-(f) based on the data which do not satisfy our dataset construction criteria. 
From left to right, each column represents the ground truth, reconstructed EIT image and error image, respectively. Red numbers in (a) and (b) 
denote the relative conductivity change, i.e. Ieit in (19), at the sampling points in the images. The size of the inclusions in the yellow circles in (c) 
is smaller than 0.07 d. The inclusions in the rose circles in (e) are the ones that are well predicted. The inclusion in the blue circle in (f) means 
this one is not identified by the mask image. 
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proposed method, inaccurate mask images may be generated 
due to many factors, such as unideal guidance image processing 
algorithm or noisy guidance image. To assess the robustness of 
the proposed method when encountering an inaccurate mask 
image, Table VI selects the first and fifth samples in Table III 
(or Table IV) for further analysis. Two different random 
perturbations are applied to the mask images of each sample, 
which are shown in the first column of the table. Each result 
occupying one row contains three images, i.e. the input mask 
image, the predicted EIT image and the error image from left to 
right. Observing the error images, the conductivity  value can 
still be predicted accurately except for the pixels on the 
boundary while losing some structural information. Compared 
with the results generated by MSFCF-Net in Table IV, although 
the quality of the image based on perturbed mask image is lower 
than the quality of that based on the accurate mask (see RIE and 
MSSIM), the quality of these images is still much better than 
the quality of images generated by the model-based algorithms. 
This analysis implies that, in real-world experiments, we can 
acquire a quantitatively meaningful EIT image even if the 
guidance image processing algorithm cannot generate a very 
accurate mask image.  

In Fig. 12, we also discuss another five situations which are 
inconsistent with our criteria of data generation but may occur 
in real applications. Some of them are extreme cases. There are 
six pairs of results, and each pair of r  esults includes three 
images, i.e. the ground truth, reconstructed EIT image and error 
image. Results in Fig. 12 (a) to (e) are based on the accurate 
mask images. Fig. 12 (a) and (b) display the results when the 
conductivity of one inclusion is close to the background 
conductivity. It is clear that our method can still recover the 
conductivity contrasts though the error of conductivity 
prediction exists. Fig. 12 (c) illustrates the result under the 
situation that the size of two inclusions (around 0.05 d) is 
smaller than 0.07 d, and Fig. 12 (d) shows the result under the 
situation that the size of the inclusion (around 0.35 d) is larger 
than 0.3 d. The results demonstrate that our method can still 
reconstruct the conductivity well if the sizes of certain 
inclusions never appear in our training set. Fig. 12 (e) is the 

result of imaging five inclusions by our approach. This type of 
samples does not appear in the training set neither. It is obvious 
that the prediction error is much larger. However, the 
conductivity of three inclusions can still be approximately 
predicted, which can be indicated from the error image. Fig. 12 
(f) shows the result based on the assumption that the mask 
image fails to identify the inclusion in the blue circle, which 
means the pixel values of that inclusion in the mask image are 
all zeros, while the mask image provides an accurate profile for 
the other inclusion. This extreme scenario may occur when the 
optical sensor has no response on some inclusions, or the 
guidance image processing algorithm is imperfect. In this case, 
only the inclusion identified by the mask image appears in 
reconstructed EIT image, indicating that identifying objects in 
the mask image is essential in our approach. This prerequisite 
is acceptable as our method conducts dual-modal imaging. To 
summarize, the proposed dual-modal imaging approach can 
generate satisfactory images if the inclusions could be correctly 
recognized by the optical image and the guidance image 
processing algorithm. Our method demonstrates generalization 
ability and robustness when encountering voltage noise, mask 
image perturbation and some situations not satisfying our data 
generation criteria.  

B. Cell Experiments 

The performance of the proposed framework is further 
evaluated on data collected from real-world experiments (see 
Table VII). The imaging target is MCF-7 cell spheroids 
(diameter ~ 2 mm). The rightest column is the mask image 
generated from the guidance image processing algorithms 
stated in Subsection B, Section III. The threshold values 𝛽 in 
(13) for the three guidance images (from top to bottom) are set 
as 0.66, 0.45 and 0.5 respectively based on a series of trials. The 
3 × 3  kernel is adopted in the next two morphological 
operations for all cases.  

In Table VII, the red dash line denotes the location of the cell 
spheroids. For conventional model-based single-modal and 
dual-modal algorithms, the cell spheroid structure is lost, and 
the reconstructed images contain too much unmeaningful 

TABLE VII 
COMPARISON BETWEEN DIFFERENT ALGORITHMS ON MCF-7 CELL EXPERIMENTS 
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information in the background, although they can locate the 
position of cell spheroids. As discussed in Subsection A, 
Section V, the augmented object boundary is visible in images 
reconstructed by CG while the quality of these images is not 
essentially improved in the visual. Although the model-based 
algorithms are defeated in terms of shape preservation and noise 
reduction, TReg-GL and CG generate acceptable conductivity 
estimation (for TReg-GL, ~ 0.30 for the first and third phantom, 
~ 0.25 for the second phantom; for CG, ~ 0.22 for all phantoms) 
according to the estimated relative conductivity change of 
MCF-7 cells (~ 0.39) using the simplified single-shell model 
and computing method in [52]. The deep learning models 
outperform in artifacts suppression. The MSFCF-Net could 
generate the most accurate shape and acceptable conductivity 
change (~ 0.25 for the first phantom, ~ 0.12 for the second 
phantom, and ~ 0.30 for the third phantom) according to the 
estimated conductivity change of MCF-7 cells. The 
reconstructed condu  ctivity change of the second phantom 
deviates more from the reference value, possibly due to the 
more considerable measurement noise than the other two 
phantoms. It is also worth noting that such a theoretical 
approximation based on several assumptions might not be 
accurate. In the future, a possible method to better quantify the 
experiment results is to use hydrogel as phantoms, whose shape 
and conductivity value could be better controlled. 

VI. CONCLUSION AND FUTURE WORK  

  In this paper, we proposed an impedance-optical dual-modal 
imaging framework for 3D cell culture imaging. We combined 
optical imaging with EIT to tackle the low image quality issue 
of EIT. We also developed a learning-based approach to fuse 
the dual-modal information and reconstruct high-quality 
conductivity images. The results on simulation data and real-
world data on MCF-7 cell spheroids demonstrate that the 
proposed framework could generate a more accurate estimation 
of conductivity distribution, which implies the possibility of 
quantitative imaging for EIT in tissue engineering. Future 
research will deal with the situation when the structure of the 
object in the mask image suffers more severe perturbation and 
develop more advanced image processing algorithms to 
generalize the method to other optical imaging approaches for 
tissue engineering, e.g., optical coherence tomography.  
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