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Gesture Recognition in Robotic Surgery with
Multimodal Attention
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Abstract— Automatically recognising surgical gestures
from surgical data is an important building block of
automated activity recognition and analytics, technical
skill assessment, intra-operative assistance and eventually
robotic automation. The complexity of articulated instru-
ment trajectories and the inherent variability due to surgical
style and patient anatomy make analysis and fine-grained
segmentation of surgical motion patterns from robot kine-
matics alone very difficult. Surgical video provides crucial
information from the surgical site with context for the kine-
matic data and the interaction between the instruments
and tissue. Yet sensor fusion between the robot data and
surgical video stream is non-trivial because the data have
different frequency, dimensions and discriminative capabil-
ity. In this paper, we integrate multimodal attention mecha-
nisms in a two-stream temporal convolutional network to
compute relevance scores and weight kinematic and visual
feature representations dynamically in time, aiming to aid
multimodal network training and achieve effective sensor
fusion. We report the results of our system on the JIG-
SAWS benchmark dataset and on a new in vivo dataset of
suturing segments from robotic prostatectomy procedures.
Our results are promising and obtain multimodal prediction
sequences with higher accuracy and better temporal struc-
ture than corresponding unimodal solutions. Visualization
of attention scores also gives physically interpretable in-
sights on network understanding of strengths and weak-
nesses of each sensor.

Index Terms— surgical gesture recognition, multimodal
attention, surgical data science, robotic surgery.
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Fig. 1. Surgeme examples in phantom and real surgical environments:
(a) positioning needle tip on insertion point, (b) pushing needle through
the tissue, (c) pulling needle out of tissue. Snapshots on top from
JIGSAWS [3].

I. INTRODUCTION

SURGICAL robots are now an established part of clinical
practice, particularly in minimally invasive surgery, where

surgeons especially benefit from the enhanced instrumentation,
visualisation and ergonomics during the procedure [1]. In
addition to advantages for the patient and clinical team, the
surgical robot system is a complex platform and potentially
captures large amounts of unique data from the surgical
procedure that can be used to develop artificial intelligence so-
lutions for the future surgical operating room benefiting from
computer assisted interventions (CAI) [2]. Robotic systems
in fact capture digital videos as well as instrument kinematic
trajectories, instrument types and other system signals during
surgical interventions, enabling more in-depth analysis of sur-
gical motion and activity than with traditional instrumentation
or video alone.

Surgical motion, activity and process understanding are
fundamental concepts in surgical data science (SDS) and CAI,
representing the cornerstone of various implementations of
pre-, intra- and post-operative clinical support systems [4].
Analysis of surgical motion and robot kinematics is often
based on decomposition into pre-defined action units, called
“surgical gestures” or “surgemes” (Fig. 1), representing fine-
grained motion segments performed with a specific surgical
purpose (e.g. grabbing the needle, pushing the needle through
the tissue). Automatic segmentation of surgical demonstrations
into fine-grained gestures finds application in technical skill
assessment and development [3], [5], [6], as it allows a system
to provide surgical trainees with quantitative and gesture-
specific feedback, as well as surgical automation, where modu-
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lar blocks of motion can be learnt, composed and reused more
easily than long surgical tasks [7]. If performed in real-time,
gesture recognition can also be exploited for any application
based on context-awareness, such as workflow monitoring,
error detection and intra-operative assistance [8], [9]. Linking
surgical actions to patient outcomes can finally give new
insights for strategy optimization [10].

Fine-grained analysis of surgical motion however presents
significant challenges, due to the complexity of surgical tra-
jectories and the presence of multiple independent variability
sources, such as user-specific surgical style and skill level.
The same gesture can also be used across different surgical
phases and procedures, where contextual features such as
instrument type and anatomical site are generally different but
can hardly be exploited to discriminate between fine motions.
The combination of these variability factors leads to alterations
in the kinematic, temporal and sequential properties of surgical
actions in a surgeon-, patient- and task-specific manner [11].

A promising but relatively unexplored strategy to enhance
available recognition systems and improve their performance
is represented by the integration of synchronous data streams
recorded from the robotic platform, which often encode com-
plementary information. Kinematic data, for example, repre-
sent the robotic system configuration and its motion in space,
while endoscopic videos contain information about the envi-
ronment, other tools and objects (e.g. needle, assistant’s tools)
and their interaction in the surgical scene. Robust sensor fusion
is however non-trivial because each sensor is subject to specific
noise sources and has different predictive power in different
contexts [12]. As an illustration, kinematic information is
expected to return more accurate predictions when the view on
the surgical scene is occluded or the surgical instruments move
out of the camera’s field-of-view. On the other side, visual
features are essential to discriminate gestures with similar
motion pattern performed on different anatomical structures
or with different surgical tools and objects. Balancing uni-
modal information in a timely manner, that is with stronger
focus on the most reliable modality at each time stamp, could
thus be key to rectify unimodal prediction errors and obtain
robust gesture recognition from multiple data sources [12],
[13]. While previous work mostly relied on unimodal data or
plain concatenation of uni-modal features, analysis of more
complex interactions between visual and kinematic streams
has been rarely investigated [14], [15], especially in real-case
scenarios where robot kinematic information is not always
freely accessible.

