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Abstract— Macrovascular invasion (MaVI) is a major
threat to survival in hepatocellular carcinoma (HCC), which
should be treated as early as possible to ensure safety
and efficacy. In this aspect, MaVI prediction can be helpful.
However, MaVI prediction is difficult because of the inter-
class similarity and intra-class variation of HCC in com-
puted tomography (CT) images. Moreover, existing methods
fail to include clinical priori knowledge associated with
HCC, leading to incomprehensive information extraction.
In this paper, we proposed a prior knowledge-aware fusion
network (PKAFnet) to accurately achieve MaVI prediction
in CT images. First, a perception module was presented
to extract features related to tumor marginal heterogene-
ity in the graph domain, which contributed to rotation
invariance and captured intensity variations of tumor mar-
gin. Second, a tumor segmentation network was built to
obtain global information of a 3D tumor image and infor-
mation associated with tumor internal heterogeneity in the
image domain. Finally, multi-domain features associated
with the tumor margin and tumor region were combined
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by using a multi-domain attentional feature fusion module.
Thus, by incorporating MaVI-related prior knowledge, our
PKAFnet can alleviate overfitting, which can improve the
discriminative ability. The proposed PKAFnet was validated
on a multi-center dataset, and remarkable performance
was achieved in an independent testing set. Moreover,
the interpretability of perception module and segmentation
network were presented in our paper, which illustrated the
effectiveness and credibility of PKAFnet. Therefore, the
proposed method showed great application potential for
MaVI prediction.

Index Terms— Hepatocellular carcinoma, macrovascular
invasion prediction, prior knowledge, multi-domain fusion,
rotation invariance.

I. INTRODUCTION

L IVER cancer has high malignancy, and it has high
incidence and mortality worldwide [1]. Pathologically,

hepatocellular carcinoma (HCC) counts for 70% to 85% of
liver cancer [1]. For HCC, macrovascular invasion (MaVI) is
a major threat to survival, which can cause rapid deterioration
and preclude further treatments [2]. Thus, it should be treated
as early as possible [3]. Unfortunately, although current meth-
ods can easily identify existing MaVI, predicting future MaVI
is still a clinical challenge. The lack of precise prediction of
future MaVI may cause two problems: first, we may fail to
preform closer follow-ups for the high-risk population, which
may delay treatments; second, we may be unable to explore
whether early combination with immunotherapy can prevent
future MaVI, which is suggested by researchers [4]. Thus,
besides identifying existing MaVI, predicting future MaVI is
necessary to ensure early intervention.

Given its wide availability and short acquisition time, com-
puted tomography (CT) is reliable for MaVI diagnosis [5].
However, MaVI prediction using conventional visual inter-
pretation of CT remains a challenge primarily because of
the following two reasons: first, HCCs with similar appear-
ance in CT images have different outcomes (i.e., inter-class
similarity, Fig. 1). Figs. 1 (a) and (c) show relatively scat-
tered and small necrosis areas and relatively smooth tumor
margins, whereas Figs. 1 (b) and (d) show evident necrosis
areas, which are large and relatively concentrated. Second,
HCCs with different visual interpretations have similar out-
comes (i.e., intra-class variation). Compared with Fig. 1 (b),
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Fig. 1. All the four patients have no MaVIs at diagnosis, where
green curves represent tumor contours. (a) and (b) show patients with
subsequent MaVIs during follow-ups, whereas (c) and (d) display HCC
patients without subsequent MaVI. (a) vs. (c) and (b) vs. (d) present high
inter-class similarity, whereas (a) vs. (b) and (c) vs. (d) show high intra-
class variation.

Fig. 1 (a) shows a more incomplete capsule, more typical
mosaic architecture, and less necrosis areas. Compared with
Fig. 1 (c), Fig. 1 (d) presents great difference in tumor size, and
it has evident necrosis areas. In addressing these challenges,
some existing methods have been proposed to explore the
abstract CT imaging features and predict MaVI. For example,
Wei et al. [6] developed and validated a radiomic method with
CT images to preoperatively predict MaVI, which showed
that high-dimensional features extracted from CT images were
informative. Recently, Wei et al. [7] combined clinical and
radiomic features extracted from CT images for preoperative
MaVI prediction, which suggested that clinical experience and
image information were useful features for MaVI prediction.
Although promising prediction results were achieved by using
traditional radiomic features [6], [7], this kind of features is
hand crafted, simple, and presentative, and thus traditional
radiomic features are insufficient to represent the image infor-
mation [8]. In exploring the image information, deep learning
methods can be used to extract the informative features from
images, which is a potential tool for MaVI prediction.

Among the deep learning methods, convolutional neural
network (CNN) is widely used in image classification
[9]–[11]. However, using CNN to locate the key position
related to the prior knowledge of the task is difficult because
the output of the last convolutional layer is fed into a pooling
layer to obtain the features that can be used to represent the
whole image in the CNN for classification [12]. In a previous
study, we have demonstrated that two kinds of information
are highly correlated with vascular invasion in HCC: one
is related to tumor marginal heterogeneity, such as invasive
shape, HCC capsule, and corona enhancement (Fig. 2 (a));
the other is associated with tumor internal heterogeneity,
such as mosaic architecture, nodule-in-nodule architecture,
and necrosis (Fig. 2 (b)) [13]. Therefore, incorporating priori
knowledge related to tumor margin and tumor region into the
neural network is crucial to automatically exploit deep features
for MaVI prediction.

In this study, a prior knowledge-aware fusion network,
referred to as PKAFnet, is presented to combine tumor mar-
ginal and internal heterogeneity information for MaVI predic-
tion. First, a 2.5D-based graph convolution network (GCN)
is used as a specific perception module for feature extrac-
tion of tumor marginal heterogeneity in the graph domain,

Fig. 2. All the four patients have no MaVIs at diagnosis, where
green curves represent tumor contours. (a) and (b) show patients
with subsequent MaVIs during follow-ups, whereas (c) and (d) display
HCC patients without subsequent MaVI. (a) Corona enhancement and
invasive shape are shown, which are indicated by yellow arrows with
1 and 2, respectively. (b) Mosaic architecture is presented within the
tumor region, and nodule-in-nodule architecture (indicated by a yellow
arrow with 3) and evident necrosis (indicated by a yellow arrow with
4) are shown. (c) HCC (indicated by a yellow arrow with 5) with a smooth
margin and complete capsule. (d) HCC (indicated by a yellow arrow with
6) without necrosis, mosaic architecture, and nodule-in-nodule
architecture.

where rotation invariance and pixel relationships among tumor
margin are incorporated into the deep learning framework
to extract useful features from the tumor margin. Second,
a tumor segmentation-based CNN network is adopted to
exploit important features associated with tumor internal het-
erogeneity in the image domain. Therefore, the features related
to tumor marginal and internal heterogeneity can be obtained
from the graph and image domains, respectively. Moreover,
a multi-domain attentional feature fusion module, namely,
MdaFF, is used to combine these multi-domain features for
MaVI prediction. Thus, an end-to-end network can be built to
comprehensively extract image information related to tumor
marginal and internal heterogeneity. The contributions of this
work are as follows:

• We introduced PKAFnet for accurate MaVI prediction,
where crucial features related to tumor marginal and
internal heterogeneity were exploited and combined by
using a self-attention module to provide a comprehensive
description of the tumors. Based on previous reports,
MaVI prediction has yet to be systematically investi-
gated while incorporating deep learning frameworks to
exploit variations among tumor margin and tumor region.
Therefore, the proposed method may provide a new way
to capture tumor-related image variations of MaVI and
achieve improved prediction performance for MaVI.

• We proposed a novel GCN-based perception module
to explore information of tumor marginal heterogeneity.
By extracting the tumor margin and building it as a graph,
GCN can utilize translation and rotation invariance within
the extracted tumor margin region of interest (ROI).
Moreover, GCN can be used to exploit spatial correlation
among pixels and extract crucial features from the tumor
margin.

• The proposed method was evaluated on a multi-center
clinical dataset, which contained 374 patients with HCC
collected from five hospitals. The proposed method
was trained on patients from four out of five hospi-
tals and tested on patients from the remaining hospital.
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Moreover, good prediction performance was achieved by
using the proposed method, which demonstrated that
important information can be extracted from the HCC
images, and thus good generalization can be obtained.

