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An Analytical Algorithm for Tensor Tomography
From Projections Acquired About Three Axes

Weijie Tao , Damien Rohmer , Grant T. Gullberg , Life Fellow, IEEE,
Youngho Seo , Senior Member, IEEE, and Qiu Huang , Member, IEEE

Abstract— Tensorfields are useful for modeling the struc-
ture of biological tissues. The challenge to measure tensor
fields involves acquiring sufficient data of scalar measure-
ments that are physically achievable and reconstructing
tensors from as few projections as possible for efficient
applications in medical imaging. In this paper, we present a
filtered back-projection algorithm for the reconstruction of
a symmetric second-rank tensor field from directional X-ray
projections about three axes. The tensor field is decom-
posed into a solenoidal and irrotational component, each
of three unknowns. Using the Fourier projection theorem,
a filtered back-projectionalgorithm is derived to reconstruct
the solenoidaland irrotationalcomponents from projections
acquired around three axes. A simple illustrative phantom
consisting of two spherical shells and a 3D digital car-
diac diffusion image obtained from diffusion tensor MRI of
an excised human heart are used to simulate directional
X-ray projections. The simulations validate the mathemat-
ical derivations and demonstrate reasonable noise prop-
erties of the algorithm. The decomposition of the tensor
field into solenoidal and irrotational components provides
insight into the development of algorithms for reconstruct-
ing tensor fields with sufficient samples in terms of the type
of directional projections and the necessary orbits for the
acquisition of the projections of the tensor field.

Index Terms— Filtered back-projection algorithm,
solenoidal and irrotational components, tensor
tomography, directional X-ray projections.

I. INTRODUCTION

TENSOR tomography has found important applications in
the physical sciences [1], [2], mathematics [3], and medi-

cine [4]. Here we consider the tensor tomography problem as
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the reconstruction of symmetric second-rank tensor fields. The
work aims to develop acquisition schemes and filtered back-
projection algorithms for the three-dimensional reconstruction
of the six unknown tensor elements.

In medicine, one application of tensors is to model the
biological structure by using X-ray imaging of small-angle
scatter to characterize in vivo fiber structures of lung [5],
bone [6], and breast [7]. The small-angle scatter captured by
X-ray dark-field imaging is orientation dependent [8]–[15] and
as such is not captured in regular 3D X-ray tomography. Thus,
in many studies of X-ray dark-field imaging, the question
arises as to whether sufficient data is obtained to uniquely
reconstruct the tensor models used to represent the small-angle
scatter. Another important medical application is using tensors
to model the helical fiber structure of cardiac muscle [16]
using MRI diffusion imaging [17], [18]. Understanding the
3D fiber structure of the heart is essential for modeling the
mechanical and electrical properties; changes in the fiber
configuration may be of significant importance to understand
the remodeling in the progression to heart failure [19] and
after myocardial infarction [20]. Currently, most MR diffusion
tensor imaging (DTI) studies require a very large number of
signal measurements, whereas the focus here is to develop
tensor tomographic techniques that might provide faster and
more accurate data acquisitions.

The tensor tomographic problem is an extension of the
vector tomographic problem [21]–[36] and draws on much
of the work in the reconstruction of vector fields (first-rank
tensor fields) [31], [35]; in particular, the decomposition of
the tensor field into solenoidal and irrotational components
[3], [37]–[40] and the extension of the Fourier projection
theorem from scalar and vector fields [32], [35] to tensor
fields [37]–[40]. This decomposition provides a formulation
to analyze data acquisition schemes and reconstruction algo-
rithms from the mathematical construction of projections that
might simplify the data acquisition yet provide accurate and
precise reconstruction results.

The present work is stimulated by papers [41]–[43], where
it was shown that rotations about at least three orthogonal
axes are necessary to reconstruct 3D symmetric second-rank
tensor fields. They developed explicit plane-by-plane filtered
back-projection reconstruction algorithms using six sets of
projections obtained by rotating about three orthogonal axes:
three sets of scalar projection measurements for diagonal
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Fig. 1. (a) A second rank tensor illustrated as an ellipsoid. The eigenvectors ε1, ε2, ε3 of the tensor are the 3-unit vectors along the principal
semi-axes of the ellipsoid, and the eigenvalues λ1, λ2, λ3 ≥ 0 are the lengths of the principal semi-axes. (Drawn based on Fig. 5 in [46]) (b) Three
orthogonal vectors θ, α, β, with zenith angle θ and azimuth angle φ, for the directional X-ray transform. (c) pθ θθ : the integral along θ of the orange

intersections (along θ). (d) p
β β

θ
: the integral along θ of the blue intersections (along β). Here the integration line goes through the center of all

ellipsoids. (Drawn based on Fig. 5 in [46] but modified to indicate the tensor measurements along θ and β.)

components, and three for off-diagonal components. It has also
been shown for slice-by-slice vector field tomography in [33],
[34], [36] that three perpendicular axes are sufficient for a
full recovery. Our approach is to separate the tensor field into
solenoidal and irrotational components [37]–[40], [44] so that
one set of three directional measurements around three axes
reconstructs the solenoidal component of the tensor field; and
the reconstructed solenoidal component along with a different
set of three directional measurements about the same axes
reconstructs the irrotational component.