In this paper, we explore using attention mechanisms, which
have gained much popularity in text data processing [16], to
compute relevance scores and weight high-level kinematic and
visual feature representations dynamically in time, aiming to
aid multimodal network training and achieve effective sensor
fusion between video and kinematics. The proposed attention
modules are embedded in a two-stream temporal convolutional
network, but can in principle be used with a variety of two-
stream recognition systems.

We evaluate our proposed system on the JIGSAWS bench-
mark dataset [3], [11] and on a new dataset of suturing
demonstrations from in vivo robotic prostatectomy interven-

Fig. 2. The dorsal vascular complex (DVC), an array of veins and
arteries that carry blood to the penis, is sutured to keep bleeding under
control during radical prostatectomy procedures.

tions and we provide promising comparisons to the state-of-
the-art. In our new clinical data, fine-grained analysis and
multimodal fusion are particularly challenging due to the
complexity of the surgical environment and larger number
of noise sources and variability factors. This represents an
important first step towards translation of current research in
gesture recognition systems and model deployment in real
surgical scenarios, which has been hindered thus far by the
lack of large and realistic open-source datasets essential for
deep learning solutions.

In summary, our contributions include:
• Integrating multimodal attention mechanisms in a surgical

gesture recognition system with the aim of weighting
kinematic and visual feature representations dynamically
in time, thus aiding multimodal network training and
achieving effective sensor fusion.

• Introducing a new in vivo dataset for surgical ges-
ture recognition made of suturing segments from
robotic prostatectomy procedures. The video dataset
and annotations will be made available for research
purposes at https://www.ucl.ac.uk/interventional-surgical-
sciences/weiss-open-data-server.

• Experimentally showing the effectiveness of attention-
based multimodal fusion on the JIGSAWS benchmark
dataset as well as on our challenging in vivo data.

II. RELATED WORK

A. Surgical Gesture Recognition - Temporal Models
Research on automatic recognition of surgical gestures has

often drawn inspiration from state-of-the-art models for speech
recognition and machine translation, as surgical demonstra-
tions obey task-specific, probabilistic action grammars in a
similar way as syntactic rules regulate the natural language
flow. Probabilistic graphical models such as hidden Markov
models [17] and conditional random fields [18], [19] have
been extensively used in early research stages to learn such
probabilistic grammar from video and kinematic data.

Current research is focused on more powerful solutions
based on deep learning and in particular on temporal convo-

https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-data-server
https://www.ucl.ac.uk/interventional-surgical-sciences/weiss-open-data-server
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Fig. 3. The RARP-45 dataset consists of synchronized video and kinematic data recorded from the da Vinci Si Surgical System during robotic
radical prostatectomy surgery. Manual segmentation into fine-grained bi-manual actions was carried out on the DVC suturing phase of the
procedure.

lutional and recurrent models, which work efficiently on low-
dimensional input data such as kinematic trajectories or high-
level visual features encoded with 2D [19] or 3D convolutional
neural networks (CNNs) [20].

Temporal convolutions are often used in encoder-decoder
networks where action predictions are generated simultane-
ously at all time stamps. Temporal Convolution Network
(TCN) [21], [22] uses a cascade of temporal convolutions and
pooling/upsampling layers to capture temporal correlations in
the input data at multiple hierarchical levels. To avoid loss
of fine-grained information, two-stream solutions process the
data at two different temporal scales and merge information
at multiple processing levels [23], [24]. The same issue can
be tackled by stacking multiple layers of atrous temporal
convolutions with increasing dilation factor, thus increasing the
network temporal receptive field without pooling operations
[25], [26].

Recurrent models such as Long Short-Term Memory
(LSTMs) [27] and Multi-Scale Recurrent Neural Network
(MS-RNN) [28], on the other side, are built around memory
cells able to store long-term information of past observations.
Hybrid models based on temporal convolutions and recurrent
structures, either combined sequentially [29] or in parallel
[14], have shown good recognition capabilities.