II. RELATED WORK

A. Information Exploration for Tumor Classification

Similar to MaVI prediction, information related to lesion is
relatively crucial in lesion classification. Considerable research
has been proposed to explore information on lesion classifica-
tion. Zhou et al. [9] presented a multi-task learning method,
which included tumor classification and tumor segmentation
tasks, to achieve high tumor classification accuracy. The extra
task of tumor segmentation can make the CNN focus on the
tumor region and distinguish the intensity variations within
the tumor region, which is beneficial to extract information
related to tumor internal heterogeneity by using the CNN [14].
Liu et al. [10] proposed a Siamese network architecture with
a margin ranking loss to capture the heterogeneity of lung
nodules, which showed good performance in distinguishing the
positive and negative samples. Moreover, Afshar et al. [11]
used a coarse lesion mask, which was generated by a seg-
mentation network, as an extra input to increase network’s
attention on the lesion region and achieve good lung nodule
classification performance. Although potential information of
tumor internal heterogeneity can be discovered by using these
methods [9]–[11], [14], variant information related to tumor
marginal heterogeneity may be ignored because verifying
whether the network accurately concerns on the tumor margin
is difficult. Hence, making the network focus on the tumor
margin is an important research direction.

B. Rotation Invariance

Rotation invariance is a desired property of machine learn-
ing methods for medical image analysis [15]–[18]. Most of
the existing research developed for rotation invariance of
medical images can be roughly grouped into two categories.
The first category is to modify the operation of the standard
convolution to ensure that the features with rotation invariance
can be extracted by the modified convolution. For example,
Andrearczyk et al. [15] used steerable filters to replace stan-
dard filters in the CNN to classify benign and malignant pul-
monary nodules. Lafarge et al. [16] used a special Euclidean
motion group convolution layer to replace the standard con-
volution layer for multi-organ nuclei segmentation. Although
some rotation invariances can be learnt by incorporating these
novel filters into the CNN, rotation invariant performance
cannot be naturally exhibited in the CNN [19]. The second
category is to modify the network inputs to obtain features
with rotation invariance. For example, Ebrahim et al. [17]
adopted data augmentation with rotation in the training stage
and made the network learning rich information from rotating
data. Moreover, Zhu et al. [18] proposed a self-supervised
learning by splitting a 3D image to many sub-cubes and
applying cube orientation to extract deep features with rotation
invariance. Rotation invariance can be included in the CNN by

Fig. 3. (a) Cropped HCC CT image, where HCC is indicated by a
red curve. (b) Cropped CT image obtained from (a) with 180◦ rotation.
(c) Extraction of the tumor margin area. (d) Extraction of intensity profiles.
(e) Construction of the proposed tumor margin ROI. When HCC is
rotated 180◦, the same tumor margin ROI is obtained. Therefore, rotation
invariance is incorporated into tumor margin ROI. However, spatial
locations of pixels A and B in (c) are damaged within the extracted
ROI in (e).

using data augmentation, but few studies incorporated rotation
invariance directly into the data as their characteristics.

The abovementioned research has demonstrated the effec-
tiveness of using rotation invariance for medical image analy-
sis. In this paper, a tumor margin extraction method proposed
in our previous study [20], which extracted intensities of some
pixels within the tumor to outside of the tumor and arranged
all of these pixels as a ROI, was introduced to extract features
related to tumor marginal heterogeneity and incorporate rota-
tion invariance into the proposed method (Fig. 3). However,
information of spatial location will be lost within the extracted
ROI because the tumor margin area (Fig. 3 (c)) is reshaped to
be a rectangle (Fig. 3 (e)). As illustrated in Fig. 3 (c) and (e),
spatial locations of pixels A and B are damaged. The CNN
is skilled in exploiting the relationships of spatial locations
among image pixels, and thus the CNN may be unsuitable for
data whose spatial location is damaged. Although the spatial
location information is lost within the tumor margin ROI,
the spatial connection of the tumor margin is retained. The
tumor margin can be constructed into a graph to utilize the
spatial connection, and the spatial connection of the tumor
margin can be preserved. Different from the CNN, the GCN
is an advanced tool for dealing with graph-structured data.
Furthermore, compared with the CNN, the GCN contains
rotation invariant behavior in computer vision [19]. Therefore,
the GCN can be used to extract the deep features from the
graph constructed by the tumor margin, which can retain the
spatial connections and utilize rotation invariance.

C. Feature Fusion

As the features extracted from different parts have diverse
contributions to the final prediction performance, many useful
feature fusion methods have been presented to automatically
fuse features from multi-parts and enhance the performance
of image classification [21]–[23]. Majumder et al. [21] imple-
mented a context-aware bimodal feature fusion by gradually
aggregating the features extracted from multiple modalities,
which can filter out conflicting or redundant information
obtained from different modalities. Chen et al. [22] fused
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Fig. 4. Overview of the proposed PKAFnet for MaVI prediction.

histopathology and genomic features using Kronecker Prod-
uct, which could capture the interactions of inter-modalities.
Zhu et al. [23] parallelly used different pooling operators to
generate different feature weights and achieve additive atten-
tion for the fusion of multi-instance features, which can
consider the specific weights of multi-instance features.

Although the abovementioned feature fusion methods
have achieved good performance, two key issues must be
addressed to improve performance. The first key issue is inter-
correlations among features extracted from different parts.
Different information can be provided from different inputs
or modalities, which may be complementary and potentially
redundant. Therefore, exploring a strategy that can further
identify inter-correlation of features extracted from different
parts is necessary. The second key issue is calculation errors
within feature fusion. Considering that learning fusion weights
in feature fusion is an important step in decision-making, the
calculation errors of feature fusion should be considered in
weight learning. Therefore, a method to reduce the calculation
errors in feature fusion should be proposed.

Transformer is designed to explore the correlation of long-
range sequences, learn the expressive representations, and
reduce the calculation errors by using a multi-head mech-
anism [24]. It has been introduced to image analysis and
replace the convolution operator, which achieves excellent
performance [25]. In this paper, we proposed a transformer-
style feature fusion module, namely, multi-domain attention
feature fusion module (MdaFF), to effectively explore the
synergy and correlation of multi-domain features and reduce
the calculation errors during feature fusion.

III. METHOD

The overview of the proposed PKAFnet is illustrated in
Fig. 4, which consists of three modules for accurate MaVI
prediction. The first perception module is used to extract

features related to tumor marginal heterogeneity (Fig. 4 (a)).
The second segmentation module is applied to explore features
associated with tumor internal heterogeneity (Fig. 4 (b)). The
third MdaFF module is adopted to effectively combine features
extracted from the tumor margin and tumor region (Fig. 4 (c)).
The details of the proposed PKAFnet are provided in the
following subsections.

A. Perception Module for Feature Extraction
of Tumor Margin

1) Extraction of Tumor Margin ROI: A clever strategy is
introduced for the extraction of the tumor contour (red curve
in Fig. 3 (a)) to effectively extract features related to tumor
marginal heterogeneity and incorporate rotation invariance into
the deep learning network. Given a 2D tumor image, the pixels
of the tumor margin are initially extracted. In details, the
contours of the tumor margin were smoothened by a Gaussian
filter to prevent noise disturbance, which can be denoted as
follows:

X̂ = X ∗ G1D(0, ξ), Ŷ = Y ∗ G1D(0, ξ) (1)

where G1D(·) is the 1-dimensional convolution kernel with
zero means, and ξ is the standard deviation. (X, Y ) ∈
{(xi , yi )}i=1···nr

are the original coordinates of the pixels of
the tumor contour, where nr is the pixel number of the tumor
contour for the r th subject. (X̂ , Ŷ ) ∈ {(

x̂i , ŷi
)}

i=1···nr
are the

coordinates smoothened by using the Gaussian filter. Then, for
each pixel of the tumor contour, the pixels along the normal
of tumor contour are sampled from inside to outside of the
tumor to extend the receptive field of the tumor margin. The
angles of the normal of tumor contour are calculated by using

θi = arctan
(
ŷi/x̂i

)
(2)
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Using the angle θi , the coordinates of the pixels along the
normal of tumor contour for the i th pixel are denoted by

x̃i j = x̂i + li j × cos θi , ỹi j = ŷi + li j × sin θi (3)

where j = 1, . . . , q , q is the pixel number along the normal
of tumor contour, and li j is the distance between the i th pixel
of the tumor contour and the j th pixel along the normal of
tumor contour. For a given coordinate

(
x̃i j , ỹi j

)
, the pixels

number of tumor margin may not be the same as that shown
in the image; thus, linear interpolation is implemented to
extract the corresponding pixel in the image. Using these
procedures, the pixels along the normal of tumor contour
can be sampled, and intensities of the sampled pixels can be
extracted as an intensity profile for each pixel of the tumor
contour. Finally, the intensity profiles of all pixels of the tumor
contour are paralleled to form a tumor margin ROI V ∈ R

nr ×q

and represent the tumor marginal heterogeneity (Fig. 3).
2) Graph Construction for Tumor Margin ROI: Clinically,

tumor sizes vary from different patients, and thus the sizes
of tumor margin ROIs vary from different tumors. If CNN
is used to analyze the ROIs with varied sizes, then ROI
interpolation is required to standardize the inputs into similar
sizes for the CNN. In this process, noise may be introduced,
which can decrease classification accuracy. In addressing this
disadvantage of the CNN, a graph can be constructed on the
extracted tumor margin ROI, whose spatial connection can
be retained. Moreover, the GCN can be subsequently applied
on the constructed graph to exploit crucial features related to
tumor marginal heterogeneity.