In the following sections, we first present the definitions
and notations used in our work, including the formulation
for the decomposition of a symmetric second-rank tensor
field into solenoidal and irrotational components. From this
decomposition, we derive the algorithm for reconstructing the
tensor field from measurements around three axes that involve
a reconstruction of the solenoidal component and another
reconstruction of the irrotational component. In the section
of Implementation, we describe how the scalar projections
of the tensor fields are simulated for two phantoms. Then
we assess the reconstructions and compare results at different
noise levels. This is followed by a discussion of the advantages
of tensor tomography.

II. DEFINITIONS AND NOTATIONS

In this work, we use the Fourier projection theorem to show
that the Fourier transform of the X-ray projections is related
to the Fourier transform of the solenoidal and irrotational
components of the second-rank symmetric tensor field.

A. 3D Second-Rank Tensor Field and Its X-Ray
Transform

For a point x = (x, y, z)T in R3, the 3D second-rank tensor
T
(
x
)

is denoted by its nine real elements that are rapidly
decreasing C∞ functions:

T
(
x
) =

⎡
⎣ tx x txy txz

tyx tyy tyz

tzx tzy tzz

⎤
⎦(x) . (1)

As shown in Fig. 1(a), the tensor field can be illustrated as an
ellipsoid [45], where the eigenvectors ε1, ε2, ε3 of the tensor
are the three unit vectors along the principal semi-axes of the
ellipsoid, and the corresponding eigenvalues λ1, λ2, λ3 greater
than or equal to zero are lengths of the principal semi-axes.

Similar to the X-ray transform for a scalar image, the
directional X-ray transform of a tensor field is defined here as
the line integral of the tensor field along a specific direction θ
for a zenith angle θ and an azimuth angle φ (Fig. 1(b)) [40]:

p
a b
θ (u, v) =

∞∫
−∞

aT T
(

tθ + uα + vβ
)

bdt, (2)

where the three orthogonal vectors are defined as

θ = (sinθcosφ, sinθsinφ, cosθ)T ,

α = (−sinφ, cosφ, 0)T ,

β = (−cosθcosφ,−cosθsinφ, sinθ)T . (3)

Equation (2) is the directional projection measurement
defined by the 3D directional unit vectors a and b. In this
paper, we will use directional X-ray projections measured
with a = b = θ and a = b = β, namely p

θ θ
θ and

p
β β

θ . The projection p
θ θ
θ usually refers to the longitudinal

measurement, i.e., direct projection of the vector or tensor

field along the line of projection, and the projection p
β β

θ

refers to the transverse projection measurements. For MRI
diffusion imaging these projections are easy to measure with
the pulse sequence implementation of the diffusion gradients.
It is impossible to implement with a = θ , b = α. These
measurements have to be performed using a combination of
a = b = θ1 and a = b = θ2 (see reference [38]). Likewise, for
X-ray interferometry p

θ θ
θ provides the dark-field projections of

the longitudinal measurements of the small-angle scatter, and

p
β β

θ provides the projection of the transverse measurements
that correspond to the sensitivity direction of the gratings in the
measurement of dark-field projections. The angle a = b = θ ,
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and the angle a = b = β were chosen following the angles
selected in Lionheart’s paper [43].

The projection p
θ θ
θ indicates the integral in the direction

of θ (indicated by the subscript θ) of the tensor field along
the orange line presented in Fig. 1(c). The ellipsoids are a
pictorial representation of the tensor at each voxel. In this
case the contribution of each voxel to the line integral is the
length of the orange line intersecting the ellipsoid. Whereas,

for the projection p
β β

θ presented in Fig. 1(d), the contribution
of each pixel to the line integral in the direction of θ is the
length of the blue line in the direction of β intersecting the
ellipsoid.

B. Fourier Projection Theorem for X-Ray Projections

In this section, we introduce the Fourier projection theorem
for tensor fields, which is a straightforward extension of the
Fourier slice theorem for vector fields [31], [32], [35].

The Fourier transform of p
a b
θ (u, v) is defined as

p̃
a b
θ (νu, νv ) =

∞∫
−∞

∞∫
−∞

p
a b
θ (u, v) e−2π i(uνu+vνv )dudv. (4)

Substituting the definition in (2) into (4), one obtains

p̃
a b
θ (νu, νv )

=
∞∫

−∞

∞∫
−∞

∞∫
−∞

aT T
(

tθ + uα + vβ
)

bdte−2π i(uνu+vνv )dudv.