B. Surgical Gesture Recognition - Sensor Fusion
Joint learning and fusion of multimodal data (video, kine-

matics and optical flow) for gesture recognition has been inves-
tigated in the literature [30], [31], giving insights that suggest
the improved performance of multimodal models over their
unimodal counterparts. Most related work approached sensor
fusion through plain concatenation of uni-modal features [32]–
[35], which could however be suboptimal due to differences
in semantic and stochastic properties. Only a few studies
have investigated more complex interactions between different
data streams. Fusion-KV [14] consists of parallel recognition
models operating on different data sources. Information fusion

is performed at testing time, where individual predictions are
weighted according to a voting scheme based on class-specific,
uni-modal training performance. Class-specific weighting is
however unsuitable to capture more detailed interactions and
their evolution in time. Dynamic integration of high-level
visual and kinematic embeddings has been achieved through
a relational graph learning module (MRG-Net) [15], aimed
at capturing joint knowledge to produce refined uni-modal
embeddings. In a similar fashion, we use multimodal attention
to seek timely multimodal cooperation and refine hidden
representations for more accurate gesture recognition.

C. Attention-based Temporal Multimodal Learning

Temporal Multimodal Learning (TML) [13] aims at simul-
taneously fusing multimodal information and modelling tem-
poral dynamics in sequential data. Attention-based approaches
for TML have been explored for video classification [13], [36]
and video captioning [12], [37] from visual, motion and audio
signals.

A simple but efficient solution consists in obtaining a global
representation of each input sequence through independent
temporal models (e.g. LSTM) with attention, and then fuse
these high-level representations for video classification [36].
The advantage is that each modality independently learns to
pay attention to different temporal segments, while multimodal
interactions are still captured in late processing stages.

More advanced fusion strategies extend the attention mech-
anism by not only localizing relevant temporal windows,
but also weighting the contribution of each data modality
dynamically in time [12], [13], [37]. Dynamic weights can be
assigned to each modality based on the agreement between the
current input and the previous multimodal representation for
video classification [13], or with all the previously generated
words for video captioning [12], [37]. In a similar fashion, our
model dynamically adjusts the relative contribution of each
input stream to generate better multimodal representations.
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TABLE I
RARP-45 DATASET GESTURE LIST

ID Gesture description Count
G0 Background class 189
G1 Picking-up the needle 213
G2 Positioning the needle tip 535
G3 Pushing the needle through the tissue 500
G4 Pulling the needle out of the tissue 486
G5 Tying a knot 25
G6 Cutting the suture 35
G7 Returning/dropping the needle 71

Fig. 4. RARP-45 statistics. (a) Task duration variability (reported in
seconds). Average duration is about 5 minutes, with large variability
ranging from about 2 to 12 minutes. (b) Class distribution per sequence.
Each bin represents the median class frequency over interventions, and
error bars mark the 25th and 75th quantiles. Class G5 is absent in
more than 75% of the interventions. (c) Train and test class distribution.
Absolute frequencies are reported on the bins. Relative frequencies are
homogeneous across all classes.

III. DATASETS

A. JIGSAWS Dataset

The JHU-ISI Gesture and Skill Assessment Working
Set (JIGSAWS) [3], [11] represents the benchmark dataset
for surgical gesture recognition. It contains synchronized
kinematic and video recordings of elementary surgical tasks
(suturing, knot-tying, needle passing) executed by eight
different surgeons using the da Vinci Surgical System (dVSS)
[38]. With focus on the suturing task, all 39 available
demonstrations have been manually segmented into fine-
grained gestures according to a pre-defined dictionary of 10
action classes. Amendments to the original labels, rectifying
12 annotation errors, are reported in [39].

While JIGSAWS has been widely used by the research
community for model development and comparison, it also

Fig. 5. Examples of variability factors and noise sources which hin-
der robust gesture recognition in real-case scenarios: (a) environment
variability due to patient-specific anatomical structure, (b) changes of
illumination, (c) presence of blood, (d) tools out of view, (e) occlusions
and self-occlusions, (f) interactions with surgical assistant.

shows some limitations which prevent the applicability of such
methods to real-world surgeries. One is the limited size of
the dataset (each demonstration only lasts around 1.5 min-
utes and contains approximately 20 gesture instances), which
hinders robust training and testing of deep-learning-based
recognition systems. Despite involving different users, lack
of data diversity is apparent compared to real surgeries due
to the standardised training environment and predetermined
workflow structure, leading to similar instrument positions and
directions of motion. Another problem is the lack of endo-
scopic motion and zoom, with all demonstrations observed
from the same point of view. This leads to poor generalization
to new endoscopic views in real-case scenarios, where camera
motions are generally frequent. For technological advancement
and translational research, future work requires testing on
more realistic demonstrations with complex anatomies, camera
motions, different illumination conditions, blood, specularities,
occlusions and higher variability in action ordering and exe-
cution strategy.