The tumor margin ROI extracted from each 2D slice image
can be built as a graph G = (V, E), where V and E represent
the nodes and edges, respectively. For a pixel of the tumor
contour, its corresponding intensity profile can be regarded
as a node representation of the graph. Moreover, the spatial
connection of the tumor contour can be used to construct the
edge of each node. Based on the relationships among pixels of
the tumor contour, an edge exists if two nodes are connected
directly, which is set to 1 or 0. Using the constructed nodes
and edges, the tumor margin ROI extracted from each slice
can be built as a graph, which contains important information
of the tumor margin and retains the inherent spatial connection
of the tumor contour.

3) 2.5D-Based ResGCN for Feature Exploration of Tumor
Margin: In general, radiologists use the axial, coronal, and
sagittal views of a 3D CT image to comprehensively ana-
lyze tumor information within the 3D image (Fig. 4) [26].
In particular, three 2D images can be extracted from three
views and combined as a 2.5D image to approximate the
3D image [26]. Therefore, a 2.5D method is used to extract
adequate information of the tumor margin from a 3D image.
For each view of the 3D CT image, only the slice with the
largest tumor area is used to extract information from tumor
margin ROI for graph construction. The 2.5D method can
not only extract sufficient pixels from the tumor margin, but
also reduce redundant information within all slices of a 3D
image, which provides a comprehensive description of the
tumor margin region.

For 2D images in each of the three views, tumor margin
ROIs of the 2D images are extracted, and then graphs of
the tumor margin ROIs are constructed. A residual GCN,
namely, ResGCN, is built for 2D images in each view to
extract crucial features from the constructed graphs, and thus
three ResGCN networks with shared parameters are built.
In particular, GraphSAGE [27] and residual modules [28]
are included in the proposed ResGCN, where Resnet18 is
used as the backbone. Specifically, the number of channels
in ResNet18 from the first to fourth blocks are 64, 128,
256, and 512, respectively. GraphSAGE, a widely used type
of GCN, is introduced with local neighborhood sampling,
aggregation, and combination for inductive node embedding,
whose computation and memory complexity are constrained
with regard to the size of a graph [27]. Therefore, Graph-
SAGE was used in this study to address the large graph
size. In addition, residual module [28] is used to explore the
deep features and address gradient disappearance caused by
a deepening network. Moreover, the detail structure of the
proposed ResGCN is shown in Fig. 4. The features extracted
from three ResGCN with shared parameters can be presented
as follows:

ft = ResGCN (Gt ) (4)

where Gt is the graph built from the t th view, { ft }3
t=1 ∈ R

1×dt

are deep features extracted by using ResGCN of the tth view
in the graph domain, and dt is the dimension of the extracted
features.

B. Segmentation Network for Exploration of Tumor
Internal Heterogeneity

In the proposed framework, a MaVI prediction (i.e., clas-
sifying patients into with or without subsequent MaVI during
follow-ups) is combined with a tumor segmentation task
to explore tumor internal heterogeneity. In particular, a 3D
Unet-like architecture, which contains a SE-Resnet50-based
encoder [29] and a decoder, is used as a subnetwork in
the proposed framework for tumor segmentation. A squeeze-
and-excitation (SE) module is proposed to obtain expres-
sive representations by explicitly modelling the correlations
among the channels of its convolutional features. Therefore,
a SE-Resnet50-based network is selected as the encoder of
Unet to embrace the advantages of the residual and SE module
in the proposed method. The encoder is regarded as a feature
extractor, and the decoder is used to locate and classify the
voxels. With the guidance of the decoder, the encoder will
pay attention to the target region of a segmentation task.
In this study, the segmentation target is the tumor region; thus,
important information related to tumor internal heterogeneity
from the tumor region can be well explored, and deep features
can be extracted by using the encoder for the following
classification task. The outputs of UNet can be presented as
follows:

[ f1, f2, f3, f4, f5] = Encode (I )

U = Decode ([ f1, f2, f3, f4, f5]) (5)
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where Encode(·) and Decode(·) respectively represent the
functions of the encoder and decoder in the UNet.
I ∈ R

C×D×H×W is the input of UNet, where C , D, H , and
W are the channel number, depth, height, and width of the
input image, respectively. Skip connection was also used in

the proposed method. Thus, fi ∈ R
di× D

2i × H
2i × W

2i (the output
of Encode(·)) is a list of features of different scales, where
i = 1, . . . , 5, and di is the channel number of fi in the
i th block (Fig. 4 (b)). U ∈ R

M×D×H×W is the estimated
probability of tumor segmentation, where M is the segmen-
tation channel of liver tumor (including two classes: 0 for
background and 1 for liver tumor). Moreover, global average
pooling (GAP) is implemented on f5 to utilize the extracted
features from the encoder.

f p = GAP( f5) (6)

where f p ∈ R
1×d5 is the deep features that include important

information of tumor internal heterogeneity in the image
domain, which will be applied in the following feature fusion.

C. MdaFF Module for Fusion of Multi-Domain
Deep Features

In utilizing the multi-domain deep features extracted from
the tumor margin and tumor region by using the 2.5D-based
ResGCN and 3D ResUnet, respectively, a transformer-style
MdaFF module is implemented, which is used to fuse the
multi-domain features and preserve useful information gen-
erated from different subnetworks. Inspired by the idea of
transformer [24], the proposed MdaFF module also consists of
a scaled dot-product attention and a multi-head attention. The
proposed MdaFF module captures correlations among multi-
domain features of different subnetworks and adaptively learns
the weights of multi-domain features; thus, this module can
well fuse the multi-domain features for decision-making.

1) Scaled Dot-Product Attention: Before performing feature
fusion, the deep features { ft }3

t=1 and f p generated from four
subnetworks (i.e., three 2D ResGCNs and a segmentation
subnetwork) are first mapped into a unified feature space, and
then the mapped features are concatenated to form the multi-
domain features L ∈ R

s×d , where s and d are the subnetwork
number and feature dimension, respectively. Subsequently,
L is translated to query Q ∈ R

s×dk , and key-value pairs
K ∈ R

s×dk and V ∈ R
s×dv by using three projection matrices

(i.e., W Q ∈ R
d×dk , W K ∈ R

d×dk , and W V ∈ R
d×dv ), where

dk and dv are the feature dimensions of projection matrices
(dk = dv = d/4 ). Finally, the output of the self-attention is a
scaled dot-product, which can be formulated as follows:

Attention(Q, K , V ) = softmax
(

QK T /
√

dk

)
V (7)

In the MdaFF module, multi-domain features can be auto-
matically weighted and fused by using the scaled dot-product
attention, which conduces to explore the correlation of multi-
domain features.

2) Multi-Head Attention: Considering that performing a sin-
gle attention function may lead to calculation error, a parallel
multi-head attention strategy is implemented on the MdaFF
module. First, L is translated to Qi , Ki , and Vi by h times with

different projection matrices (W Q
i ∈ R

d×dk , W K
i ∈ R

d×dk ,
W V

i ∈ R
d×dv , i = 1, . . . , h), which are recoded as heads.

Second, all heads are fed into a scaled dot-product attention
for parallel calculation. Finally, the outputs of the self-attention
from all heads are concatenated for final projection by using
W O ∈ R

(hdv )×d , which can be defined as follows:
fm = Concat (head1, . . . , headh) W O (8)

where headi = Attention(Qi , Ki , Vi ), and fm ∈ R
s×d is the

fused features by using the MdaFF module. In the MdaFF
module, multi-head attention can be used to generate precise
fusion features for decision-making. Then, fm is reshaped to a
vector fv ∈ R

(sd)×1 followed by a fully connection layer and
a non-linear activation function; thus, the final classification
prediction can be defined as follows:

p = σ
(
W c fv

)
(9)

where W c ∈ R
1×(sd) is the weights of the fully connection

layer; σ (·) is a sigmoid activation function, and p ∈ [0, 1] is
the estimated probability of the classification network.

D. Loss Function

Our proposed method is a multi-task learning framework,
including MaVI prediction and tumor segmentation tasks.
Moreover, the MaVI prediction task can be regarded as a
classification task (i.e., classifying patients into with or without
subsequent MaVI during follow-ups). Therefore, the total loss
function consists of two parts, including a classification loss
Lclass for tumor classification and a segmentation loss Lseg

for tumor segmentation.