B. RARP-45 Dataset

In order to explore multimodal data integration in more
challenging and realistic conditions, we collected a dataset of
Robot-Assisted Radical Prostatectomies (RARP) performed by
eight surgeons with different surgical seniority (experienced
consultant, senior registrar and junior registrar) using a da
Vinci Si Surgical System (Intuitive Surgical, Inc.) at the
Westmoreland Street Hospital, London, UK, part of the Uni-
versity College London Hospitals NHS Trust 1. Robotic radical
prostatectomy is the surgery to remove the whole prostate
gland and represents common treatment against clinically
localised prostate cancer [40]. Its surgical workflow involves
a first dissection phase, where the connection of the prostate
to bladder and urethra are cut and the prostate is removed;
the dorsal vascular complex (DVC), an array of veins and
arteries that carry blood to the penis, is then sutured to keep
bleeding under control (Fig. 2); finally the bladder and urethra
are stitched back together. We carried out fine-grained analysis
on the DVC suturing phase, which is more structured than

1The data for this study were collected with participants’ consent as part
of clinical service evaluation and were shared anonymously with researchers
within the team in order to provide independent assessment of surgical
performance.
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Fig. 6. Unimodal baseline. A cascade of temporal convolutions and pooling layers to encode the input sequence at increasing levels of abstraction
is followed by temporal convolutions and upsampling layers to gradually bring the data back to their original temporal resolution for frame-
wise classification. Shortcut connections are introduced between encoding and decoding stages, where features from corresponding layers are
concatenated to allow the propagation of low level contextual information to the high level layers. After each max pooling and feature concatenation
layer, channel-wise feature normalization as well as temporal dropout are employed for regularization.

preceding dissection phases and much less complex than the
following anastomosis segment.

The data consist of synchronized video and kinematics
(Fig. 3) captured from the robotic platform at 60 Hz and
50 Hz respectively using the dVLogger (Intuitive Surgical,
Inc.). Kinematic features include pose and joint angles of three
Patient Side Manipulators (PSMs), two Master Tool Manipula-
tors (MTMs) and the Endoscopic Camera Manipulator (ECM).
Videos were recorded from the endoscopic camera held by
the ECM and used in the labelling process as well as for
recognition. A dictionary of 7 fine-grained bi-manual gestures
and a background class (Table I) was designed in collaboration
with expert surgeons to guide manual segmentation of DVC
suturing demonstrations from 45 different interventions. An-
notations were created by a trained engineer as there was no
discrepancy between clinical and non-clinical understanding
of the surgical gestures employed in this study.

Different trials show considerable variability in terms of
total duration (Fig. 4a), as well as action count (Fig. 4b),
ordering and kinematic properties. Such diversity is only
partially operator-dependent, reflecting different surgical style
and robotic surgical experience, but it is also linked to real-
case variability factors such as patient-specific anatomical
structure and tissue response (e.g. unexpected or excessive
bleeding, which could prompt multiple gesture attempts or
alter the surgical strategy). Other variability factors and noise
sources which hinder robust gesture recognition in real-case
scenarios include the presence of camera motions, changes of
illumination, specularities, smoke and blood (Fig. 5). Given
the endoscope proximity to the suturing site, surgical tools
often fall out of the camera field-of-view or their line-of-sight
is interrupted by obstructions or self obstructions, especially
during interactions with the surgical assistant, which brings
additional tools to the surgical scene and often leads to altered
kinematic trajectories.

IV. METHODS

A. Unimodal streams

Our multimodal system is based on two parallel unimodal
streams operating on high-level feature sequences derived

from the original video and kinematic data (see Section IV-
C). Each stream is a temporal convolutional network (TCN),
composed of a contracting part (encoder) and an expansive
part (decoder) (Fig. 6). The encoder consists of a cascade of
temporal convolutions and pooling layers operating directly on
the input time series, aimed at modelling kinematic or visual
information at larger temporal scales and increasing levels of
abstraction. Starting with input sequence X(0) ∈ RF (0)×T (0)

,
where F (0) is the input feature dimension and T (0) is the total
sequence length, the intermediate feature sequence X(l) ∈
RF (l)×T (l)

at layer l ∈ [1, L] is computed at each time step t
as:

X̂
(l)
t = f(W (l) ∗X(l−1)

t− c
2−1:t+

c
2
+ b(l)) (1)

X(l) = MaxPooling(X̂(l), s). (2)

Here, F (l) is the number of feature maps at layer l, T (l) is
the length of the sequence at layer l, W (l) ∈ RF (l)×c×F (l−1)

and b(l) ∈ RF (l)

represent the convolutional filter parameters
at layer l, c is the kernel size, f is the Rectified Linear Unit
(ReLU), X(l−1)

t− c
2−1:t+

c
2

is a temporal section of the previous

layer’s activation, X̂(l) ∈ RF (l)×T (l−1)

is the temporal convo-
lution output and X(l) ∈ RF (l)×T (l)

is the max pooling output
with stride s, where T (l) = T (l−1)

s . When real-time evaluation
is required, acausal convolutions (equation 1) are replaced with
causal convolutions:

X̂
(l)
t = f(W (l) ∗X(l−1)

t−c−1:t + b(l)). (3)

The decoder uses temporal convolutions and upsampling
layers to gradually bring the data back to their original
temporal resolution for frame-wise classification.

We also draw inspiration from temporal U-Net [41] and
introduce shortcut connections between the two stages, where
features from corresponding layers in the encoder and decoder
are concatenated to allow the propagation of low level con-
textual information to the high level layers.

After each max pooling and feature concatenation layer,
channel-wise feature normalization [21] as well as temporal
dropout are employed for regularization.
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Fig. 7. MA-TCN schematic. Starting from our two unimodal baselines, we derive frame-wise reliability weights for each stream using multimodal
attention. During training, the output of each unimodal stream is compared to the corresponding one-hot-encoded label sequence through dot-
product attention. The resulting scores are used as reliability weights to balance the relative contribution of different modalities. Action predictions
are obtained by weighted concatenation of the final layers from the two streams followed by a fully-connected layer with softmax activation function.

B. Multimodal sensor fusion

1) Baseline I - Concatenation TCN (C-TCN): In order to
fuse the two unimodal representations, the last layers from the
kinematic and video streams are concatenated and projected
through a fully-connected layer with softmax activation
function to obtain action predictions.

2) Baseline II - Ensemble TCN (E-TCN): Alternatively,
multimodal fusion can be obtained with plain ensemble of the
two unimodal models, that is training the two streams with
average unimodal loss and taking their average prediction
probabilities as the final multimodal prediction.

3) Multimodal Attention TCN (MA-TCN): Video and kine-
matic data carry complementary information which could be
useful to understand each action’s internal dynamics. They
are also subject to different noise sources that often manifest
erratically. Recognition of surgical actions could then be
improved by highlighting or penalizing the contribution of
each modality dynamically in time. Building on E-TCN and C-
TCN, we derive frame-wise reliability weights for each stream
using multimodal attention. During training (Fig. 7), the last
decoder activation Xu ∈ RF (L)×T (0)

of each unimodal stream
u ∈ {K,V } is transformed into Pu ∈ RC×T (0)

to match the
number of classes C:

Pu = Softmax(WuXu + bu), (4)

where Wu and bu are linear projection parameters. Pu is
then compared to the corresponding one-hot-encoded label
sequence Y ∈ RC×T (0)

through scaled dot-product attention
[16], where Yt ∈ RC×1 represents the frame-wise attention
queries and Put ∈ RC×1 the frame-wise attention keys:

Sut(Y, Pu) =
Y T
t Put√
C

, 0 ≤ t ≤ T (0). (5)

The resulting scores Su ∈ R1×T (0)

measure the similarity
between unimodal predictions and corresponding ground truth

at each time-stamp and are used as reliability weights to
balance the relative contribution of different modalities. After
normalization [12]:

S′u =
eSu∑
u e

Su
, (6)

the generated weights S′ut are thus multiplied with the
outputs of the corresponding stream Xut, representing the
frame-wise attention values. Multimodal action predictions
Pm ∈ RC×T (0)

are then obtained by concatenation of the
weighted outputs S′utXut from the two streams followed by
a fully-connected layer with Wm and bm parameters and
softmax activation function:

SKV t = [S′KtXKt ‖ S′V tXV t], 0 ≤ t ≤ T (0) (7)

Pm = Softmax (WmSKV + bm) . (8)

It is worth noting that computation of attention weights is
performed for each frame individually, thus allowing online
processing of the input sequences when causal temporal con-
volutions are employed in the unimodal streams.

C. Input embeddings
Both unimodal streams operate on high-level feature se-

quences derived from the original data. As for JIGSAWS, we
followed the majority of related work to aid comparability
and used high-level visual features (F (0)

V = 128) extracted
from the raw video frames with a spatial CNN [19] along
with smoothed and normalized selection of kinematic signals
(positions, linear velocities and gripper angles) recorded from
the two PSMs (F (0)

K = 28).
The RARP-45 raw data were processed in a similar manner.

Kinematic signals (positions, orientations and joint angles)
recorded from two out of three PSMs (F (0)

K = 69) were
smoothed and normalized. High-level spatial features (F (0)

V

= 512) were extracted from the original video frames with
ResNet18 [42] fine-tuned on the task of gesture recognition.
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Fig. 8. Examples of MA-TCN prediction outputs before fine-tuning and corresponding attention weights (gray scale representation, white =
0.65, black = 0.35), aligned with ground truth and unimodal predictions. Green boxes highlight instances where MA-TCN correctly enhances
information from the most reliable modality at each time-stamp, recovering missed segments (a), improving boundary adherence (b), ignoring
spurious segments (d) or rectifying simultaneous classification errors (c). In yellow we highlight when MA-TCN’s performance is limited by the
accuracy of the strongest modality. The red box shows an example of failure mode, where higher weight is assigned to the weakest modality. (e)
Physical interpretation of unimodal classification errors and corresponding attention weights. While gesture G6 (orient needle) is visually similar
to G3 (transfer needle) and can benefit from higher kinematic attention to prevent misclassification, gestures G1 (position needle) and G2 (push
needle through tissue) have similar kinematic properties when multiple adjustment motions are performed during G2. Using visual information to
identify when the needle tip is inside the tissue leads to improved recognition.