Ltotal = Lclass + Lseg (10)

1) Classification Loss Function: Classification loss Lclass

consists of a focal loss L f ocal [30] and a margin ranking loss
Lmr [10], which can be defined as follows:

Lclass = L f ocal + Lmr (11)

As listed in Table I, MaVI prediction suffers from class
imbalance issue in this study. In addressing this issue, focal
loss, which can alleviate class imbalance and improve the
ability to distinguish difficultly classified samples, is applied
as part of classification loss in this study:

L f ocal = 1

N

N∑
i=1

−α (1 − p)γ log (p) (12)

where α ∈ [0, 1] and 1 − α are the weighting factor for
class 1 and class 0 in class imbalance, respectively, which are
adjusted on the basis of the ratio between positive and negative
samples; γ is the focusing parameter to smoothen the weights
of difficultly classified samples, and N is the training number.

The margin ranking loss is implemented to capture the
differences between positive and negative samples, which can
be defined as follows:

Lmr = 1

2N

N∑
i=1, j=1

max
(
0, ϕ − δ

(
pi , p j

) × (
ci − c j

))
(13)
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TABLE I
SUBJECT NUMBER (WITH/WITHOUT SUBSEQUENT

MAVI) IN DIFFERENT HOSPITALS

where ci ∈ [0, 1] and c j ∈ [0, 1] denote the ground truth of
the classification task for the i th and j th samples, respectively.
pi and p j are the estimated probabilities of the network for the
i th and j th samples, respectively. ϕ is the margin parameter.
δ (·) is the indicator function, which can be defined as follows:

δ
(

pi , p j
) =

{
1 pi ≥ p j

−1 pi ≤ p j
(14)

All paired samples are calculated on a min-batch for every
iteration to simply implement the margin ranking loss.

2) Segmentation Loss Function: Segmentation loss Lseg

consists of a cross-entropy loss Lce and a dice loss Ldice,
which are useful loss functions in image segmentation [31],
and it can be formulated as follows:

Lseg = λLce + (1 − λ)Ldice (15)

Lce = 1

N DH W

N∑
i=1

DW H∑
k=1

− log (μk) (16)

Ldice = 1

N

N∑
i=1

(
1 − 2

∑DW H
k=1 μkvk∑DW H

k=1 μk + ∑DW H
k=1 vk

)
(17)

where λ is used to balance the effects of Lce and Ldice , and
μk ∈ U and vk ∈ V are the estimated probability and ground
truth of the kth voxel, respectively. V ∈ R

M×D×H×W is the
ground truth of tumor segmentation.

IV. EXPERIMENTAL RESULTS

In this section, we presented the studied materials, imple-
mentation settings, and experimental results of the proposed
method for MaVI prediction on a multi-center clinical dataset.
Moreover, we implemented our network by using PyTorch
and performed all experiments on a server with one NVIDIA
GeForce 2080Ti GPU.

A. Materials

The CT scans of HCC used in the proposed method
were collected from five Chinese hospitals: Nanfang Hos-
pital (Hospital 1), Yangjiang People’s Hospital (Hospital 2),
Zhuhai People’s Hospital (Hospital 3), Zhongshan City Peo-
ple’s Hospital (Hospital 4) and Shenzhen People’s Hospital
(Hospital 5). The sample number and CT parameters obtained
from different hospitals are listed in Tables I and II, respec-
tively. All of the samples were diagnosed of HCC between
April 2007 and November 2016, and they were followed
up until December 2019. Only those who met the following
conditions were accepted: 1) HCC was diagnosed clinically
or pathologically; 2) CT images were recorded at the time of

diagnosis; 3) patients were initially treated by liver resection,
transarterial chemoembolization, or ablation as recommended
by the guidelines; 4) no extrahepatic metastasis or MaVI was
identified during diagnosis; 5) subsequent MaVI was identified
during follow-ups or no subsequent MaVI for at least 1 year
was identified unless death occurred.

This retrospective study was approved by the Ethics Review
Committee of the Zhuhai People’s Hospital and written
informed consent was waived for its retrospective design.
All patients’ data were anonymized before analysis.

The liver tumor and liver region in CT scans were manually
outlined by radiologists for every patient, where the manually
outlined tumor contours were used for the extraction of
tumor margin ROIs. Radiologists can better identify the HCC
capsule in the portal phase than in the arterial phase [32],
which may influence the segmentation accuracy; hence, tumor
segmentation was performed in the portal phase. According
to the modified response evaluation criteria in solid tumor
assessment [33], one target lesion was used for segmentation
depending on the longest diameter and suitability when mul-
tiple lesions were presented.

The determination of MaVI was based on the typical CT
findings: enhancement of arterial phase imaging, expanding
vessel, and/or direct extension into the vasculature [34].
All MaVIs were assessed independently by two radiologists
(Sirui Fu and Jie Zhang), who have 10 years of work
experience. When disagreement occurs, a third radiologist
(Ligong Lu with over 20 years of working experience) per-
formed another independent assessment. The final result was
made according to the agreement of at least two of the three
radiologists.

Patients from one hospital were used as an independent
testing set to verify the performance of PKAFnet. The patients
in the remaining four hospitals were combined as a training
set to train and tune the network. All of the samples were pre-
processed as follows. First, the intensity values of CT scans
were truncated to the range of [−17, 201] HU to eliminate
disturbance of irrelevant information, which was obtained by
using the intensity values at 0.5% and 99.5% of the histogram
of the voxels within the tumor areas in the training set. Second,
the mean and deviation of the training set were calculated, and
all samples in the training and testing sets were standardized
by subtracting the mean and dividing the deviation. Third,
the multi-center dataset has the same in-plane resolution of
0.645 mm but different slice spacing from 1 mm to 5 mm.
Therefore, all CT scans were resampled to the medium res-
olution (i.e., 3 mm) of the five centers by using bilinear
interpolation. Following these pre-processed steps, three slices
with the largest tumor area were selected from three views,
which can be used to extract tumor margin ROIs and build
graphs, and the graphs can be used as inputs of the ResGCNs.
Furthermore, for the input of the segmentation subnetwork,
only the liver and liver tumor region were retained in the 3D
CT scans, and all CT scans were resized to 160 × 160 × 160.

B. Experimental Setup

In MaVI prediction experiments, four out of five hospitals
were selected as the training set (total 333 subjects), whereas
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TABLE II
CT PARAMETERS IN DIFFERENT HOSPITALS, WHERE PB, SSDF, TK, TC, RT, DC, FOV, PM, PSH, FST, AND ST RESPECTIVELY DENOTE

PHILIPS BRILLIANCE, SIEMENS SOMATOM DEFINITION FLASH, TUBE VOLTAGE, TUBE CURRENT, ROTATION TIME, DETECTOR

COLLIMATION, FIELD OF VIEW, PIXEL MATRIX, FILTER SHARP, FILTER STANDARD, AND SLICE THICKNESS

the one remaining hospital was selected as the independent
testing set (total 41 subjects). Moreover, a fivefold cross-
validation strategy was used in the training set to select the
best hyperparameters. All subjects within the training set
were divided into five subsets with the same proportion of
each class label. One of the five subsets was successively
selected as a validation set for each run of the fivefold cross-
validation to optimize hyperparameters and prevent overfitting,
and the four remaining subsets were combined for model
training. Finally, the best hyperparameters were obtained, and
the model with the best hyperparameters was retrained on the
entire training set for testing on the independent testing set.
Specifically, the aforementioned strategy was applied in all
experiments in this study for a fair comparison. For extraction
of tumor margin ROIs, pixel number along the normal of
tumor contour q was set to 31 unless otherwise specified. For
the Unet, the channel number C , the segmentation number
M , depth D, height H , and width W were set to 1, 1, 160,
160, 160, respectively. For the MdaFF module, the unified
dimension d and the head number h were set to 1024 and 4,
respectively. For the loss function, γ , λ, and α were set to 2,
0.6, and 0.8, respectively, in the experiments. In the training
stage, stochastic gradient descent with momentum was used
as the optimizer, whose learning rate, batch size, and hyper-
parameter of momentum were 0.001, 4, and 0.9, respectively.
Some simple online data augmentation operators, including
random flipping, rotating, zooming, and Gaussian noise, were
used on the training set to alleviate overfitting. Codes are
available at https://github.com/Meiyan88/PKAFnet.

Severe class imbalance was observed in the MaVI dataset;
thus, area under the receiver operating characteristic curve
(AUROC), area under the precision recall curve (AUPRC),
balance accuracy (BACC), weighted F1 score (W-F1), sensi-
tivity (SEN) and specificity (SPE) were adopted as the quan-
titative metrics to assess the prediction performance, which
have been proven effective in addressing class imbalance
problem [35]–[37].