Fine-tuning was performed on the training data via cross-
validation, in order not to observe any test sequence during
feature extraction.

Both datasets were down-sampled to 5Hz to reduce data
redundancy and computation load.

D. Training and inference

The goal of our network is to optimize predictions from
both unimodal streams and simultaneously exploit the third
multimodal branch to down-weight noisy features that could
not be rectified with unimodal training due to sensor-specific
noise and limitations. We therefore trained our network using
a weighted combination of unimodal (Lk, Lv) and multimodal
(Lkv) cross-entropy losses:

L = Lkv(Pm) + w1 ∗ Lk(PK) + w2 ∗ Lv(PV ) (9)

where w1 and w2 represent balancing weights for the
unimodal losses. Loss values around the gesture boundaries
were down-weighted to compensate for smooth transitions and
annotation uncertainty (see Section V-B).

As for inference, it is not possible to use action labels
in order to obtain attention scores. We thus monitored the
recognition scores on the validation sets to decide when to
stop attention-based training, and then fine-tuned the uni-
modal branches using average unimodal loss without attention,
conjecturing that attention-based pre-training could improve
feature robustness and increase recognition accuracy. After
fine-tuning, inference could be performed readily as in our
baseline.

V. EXPERIMENTS AND RESULTS

A. Evaluation protocol

1) JIGSAWS Dataset: We used the standard Leave-One-
User-Out (LOUO) cross-validation setup, consisting of eight
validation folds featuring all trials performed by the same user.
The LOUO setup penalizes overfitting to user-specific features
and it is useful to evaluate model generalization to different
surgeons. As no independent test set is available, the network
performance was defined as the average accuracy over cross-
validation splits.

2) RARP-45 Dataset: We first divided the dataset into two
parts with balanced class proportions, one for training (about
80%) and one for testing (about 20%) (Fig. 4c). Given the
limited dataset size, we further divided the training set into 4
sub-sets and performed cross-validation for parameter tuning,
estimating the optimal number of training epochs. The entire
training set was then used to re-train the network and evaluate
its performance on the unobserved test set.

3) Evaluation metrics: Results were analysed based on three
most common evaluation metrics: accuracy, Edit score and
F1@10 score. Accuracy is used to test frame-wise recognition
performance, but it is not appropriate to assess temporal prop-
erties of the generated predictions, which might show similar
accuracy but large qualitative differences. Edit and F1@10
scores are therefore used to evaluate network understanding
of action ordering and task structure. While Edit score repre-
sents a distance between true and predicted label sequences,
assessing action ordering without timing, F1@10 additionally
examines the temporal overlap between predictions and ground
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TABLE II
ABLATION STUDY ON JIGSAWS DATASET - ACAUSAL.

Accuracy Edit F1@10
K-TCN 83.8 (5.4) 86.3 (5.7) 90.4 (4.0)
V-TCN 83.7 (6.1) 87.4 (6.1) 91.9 (4.0)
C-TCN 86.1 (5.3) 90.5 (5.4) 93.9 (3.6)
E-TCN 86.2 (5.2) 89.4 (5.0) 93.1 (3.5)

MA-TCN w/o Wtrans 86.6 (5.4) 90.1 (6.2) 93.6 (4.1)
MA-TCN 86.8 (5.3) 91.4 (6.3) 94.3 (4.2)

TABLE III
COMPARISON WITH RELATED WORK (ORIGINAL LABELS).

Accuracy Edit F1@10
Fusion-KV [14] (2020) 86.3 (-) 87.2 (-) -
MRG-Net [15] (2020) 87.9 (4.2) 89.3 (5.2) -

MA-TCN 85.8 (5.1) 90.3 (6.4) 93.6 (4.3)

truth segments of the same class. Detailed description of
the evaluation metrics and their implementation details are
reported in [43].

B. Implementation details

For both datasets we used a 3-layer encoder-decoder video
stream with output dimensions {64, 96, 96}{96, 64, 64} and a
2-layer kinematic stream with dimensions {64, 96}{96, 64},
both with max pooling stride s = 2 and dropout rate p =
0.3. Temporal convolutions were performed at each time step
(t) from t − 24 to t + 25 (kernel size c = 50) in acausal
experiments, and from t − 24 to t (kernel size c = 25) in
causal experiments. Symmetric windows of temporal weights
Wtrans = [1, 0.9, 0.5, 0.5, 0.9, 1] were centered around each
transition point and multiplied with the loss samples, while
both w1 and w2 balancing weights were heuristically set to
0.25. Optimization was performed with the Adam optimizer
(α = 0.9, β = 0.98) and a learning rate of 0.0005.