Equations (18)-(25) were used to calculate the aforemen-
tioned metrics, where TP, TN, FP, and FN were regarded as
true positive, true negative, false positive, and false negative
values, respectively. In calculating AUROC, we first defined
the receiver operating characteristic curve (ROC), which used
the values of true positive rate (18) as the y-axis and values
of false positive rate (19) as the x-axis. Then, AUROC can be
obtained by calculating the area under the ROC. Similarly, in

achieving AUPRC, we first defined precision recall curve
(PRC), which used the precision values (20) as the y-axis and
recall values (21) as the x-axis. Subsequently, AUPRC can be
achieved by calculating the area under the PRC. Moreover,
SEN, SPE, BACC, and W-F1 can be calculated by using
(18), (21), (22) and (23), respectively. Specifically, Youden
index [38] was applied on the training set to achieve the
threshold of high- and low-risk populations. With the achieved
threshold, samples with predicted probabilities higher than the
threshold were defined as high-risk population (i.e., predicted
positive), otherwise, the samples were defined as low-risk
population (i.e., predicted negative). Therefore, TP, TN, FP,
and FN can be determined, respectively, for the calculation of
SEN, SPE, BACC, and W-F1.

TPR = recall = SEN = TP

TP + FN
(18)

FPR = FP

TP + FP
(19)

precision = TP

TP + FP
(20)

SPE = TN

TN + FP
(21)

BACC = SEN + SPE

2
(22)

W-F1 = PS × F1PS + NS × F1NS

PS + NS
(23)

where PS and NS are the number of positive and negative
samples on the independent testing set, respectively. F1PS and
F1NS can be defined as follows:

F1PS = 2 × TP

2 × TP + FP + FN
(24)

F1NS = 2 × TN

2 × TN + FP + FN
(25)

In our MaVI dataset, the number of negative samples is
more than that of positive samples, and the accurate prediction
of patients with MaVI in the future is important in this
study. On the one hand, maximizing AUROC aims to rank
the prediction score of any positive samples higher than any
negative samples, which is suitable for handling imbalanced
data distribution and uses 0.500 as baseline for evaluation.
On the other hand, AUPRC aims to evaluate the ability of
the model in classifying positive samples correctly in an
imbalanced data distribution. In particular, the baseline of
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TABLE III
CLASSIFICATION PERFORMANCE OF DIFFERENT FEATURE

EXTRACTION METHODS ON TUMOR MARGIN

FOR MAVI PREDICTION

AUPRC can be calculated by using (26), which is equal to
0.220 in the independent testing set.

baselineAUPRC = PS

PS + NS
(26)

Moreover, maximizing BACC and W-F1 aims to distinguish
high- and low-risk populations well in an imbalanced data
distribution. Finally, the balance between SEN and SPE is
required to achieve good performance in distinguishing high-
and low-risk populations.

C. Performance of Different Feature Extraction
Methods on Tumor Margin

In this section, the proposed method was compared with
two other feature extraction methods on the tumor margin
to evaluate the effectiveness of tumor margin extraction and
ResGCN. For the first method (denoted as FE1), the tumor
margin area was extracted directly (Fig. 3 (c)), and then the
extracted area was reshaped to a unified size of 160×160 and
used as input for the following feature extraction network.
Given the spatial locations of the extracted area in this case,
the CNN can be used to explore the information provided by
the tumor margin. Moreover, a 2.5D-based ResCNN (Resnet18
was used as backbone) was applied to replace the 2.5D-based
ResGCN in the proposed perception module. For the second
method (denoted as FE2), the tumor margin ROI was first
extracted by using the proposed method (Fig. 3). Then, zero
padding was performed on the extracted tumor margin ROIs,
and all ROIs had a similar size of 1000 × 31. Finally, a
2.5D-based ResCNN (Resnet18 was used as backbone) was
constructed to exploit information from the tumor margin
ROIs with the same size. In these two compared methods,
the segmentation subnetwork and MdaFF module were also
included, and all hyper-parameters were turned carefully as
in the proposed method to make fair comparison. As shown
in Table III, the prediction performance of FE2 is better than
that of FE1, which indicates the effectiveness of applying the
proposed tumor margin extraction method in incorporating
rotation invariance into the ResCNN network. Furthermore,
a good prediction performance was observed in the proposed
method, which indicated that spatial connections of image
pixels can be well captured, and tumor marginal heterogeneity
can be exploited by using the proposed ResGCN.

D. Robustness of Tumor Margin Extraction

Three experiments were implemented to assess the robust-
ness of the proposed tumor margin extraction method.

Fig. 5. Green curves represent tumor contours outlined by radiologists,
whereas red curves represent (a) enlarged or (b) shrunk tumor contours.

Fig. 6. (a) Intra-observer segmentations, wherein the red and the green
curves represent tumor contours outlined twice by a radiologist. (b) Inter-
observer segmentation, wherein the yellow and the red curves represent
tumor contours outlined by two radiologists.

First, some artificial segmentation errors were introduced into
the manual tumor segmentation masks (denoted as disturbed
segmentation), and tumor margins were extracted on the basis
of modified inaccurate tumor contours for the independent
testing set. Specifically, the original manual segmentation
masks were randomly enlarged or shrunk by shifting the tumor
contour points along the normal tumor contour (Fig. 5). Point
movements were set to 1–8 mm. Moreover, the proposed
method, which was trained on the basis of the original manual
segmentation masks, was tested on the data with artificial seg-
mentation errors. Second, 10% of patients (39 samples) were
randomly selected from five hospitals. Every tumor was then
manually outlined three times: one radiologist outlined twice
(defined as intra-observer segmentation), and another radiol-
ogist outlined once (defined as inter-observer segmentation).
Therefore, three kinds of manual segmentation masks can be
obtained for each of the 39 samples (Fig. 6). Subsequently, all
39 samples with their three corresponding kinds of manual
segmentation masks were used as inputs for our proposed
PKAFnet, which was trained on the basis of the entire training
set, to achieve three groups of prediction probabilities. Dice
loss Ldice (17) was used for these experiments to evaluate the
manual segmentation variability. Moreover, paired Wilcoxon
rank sum test [39] was applied to compare the prediction
differences between manual and disturbed segmentations as
well as intra- and inter-observer segmentations. Third, the
pixel number along the normal tumor contourr q was varied
(21, 31, and 41), and tumor margins were extracted on
the basis of these varied q values. The proposed PKAFnet
was conducted on the extracted tumor margins in the three
experiments, and all hyperparameters were turned carefully as
in the proposed method for a fair comparison.
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TABLE IV
EFFECTS OF MANUAL SEGMENTATION VARIABILITY ON PKAFNET,

WHERE IQR IS SHORT FOR INTERQUARTILE RANGE

TABLE V
PREDICTION PERFORMANCE OF PAKFNET WITH DIFFERENT q VALUES

Table IV shows that the influence of the proposed method
with disturbed segmentation has no statistical significance
(p = 0.848) compared with the results achieved by the pro-
posed method with manual segmentation. Moreover, a similar
prediction probability was achieved by using the proposed
method (p = 0.715 and p = 0.871) with intra- and
inter-observer segmentations. Differences might exist in the
segmentation process (Ldice > 0); however, these results
suggest the robustness of the proposed method on manual seg-
mentation variability. The prediction performance improved
(except for SPE) for the third experiment by increasing q
from 21 to 31, whereas the prediction performance decreased
(except for SEN) by increasing q from 31 to 41 (Table V).
The reason may lie in the insufficient information within the
tumor margin when q was small and the presence of redun-
dant information within the tumor margin when q was large
(especially in the small tumor cases). Therefore, an appropriate
q value was selected in this study. Moreover, the prediction
performance of the proposed method with different q values
fluctuated slightly, which further proves the robustness of the
proposed tumor margin extraction method.

E. Performance of the Proposed Method With
Different Backbones

Two experiments were conducted to evaluate the effects
of replacing the backbone with other popular architectures
on the performance of the proposed method. First, ResNet34
and ResNet50 were used to replace ResNet18, respectively,
in the perception module. Moreover, the architectures used
in the segmentation subnetwork and MdaFF module were
the same as the proposed method to make a fair compar-
ison. Second, ResNeXt50(32 × 4d) and DenseNet169 were
applied to replace SE-ResNet50, respectively, in the seg-
mentation network [40], [41]. Moreover, the architectures
used in the perception and MdaFF modules were the same
as the proposed method for fair comparison. On the one
hand, expressive representations without redundancy can be
achieved by ResNeXt- and DenseNet-based networks using
group convolution and feature reusing, respectively [40], [41].
Moreover, the expressive representations without redundancy

TABLE VI
PREDICTION PERFORMANCE OF USING DIFFERENT BACKBONES

IN PKAFNET FOR MAVI PREDICTION

can be also achieved using SE-ResNet-based networks as men-
tioned in Section III.B. On the other hand, the performance
of SE-ResNet50, ResNeXt50(32 × 4d), and DenseNet169
are better than that of ResNet50 based on previous works
[40], [41]. Therefore, ResNeXt50(32 × 4d) and DenseNet169
were applied to compare with SE-ResNet50 in this study.
As shown in Table VI, as GCN deepened, the prediction
performance decreased (the first two rows and last row in
Table VI), which may result from the large parameter number
and gradient vanishing in deep networks. For the second
experiment, the prediction performance of using DenseNet169
as backbone was better than that of using ResNeXt50 as
backbone in segmentation subnetwork, which may be due to
compacting representations and reducing feature redundancy
using features reusing in DenseNet169. Moreover, the best
prediction performance was achieved using SE-ResNet50 as
the backbone in the segmentation subnetwork, which may
benefit from the expressive representations obtained by explic-
itly modelling the correlations among the channels of its
convolutional features used in the SE module.

F. Ablation Experiments

Each module was discarded from the proposed method to
investigate the influence of each module (i.e., perception, seg-
mentation, and MdaFF modules) on the performance of MaVI
prediction. First, when the perception module was removed
from the proposed method, only tumor segmentation network
was retained, and deep features extracted from the encoder
of the segmentation network were used for prediction. More-
over, the MdaFF module was discarded in this case. Second,
when the segmentation network was removed, deep features
extracted from three 2D ResGCNs were fused by using the
MdaFF module, and the fused features were fed to a classifier
for MaVI prediction. Third, when the MdaFF module was
discarded, deep features provided by the perception module
and the encoder of tumor segmentation network were concate-
nated directly and then fed to a classifier for MaVI prediction.
The ablation results are shown in Table VII. As shown in
Table VII, the following results are observed: first, a relatively
low prediction performance is obtained by using segmentation
network alone, which illustrates that the information of tumor
internal heterogeneity may be insufficient for MaVI prediction.
Second, prediction performance can be improved by com-
bining perception and MdaFF modules, which demonstrates
that the discriminative feature representations can be effec-
tively learnt from the tumor margin by using ResGCN for
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TABLE VII
ABLATION EXPERIMENTS OF THE PROPOSED

METHOD FOR MAVI PREDICTION

TABLE VIII
PREDICTION PERFORMANCE OF THE PROPOSED METHOD BY

USING DIFFERENT HOSPITAL DATASETS AS THE

INDEPENDENT TESTING SET

MaVI prediction. Third, compared with the use of segmen-
tation network alone, prediction performance is enhanced
slightly by combining perception module and segmentation
network. Simple concatenation of different domain features
may result in generation of redundant features and limited
increase of prediction accuracy. Finally, the best prediction
performance is achieved by combining three modules in the
proposed method, which demonstrates that the correlations of
multi-domain features can be explored by using the MdaFF
module, and information extracted from the tumor margin and
tumor region can contribute to MaVI prediction.

G. Robustness of the Proposed Method on
Multi-Center Dataset

Each of the five hospitals was regarded as an independent
testing set (except Hospital 4) to evaluate the generalization
ability of the proposed PKAFnet. Specifically, only two posi-
tive samples were found in Hospital 4 (the ratio of positive and
negative samples is 1:21), which suffers from the most severe
class imbalance issue among the five hospitals. As shown
in Table VIII, the worst and best prediction performance
were achieved when using Hospitals 2 and 5 as the inde-
pendent testing sets, respectively. The maximum differences
in AUROC, BACC, and W-F1 values were less than 0.100,
whereas the ratio of negative and positive samples ranged
from 3.6 to 8.8 on the multi-center dataset (except Hospital 4).
These results indicate that relatively stable performance can be
achieved by using the proposed PKAFnet on a multi-center
dataset for MaVI prediction; thus, the result illustrates the
good generalization ability of the proposed PKAFnet.

H. Comparison With Other Methods

The proposed method was compared with some common
classification methods, including traditional machine learning
and two deep learning methods, to further evaluate the effec-
tiveness of the proposed method on MaVI prediction.

TABLE IX
COMPARISON OF DIFFERENT CLASSIFICATION

METHODS ON THE MAVI DATASET

1) Traditional Machine Learning Method: We adopted the
strategy of combining radiomic features and support vec-
tor machine (SVM) as traditional method for comparison.
First, 1220 radiomic features were extracted from tumor
regions within three kinds of images (original images and
images smoothened by using Gaussian and wavelet filters,
respectively), including 3D shape-based features, gray level
cooccurrence matrix, gray level run length matrix, gray level
size zone matrix, and gray level dependence matrix. Then,
fivefold cross-validation was implemented in the training set to
select the best hyper-parameters. Univariate logistic regression
analysis was applied for feature selection, which can be used
to analyze the correlation between each feature and MaVI,
and p-values of all features were obtained for MaVI. Only
the features with p-value smaller than 0.10 were kept. Next,
the retained features were fed into a SVM using the balance
strategy to search the optimal hyper-parameters. After fivefold
cross-validation, univariate logistic regression analysis was
performed, and a SVM with the optimal hyper-parameters was
retrained on the training set and tested on the independent
testing set for final evaluation.

2) Deep Learning Methods: We compared the proposed
method with two frequently used classification networks,
including VGG [42] and SE-Resnet50 [29]. For these two
compared networks, the extracted liver and liver tumor region
with a size of 160 × 160 × 160 was used as input. Focal loss
and margin ranking loss were implemented as the training loss.
Stochastic gradient descent with momentum was used as the
optimizer. Moreover, fivefold cross-validation was performed
to turn the hyper-parameters of the compared networks for fair
comparison.

Table IX presents the prediction performance of different
classification methods. First, the prediction performance of
all deep learning methods is better than that of traditional
machine learning method on AUPRC, which indicates the
advantages of deep learning methods in detecting positive
samples. Second, the AUROC of the traditional machine
learning method is higher than that of VGG. In this study,
small data size and high class imbalance are observed in the
MaVI dataset. Compared with traditional machine learning
methods, serious overfitting may be observed in a simple
network (e.g., VGG). Therefore, higher AUROC is obtained
by using a traditional machine learning method than using
VGG. Next, better prediction performance is achieved by using
SE-Resnet50 than using VGG probably because important
and discriminative features can be learnt by the residual
connection and SE modules within SE-Resnet50. Finally, our
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proposed network has superior performance compared with
the other three methods, indicating the robust performance of
the proposed method on our dataset for MaVI prediction.

V. DISCUSSION

First, the effectiveness of each of the three modules in
the proposed method is evaluated in this section. Second, the
effectiveness of tumor margin extraction and ResGCN used in
the perception module is confirmed. Third, the competitive
performance of PKAFnet with other methods is presented.
Fourth, the generalization capability of the proposed method
is validated using different hospital data as the independent
testing set. Fifth, the interpretability of PKAFnet is illustrated.
Finally, the limitations of the current study and possible future
solutions are analyzed.

As shown in Fig. 2, tumor margin and tumor region are
crucial for the prediction of patients with or without MaVI
subsequent MaVI during follow-ups. Therefore, a perception
module for tumor margin and a segmentation network for
tumor region are presented in this study to fully exploit the
effective information within these two regions. As listed in
Tables VII and IX, higher prediction results are achieved
by using the segmentation network alone in the proposed
method than using the SE-Resnet50 classification network
(0.744 vs. 0.667 for AUROC and 0.603 vs. 0.421 for AUPRC,
and 0.708 vs. 0.675 for BACC), which may contribute to
the tumor internal heterogeneity exploited by using the seg-
mentation network. Moreover, the prediction performance of
combining the perception module and segmentation network
is better than that of using the segmentation network alone
(Table VII), indicating that combining information extracted
from tumor region and tumor margin can boost the predic-
tion performance. However, the performance of combining
perception and MdaFF modules (the segmentation network is
ignored) is better than that of directly concatenating the deep
features extracted from the perception module and segmen-
tation network (the MdaFF module is discarded). This result
indicates that information redundancy may be found among
deep features extracted from multi-domain, which leads to
suboptimal prediction results by simply concatenating multi-
domain features. In addition, representative information of
multi-domain features can be exploited by using the MdaFF
module, which can adaptively explore the synergy and adaptive
weights of features. As shown in Table VII, compared with
the proposed method with MdaFF, high SEN (1.000 vs. 0.938)
and low SPE (0.333 vs. 0.667) were observed in the proposed
method without MdaFF module, which suggests that MdaFF
module can alleviate overestimation (i.e., tends to estimate
all samples as high-risk population) for MaVI prediction.
Moreover, delong test [43] was implemented on the AUROC
values of the proposed method with and without MdaFF
module. The result illustrated that the performance of the
proposed method with MdaFF module is significantly better
than that of the proposed method without MdaFF module
(0.865 vs. 0.761, p = 0.009).