The network was implemented in PyTorch 1.5.0 and trained
on NVIDIA Tesla V100-DGXS GPU.

C. Results on JIGSAWS

1) Acausal experiments: We first performed acausal experi-
ments to evaluate our network’s best possible performance. Re-
sults of the ablation study are reported in Table II. Following
[15], we trained each configuration three times with different
initial seeds and recorded average scores for each validation
split. We then reported the mean and standard deviation of the
performance metrics across all 8 validation splits.

Loss down-weighting around the transition points (Wtrans)
led our model to higher segmental scores, so we used it
to train all the models. While our multimodal baselines (E-
TCN, C-TCN) already showed better results compared to both
unimodal streams (V-TCN and K-TCN), further improvement
was obtained with multimodal attention (MA-TCN). In order
to support our analysis statistically, we first used Kolmogorov-
Smirnov test to verify if the cross-validation score vectors

TABLE IV
ABLATION STUDY ON JIGSAWS DATASET - CAUSAL.

Accuracy Edit F1@10
V-TCN 81.5 (6.4) 73.0 (8.0) 82.0 (6.1)
K-TCN 76.7 (7.2) 74.4 (6.6) 81.5 (5.1)
C-TCN 82.3 (6.3) 82.1 (5.5) 88.0 (4.4)
E-TCN 82.6 (7.0) 81.4 (7.2) 87.3 (5.5)

MA-TCN 83.4 (5.8) 81.6 (7.6) 87.7 (5.3)

Fig. 9. Per-class F1-scores on the JIGSAWS dataset.

were normally distributed; as the scores were not normally
distributed, we compared MA-TCN to the two multimodal
baselines using two-sided Wilcoxon signed rank test with
α = 0.05 cutoff for significance. Results demonstrated a sig-
nificant difference in accuracy with C-TCN, and a significant
difference in all the scores with E-TCN.

Examples of MA-TCN prediction outputs before fine-tuning
and corresponding attention weights, aligned with ground truth
and unimodal predictions, are shown in Fig. 8. Green boxes
highlight instances where MA-TCN correctly enhances infor-
mation from the most reliable modality at each time-stamp,
recovering missed segments (a), improving boundary adher-
ence (b) or ignoring spurious segments (d). In few instances it
is even able to rectify simultaneous classification errors (c). In
other instances, however, MA-TCN’s performance is limited
by the accuracy of the strongest modality (yellow box). An
example of failure mode is highlighted in red, where higher
weight is assigned to the weakest modality.

The interaction between video and kinematic predictions
and corresponding attention weights sometimes finds physical
interpretation, as illustrated in Fig. 8d. While gesture G6
(orient needle) is visually similar to G3 (transfer needle)
and can benefit from higher kinematic attention to prevent
misclassification, gestures G1 (position needle) and G2 (push
needle through tissue) have similar kinematic properties when
multiple adjustment motions are performed during G2. Placing
the focus on visual cues to identify when the needle tip
is inside the tissue can be helpful to identify the boundary
between the two gestures.

Analysis of per-class F1-scores (Fig. 9) further confirms
the observed behaviour, as MA-TCN scores are generally
better than both modalities or at least better than the weakest
modality. Gestures G7 and G8 are under-represented and
thus remain very difficult to recognize. It is finally worth
noting that MA-TCN generally shows better understanding of
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TABLE V
RESULTS ON REAL SURGICAL DATA.

Accuracy Edit F1@10
V-TCN 72.6 79.7 81.9
K-TCN 77.0 77.8 82.1
E-TCN 78.1 80.3 82.9
C-TCN 79.3 78.2 81.7

MA-TCN 80.9 79.6 83.7

Fig. 10. Examples of MA-TCN prediction outputs before fine-tuning
and corresponding attention weights (gray scale representation, white =
0.65, black = 0.35), aligned with ground truth and unimodal predictions
on the RARP-45 test set. The green box shows an example where MA-
TCN correctly enhances information from the most reliable modality and
outperforms both unimodal predictions, while the yellow box shows an
example where MA-TCN’s performance is only better than the weakest
modality. The red box shows an example of failure mode.

action ordering and task structure, which is only marginally
reflected in the frame-wise evaluation scores (global and per-
class accuracy).

2) Comparison with related work: We compared acausal
MA-TCN with related work aimed at optimizing multimodal
fusion of video and kinematic data (Table III) for surgical
gesture recognition. For fair comparison, we re-tested our net-
work against the original label sequences (without rectification
of the annotation errors) and reported new scores. Despite
reporting lower average accuracy, MA-TCN shows superior
performance in terms of segmental scores (Edit), indicating
better ability to retrieve missing segments or delete spurious
predictions from different data modalities. Moreover, [14] and
[15] use more complex baselines with three unimodal streams
(two for the kinematics and one for the video) embedding both
temporal convolutions and recurrent cells. Similar strategies
could help to improve MA-TCN’s overall accuracy.