The proposed perception module consists of three steps,
including ROI extraction, graph construction, and feature

exploitation of tumor margin. Two ROI extraction meth-
ods (FE1 and FE2) are initially designed to investigate the
effectiveness of different ROI extraction methods on MaVI
prediction. In FE1 and FE2 methods, ResCNN is applied to
explore potential information among the tumor margin ROIs.
As mentioned in the Introduction section, rotation invariance
is incorporated into the proposed ROI extraction method.
Moreover, rotation invariance is desired by the CNN-based
network, which can enhance feature extraction [16]. Therefore,
better prediction performance is achieved by using FE2 than
using FE1, where the proposed ROI extraction method is used
in FE2. However, spatial location information is lost in the
proposed ROI extraction method, which may decrease the
prediction performance of the CNN-based network. Therefore,
instead of using ResCNN, ResGCN is applied in the proposed
method to exploit important features related to tumor marginal
heterogeneity, which can utilize the rotation invariance and
spatial connection of image pixels. As shown in Table III,
prediction performance is further improved by using the pro-
posed method than using the FE2 method.

The liver tumors in CT scans were manually outlined in this
study to ensure segmentation accuracy. Two experiments were
conducted to assess the influence of segmentation variability
(manual and disturbed segmentations as well as intra- and
inter-observer segmentations) on the prediction performance of
the proposed method considering that PKAFnet was designed
to extract information from tumor margins. Table IV shows
that a similar prediction probability was achieved by using
the proposed method (all p-values > 0.050) despite some dif-
ferences among various kinds of manual segmentation masks
(Ldice equals to 0.287, 0.145, and 0.169). These results may
contribute to the robustness of tumor margin extraction; thus,
complete information related to tumor marginal heterogeneity
can be retained. Moreover, the size of tumor margins may
be another important factor that influences the performance
of the perception module. Thus, q was varied to assess its
effects on the performance of the proposed method. A large
tumor margin (i.e., larger q value) generally leads to additional
discriminative information for capturing tumor marginal het-
erogeneity. However, redundant information may exist within
the extracted tumor margins with large q values when tumors
are small. Therefore, a moderate q value was more applicable
in the proposed method than other q values.

In traditional radiomic methods, hand-crafted features are
initially extracted, and then feature selection and classification
are performed separately, which is suitable for a specific task
with small data size. On the contrary, in CNN-based clas-
sification networks, related features are learnt automatically,
and feature extraction and classification are performed in an
end-to-end manner, which is more acceptable than radiomic
method for a task with large data size. However, in the field
of medical image analysis, dataset size is often hundreds,
which may result in serious overfitting by simply deepening
the classification networks (higher AUROC is obtained in
radiomic method than that in VGG (Table IX)). Therefore,
introducing certain prior knowledge is necessary to guide
network for task-related features extraction and prevent over-
fitting [44]. In the proposed method, tumor marginal and
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Fig. 7. Interpretability of the perception module on tumor marginal het-
erogeneity. The patients have no MaVIs at diagnosis. (a) shows patient
with subsequent MaVI during follow-ups, whereas (c) displays HCC
patient without subsequent MaVI. (b) and (d) show their corresponding
Grad-CAM. Corona enhancement, invasive shape, and HCC capsule
breakthrough are shown in (a), which are indicated by yellow arrows
with 1, 2, and 3, respectively. HCC is indicated by a yellow arrow with
4 in (c), which presents complete capsule and smooth margin.

internal heterogeneity is included and regarded as clinically
prior knowledge, which can guide the whole network to exploit
targeted and discriminative features from CT images, thereby
achieving good performance of MaVI prediction. Moreover,
when different hospital data were used as the independent
testing set, a satisfying prediction performance was achieved
using the proposed method, which can further prove the good
generalization ability of the proposed PKAFnet for MaVI
prediction.

The potential clinical interpretation is crucial for computer-
aided prediction. Therefore, gradient of class activation map
(Grad-CAM) [45], [46] is applied to illustrate the important
regions captured by using perception module and segmentation
network in PKAFnet. Specifically, the implementation details
of Grad-CAM for perception module are as follows. First,
given the GCN layer l before the global add pooling layer,
the output of layer l can be defined as m ∈ R

n′
r × ft , and the

gradients between class c and m can be calculated and denoted
as g ∈ R

n′
r × ft , where n′

r is the number of nodes in layer l, and
ft is the features dimension of nodes in layer l. Then, average
operation was implemented on g to obtain the class-specific
weights of m, which can be defined as ga ∈ R

n′
r ×1. Next, the

weights of nodes V l in layer l can be calculated by:

wn′
r = ReLU

⎛
⎝∑

f

ga � m

⎞
⎠ (27)

where � is the dot product operation and wn′
r ∈ R

n′
r ×1.

Finally, the nodes V of G can be mapped by the nodes V l ,
where V l was reduced by using edge pooling layer [47] on V .
Therefore, the weights of nodes V l can also be mapped to
the weights of nodes V , and the weights of nodes V are the
Grad-CAM of GCN [46].

For HCC patient with subsequent MaVI during follow-ups
(Figs. 7 (a) and (b)), the perception module pays attention
to the areas (highlight areas) containing corona enhancement,
invasive shape, and HCC capsule breakthrough, which has
been proven to be related to MaVI in prior knowledge [13].
For HCC patient without subsequent MaVI, complete capsule
is observed in Fig. 7 (c), and the color variation of Grad-
CAM is smooth (Fig. 7 (d)), which implies that the variation
trend of the tumor margin can be detected by using the
perception module. Therefore, as shown in Fig. 7, tumor
marginal heterogeneity related to MaVI can be well captured
by using our proposed perception module based on Grad-CAM

Fig. 8. Interpretability of the segmentation network for tumor internal het-
erogeneity. The patients have no MaVIs at diagnosis. (a) shows patients
with subsequent MaVI during follow-ups, whereas (c) displays HCC
patients without subsequent MaVI. (b) and (d) show their corresponding
Grad-CAM. Necrosis and mosaic architecture are indicated by yellow
arrows with 1 and 2 in (a), respectively. HCC with low heterogeneity is
indicated by a yellow arrow with 3 in (c).

(the implementation details of Grad-CAM used in tumor
margin are provided in supplementary materials). In evaluating
the interpretation of tumor internal heterogeneity by using the
segmentation network, Figs. 8 (b) and (d) show the Grad-CAM
of the segmentation network on CT images of a HCC patient
with subsequent MaVI during follow-ups and a HCC patient
without subsequent MaVI. As shown in Figs. 8 (a) and (b),
the highlighted colormap covers on the area of necrosis
and mosaic architecture, which illustrates that the proposed
segmentation network may capture the important features
related to prior knowledge of tumor internal heterogeneity.
Moreover, uniform density of Grad-CAM can be observed in
HCC with slight heterogeneity (Figs. 8 (c) and (d)). Therefore,
the effectiveness of PKAFnet can be proven by using Grad-
CAMs, and thus the proposed PKAFnet can be used to assist
MaVI prediction from CT images.

Although PKAFnet achieves good performance in MaVI
prediction, limitations are still identified. First, a multi-center
dataset was used in our paper, but the number of samples in the
MaVI dataset was still insufficient to fully exploit the potential
of deep learning. Therefore, more samples will be collected to
improve and evaluate the performance of PKAFnet in future
research. Second, the liver and tumor regions are manually
outlined in advance, which is time consuming. Therefore,
auto-segmentation models for the liver tumor and liver region
must be introduced to our proposed method in future work to
achieve an auto pipeline for MaVI prediction. In the future,
an auto-computer-aided prediction (PKAFnet) for MaVI will
show great potential in clinical practical applications and help
improve the survival time of HCC patients.

VI. CONCLUSION

We have presented an accurate and effective framework,
namely, PKAFnet, for MaVI prediction. In PKAFnet, the
perception module can be used to explore information related
to tumor marginal heterogeneity, and segmentation network
is implemented to focus on tumor internal heterogeneity.
In addition, the information of tumor marginal and internal het-
erogeneity is fused by using the MdaFF module for decision-
making. Prior knowledge of clinical experience for MaVI
prediction is introduced to PKAFnet, which can alleviate
overfitting and increase the credibility of our proposed model.
Consequently, the proposed PKAFnet achieves remarkable
performance in MaVI prediction in our multi-center data,
implying its potential application for clinical practices.



LAI et al.: PRIOR KNOWLEDGE-AWARE FUSION NETWORK FOR PREDICTION OF MaVI IN HCC 2657

REFERENCES

[1] H. Sung et al., “Global cancer statistics 2020: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries,”
CA, A Cancer J. Clinicians, vol. 71, no. 3, pp. 209–249, May 2021.

[2] J. Tian et al., “Deep learning-based aggressive progression prediction
from ct images of hepatocellular carcinoma,” Proc. SPIE, vol. 11597,
Mar. 2021, Art. no. 115972Y.

[3] R. S. Finn et al., “Atezolizumab plus bevacizumab in unresectable
hepatocellular carcinoma,” New England J. Med., vol. 382, no. 20,
pp. 1894–1905, 2020.

[4] Z. J. Brown, T. F. Greten, and B. Heinrich, “Adjuvant treatment of
hepatocellular carcinoma: Prospect of immunotherapy,” Hepatology,
vol. 70, no. 4, pp. 1437–1442, Oct. 2019.

[5] E. K. Paulson, “Evaluation of the liver for metastatic disease,” Seminars
Liver Disease, vol. 21, no. 2, pp. 225–236, 2001.

[6] J. Wei et al., “Development and validation of a radiomics-based
method for macrovascular invasion prediction in hepatocellular carci-
noma with prognostic implication,” Proc. SPIE, vol. 10950, Mar. 2019,
Art. no. 109501N.

[7] J. Wei, J. Tian, S. Fu, and L. Lu, “Noninvasive prediction of future
macrovascular invasion occurrence in hepatocellular carcinoma based
on quantitative imaging analysis: A multi-center study,” J. Clin. Oncol.,
vol. 37, no. 15, p. e14623, May 2019.

[8] Q. Zhang et al., “Differentiation of recurrence from radiation necrosis
in gliomas based on the radiomics of combinational features and
multimodality MRI images,” Comput. Math. Methods Med., vol. 2019,
pp. 1–12, Dec. 2019.

[9] Y. Zhou et al., “Multi-task learning for segmentation and classification
of tumors in 3D automated breast ultrasound images,” Med. Image Anal.,
vol. 70, May 2021, Art. no. 101918.

[10] L. Liu, Q. Dou, H. Chen, J. Qin, and P.-A. Heng, “Multi-task deep
model with margin ranking loss for lung nodule analysis,” IEEE Trans.
Med. Imag., vol. 39, no. 3, pp. 718–728, Mar. 2020.

[11] P. Afshar, K. N. Plataniotis, and A. Mohammadi, “Capsule networks
for brain tumor classification based on MRI images and coarse tumor
boundaries,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 1368–1372.

[12] D. Castelvecchi, “Can we open the black box of AI?” Nature News,
vol. 538, no. 7623, p. 20, 2016.

[13] S. Fu et al., “Deep learning-based prediction of future extrahepatic
metastasis and macrovascular invasion in hepatocellular carcinoma,”
J. Hepatocellular Carcinoma, vol. 8, pp. 1065–1076, Sep. 2021.

[14] M. Zhou, L. O. Hall, D. B. Goldgof, R. J. Gillies, and R. A. Gatenby,
“Exploring brain tumor heterogeneity for survival time prediction,” in
Proc. 22nd Int. Conf. Pattern Recognit., Aug. 2014, pp. 580–585.

[15] V. Andrearczyk, J. Fageot, V. Oreiller, X. Montet, and A. Depeursinge,
“Local rotation invariance in 3D CNNs,” Med. Image Anal., vol. 65,
Oct. 2020, Art. no. 101756.

[16] M. W. Lafarge, E. J. Bekkers, J. P. W. Pluim, R. Duits, and
M. Veta, “Roto-translation equivariant convolutional networks: Appli-
cation to histopathology image analysis,” Med. Image Anal., vol. 68,
Feb. 2021, Art. no. 101849.

[17] M. Ebrahim, M. Alsmirat, and M. Al-Ayyoub, “Performance study of
augmentation techniques for HEp2 CNN classification,” in Proc. 9th Int.
Conf. Inf. Commun. Syst. (ICICS), Apr. 2018, pp. 163–168.

[18] J. Zhu, Y. Li, Y. Hu, K. Ma, S. K. Zhou, and Y. Zheng, “Rubik’s Cube+:
A self-supervised feature learning framework for 3D medical image
analysis,” Med. Image Anal., vol. 64, Aug. 2020, Art. no. 101746.

[19] N. Anh Mac and H. Son Nguyen, “Rotation variance in graph con-
volutional networks,” in Proc. 16th Conf. Comput. Sci. Intell. Syst.
(FedCSIS), Sep. 2021, pp. 81–90.

[20] M. Huang, W. Yang, M. Yu, Z. Lu, Q. Feng, and W. Chen, “Retrieval
of brain tumors with region-specific bag-of-visual-words representations
in contrast-enhanced MRI images,” Comput. Math. Methods Med.,
vol. 2012, pp. 1–17, Oct. 2012.

[21] N. Majumder, D. Hazarika, A. Gelbukh, E. Cambria, and S. Poria,
“Multimodal sentiment analysis using hierarchical fusion with context
modeling,” Knowl.-Based Syst., vol. 161, pp. 124–133, Dec. 2018.

[22] R. J. Chen et al., “Pathomic fusion: An integrated framework for
fusing histopathology and genomic features for cancer diagnosis and
prognosis,” IEEE Trans. Med. Imag., vol. 41, no. 4, pp. 757–770,
Apr. 2022.

[23] W. Zhu, L. Sun, J. Huang, L. Han, and D. Zhang, “Dual attention
multi-instance deep learning for Alzheimer’s disease diagnosis with
structural MRI,” IEEE Trans. Med. Imag., vol. 40, no. 9, pp. 2354–2366,
Sep. 2021.

[24] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., 2017, pp. 5998–6008.

[25] N. Parmar et al., “Image transformer,” in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4055–4064.

[26] F. Ciompi et al., “Automatic classification of pulmonary peri-fissural
nodules in computed tomography using an ensemble of 2D views and a
convolutional neural network out-of-the-box,” Med. Image Anal., vol. 26,
no. 1, pp. 195–202, Dec. 2015.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process.
Syst., 2017, pp. 1025–1035.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[29] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze- and-
excitation networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2018, pp. 7132–7141.

[30] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980–2988.

[31] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-
Hein, “NNU-Net: A self-configuring method for deep learning-based
biomedical image segmentation,” Nature Methods, vol. 18, no. 2, p. 203,
2021.

[32] J.-Y. Choi, J.-M. Lee, and C. B. Sirlin, “CT and MR imaging diag-
nosis and staging of hepatocellular carcinoma: Part II. Extracellular
agents, hepatobiliary agents, and ancillary imaging features,” Radiology,
vol. 273, no. 1, pp. 30–50, Oct. 2014.

[33] R. Lencioni and J. Llovet, “Modified RECIST (mRECIST) assessment
for hepatocellular carcinoma,” Seminars Liver Disease, vol. 30, no. 1,
pp. 052–060, Feb. 2010.

[34] S. Cheng et al., “Chinese expert consensus on multidisciplinary diagno-
sis and treatment of hepatocellular carcinoma with portal vein tumor
thrombus (2018 edition),” Liver Cancer, vol. 9, no. 1, pp. 28–40,
2020.

[35] T. Saito and M. Rehmsmeier, “The precision-recall plot is more informa-
tive than the ROC plot when evaluating binary classifiers on imbalanced
datasets,” PLoS ONE, vol. 10, no. 3, Mar. 2015, Art. no. e0118432.

[36] J. Lin, S. Pan, C. S. Lee, and S. Oviatt, “An explainable deep fusion
network for affect recognition using physiological signals,” in Proc. 28th
ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 2069–2072.

[37] A. Luque, A. Carrasco, A. Martín, and A. de las Heras, “The impact of
class imbalance in classification performance metrics based on the binary
confusion matrix,” Pattern Recognit., vol. 91, pp. 216–231, Oct. 2019.

[38] R. Fluss, D. Faraggi, and B. Reiser, “Estimation of the youden index
and its associated cutoff point,” Biometrical J., J. Math. Methods Biosci.,
vol. 47, no. 4, pp. 458–472, 2005.

[39] P. C. O’Brien and T. R. Fleming, “A paired prentice-wilcoxon test
for censored paired data,” Biometrics, vol. 43, no. 1, pp. 169–180,
Mar. 1987.

[40] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 1492–1500.

[41] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4700–4708.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[43] O. V. Demler, M. J. Pencina, and R. B. D’Agostino, “Misuse of DeLong
test to compare AUCs for nested models,” Statist. Med., vol. 31, no. 23,
pp. 2577–2587, Oct. 2012.

[44] C. Chen, Y. Wang, J. Niu, X. Liu, Q. Li, and X. Gong, “Domain
knowledge powered deep learning for breast cancer diagnosis based on
contrast-enhanced ultrasound videos,” IEEE Trans. Med. Imag., vol. 40,
no. 9, pp. 2439–2451, Sep. 2021.

[45] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[46] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann,
“Explainability methods for graph convolutional neural networks,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 10772–10781.

[47] F. Diehl, “Edge contraction pooling for graph neural networks,” 2019,
arXiv:1905.10990.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