3) Causal experiments: We repeated our ablation study in
a causal scenario, where temporal convolutions are causal
(equation 3) and predictions at each time stamp are only
function of past and current data samples, thus allowing real-
time application. MA-TCN still outperforms all unimodal and
multimodal baselines (Table IV), with statistically significant
difference in accuracy with respect to both C-TCN and E-
TCN. Segmental scores show the largest drop compared to
acausal recognition, as knowledge of near-future dynamics
in acausal frameworks helps to regularize the predictions’
structure. While helping to improve the recognition accuracy,
the use of multi-modal attention could not significantly com-
pensate for the structural uncertainty in causal scenarios.

Fig. 11. Normalized confusion matrix on the RARP-45 test set.

Fig. 12. Per-class F1-scores on the RARP-45 test set.

D. Results on RARP-45

We performed acausal experiments on the RARP-45 dataset
to evaluate our network’s performance in a more challenging
real-case scenario. As reported in Table V, MA-TCN outper-
forms all the baselines in accuracy and F1@10 score on the
test set.

Fig. 10 shows examples of MA-TCN prediction outputs
before fine-tuning and corresponding attention weights, high-
lighting successful and unsuccessful modality integration. As
represented in the normalized confusion matrix (Fig. 11),
a relevant percentage of the prediction errors falls at the
gesture boundaries, where manual annotations are generally
less accurate. Less frequent gestures such as G1 and G6
are sometimes missed and integrated into their temporally
proximal segments (G0, G2 or G4 for G1, G4 or G7 for
G6). Gesture G5 is recognized very well, but it only appears
in a single test sequence. More data are needed to mitigate
such strong class imbalance and perform robust training and
evaluation.

Multimodal per-class F1-scores (Fig. 12) outperform both
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modalities for almost all classes. The visual stream is in most
cases less robust than the kinematic stream, but the integration
of low-level feature extraction through end-to-end training
could partially compensate for the gap in performance.

VI. CONCLUSION

In this paper, we investigated using multimodal attention
mechanisms to aid training of a two-stream network for sur-
gical gesture recognition and achieve effective sensor fusion.
The contribution of robot kinematics and visual information
is balanced dynamically in time based on individual predic-
tive power, resulting in combined prediction sequences with
higher accuracy and better temporal structure. Visualization
of attention weights also gives physically interpretable insights
on network understanding of strengths and weaknesses of each
sensor and modality.

Unlike related work, we tested our system on suturing
demonstrations from real surgical interventions, where the
complexity of the surgical environment and larger number
of noise sources and variability factors makes fine-grained
analysis and multimodal fusion particularly challenging. This
is especially valuable for surgical-data-science translational
research and for understanding the utilization of gesture recog-
nition systems on real surgical data.

Method improvement is however needed to compensate
for strong class imbalance in the available datasets, affecting
the detection of infrequent classes, and to improve overall
recognition accuracy on real surgical data, which is currently
far from deployability levels. More real surgical data will
also be collected to mitigate the problem, including different
surgical phases (e.g. urethrovesical anastomosis) to introduce
contextual data variability.

Surgical action characterization and definition of unam-
biguous gesture dictionary is another open problem itself
[44], especially for bimanual operations. Available datasets
like JIGSAWS have treated surgical demonstrations as single-
action sequences peformed by either robotic arm, ignoring the
motion of the other arm. While this allows for faster labelling
and simpler recognition models, it creates uncertainty when
different gestures are performed simultaneously. In future
work we aim to resolve such ambiguity with multi-label
analysis and parallel recognition of right and left gestures,
which is burdensome but more accurate and can account for
action compositions [6]. Robust understanding of bimanual
workflow and cooperation can help assessing surgical skill
and is fundamental to achieve automation of complex action
sequences in real surgical scenarios. Annotation variability
studies based on multiple observers will also be performed
to assess annotation accuracy and harmonize label sequences.

Beyond its limitations, the method also offers various
possibilities of expansion and improvement. Similar attention
modules could be placed on top of different layers to achieve
adaptive sensor fusion at multiple abstraction levels. New data
streams could also be added to enrich action representation
and explore more complex multimodal interactions, using
either new sensors (e.g. system event information) or new
data streams automatically derived from available data (e.g.

optical flow, semantic visual features, separated right and left
instrument kinematics).

Future work will be finally aimed at integrating low-level
visual feature extraction through end-to-end training, which is
generally difficult on small datasets like JIGSAWS, as well as
exploring similar attention mechanisms in the spatial [45] and
temporal [26] domains.
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