With the change of variables x = tθ + uα + vβ, it can be
rewritten as

p̃
a b
θ (νu , νv ) =

∞∫
−∞

∞∫
−∞

∞∫
−∞

aT T
(
x
)

be
−2π i

(
x ανu+x βνv

)
dx .

This leads to the following formulation of the Fourier
projection theorem for the projection in the direction of θ :

p̃
a b
θ (νu, νv ) = aT T̃

(
ανu + βνv

)
b, (5)

where T̃
(
ανu + βνv

)
is the three-dimensional Fourier trans-

form of the tensor T
(
x
)

and ανu + βνv = ν = [νx , νy, νz]T .

C. Tensor Field Decomposition

We only consider the reconstruction of a symmetric tensor
field here in this work, which reduces unknown elements
from 9 to 6. It was shown by Sharafutdinov [47] that any
sufficiently smooth symmetric tensor field vanishing rapidly
at infinity can be decomposed in a unique way to a solenoidal
component T S




(
x
)

and an irrotational component T I
�

(
x
)
:

T
(
x
) = T S




(
x
)+ T I

�

(
x
)
, (6)

where the solenoidal component T S



(
x
)

is a symmetric tensor
and is divergence free; and the irrotational component T I

�

(
x
)

is a symmetric tensor. Further, we specify the solenoidal

component as a curl of a tensor potential that has to be applied
to each column of 
 (Appendix):

T S



(
x
) = ∇ ×


(
x
)
, (7)

with the tensor potential defined as



(
x
) =

⎡
⎢⎢⎢⎢⎢⎣

0
∂X1

∂z
−∂X1

∂y

−∂X2

∂z
0

∂X2

∂x
∂X3

∂y
−∂X3

∂x
0

⎤
⎥⎥⎥⎥⎥⎦
(
x
)

(8)

for three scalar functions X1
(
x
)
, X2

(
x
)
, X3

(
x
)
. Substituting

(8) into (7), the solenoidal component is

T S



(
x
)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2 X3

∂y2 + ∂2 X2

∂z2 − ∂2 X3

∂y∂x
− ∂2 X2

∂z∂x

−∂
2 X3

∂x∂y

∂2 X1

∂z2 + ∂2 X3

∂x2 − ∂2 X1

∂z∂y

−∂
2 X2

∂x∂z
− ∂2 X1

∂y∂z

∂2 X2

∂x2 + ∂2 X1

∂y2

⎤
⎥⎥⎥⎥⎥⎥⎦
(
x
)
.

(9)

The irrotational component in (6) is the gradient of a vector
potential:

T I
�

(
x
) = ∇� (x)+ [∇� (x)]T , (10)

with the vector potential defined as

�
(
x
) =

⎡
⎣�1
�2
�3

⎤
⎦(x) (11)

for three scalar functions �1(x), �2(x), and �3(x). Using
(10) and (11), the irrotational component is

T I
�

(
x
) =

⎡
⎢⎢⎢⎢⎢⎣

2
∂�1

∂x

∂�1

∂y
+ ∂�2

∂x

∂�1

∂z
+ ∂�3

∂x
∂�1

∂y
+ ∂�2

∂x
2
∂�2

∂y

∂�2

∂z
+ ∂�3

∂y
∂�1

∂z
+ ∂�3

∂x

∂�2

∂z
+ ∂�3

∂y
2
∂�3

∂z

⎤
⎥⎥⎥⎥⎥⎦
(
x
)
.

(12)

With (9) and (12), the Fourier transform of the solenoidal
and irrotational components at ν = (

νx , νy, νz
)T

can be
written in terms of the Fourier transforms of X1, X2, X3,
�1, �2 and �3:

According to the decomposition in (6), the Fourier projec-
tion theorem (5) becomes:
p̃

a b
θ (νu , νv) = aT T̃ S




(
ανu + βνv

)
b+aT T̃ I

�

(
ανu + βνv

)
b

With a = b = θ and a = b = β, we have

p̃
θ θ
θ (νu, νv ) = θT T̃ S




(
ανu +βνv

)
θ+θT T̃ I

�

(
ανu + βνv

)
θ,

and

p̃
β β

θ (νu, νv ) = βT T̃ S



(
ανu + βνv

)
β+βT T̃ I

�

(
ανu +βνv

)
β.
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Substituting (13), as shown at the bottom of the page, into
these two equations, we have the solenoidal and irrotational
components of p̃

θ θ
θ as

θT T̃ S



(
ανu + βνv

)
θ

= (νu cos θ cosφ − νv sin φ)2 X̃1

(
νuα + νvβ

)

+ νu (cos θ sin φ + νv cosφ)2 X̃2

(
νuα + νvβ

)

+ (νu sin θ)2 X̃3

(
νuα + νvβ

)
, (14)

θT T̃ I
�

(
ανu + βνv

)
θ = 0, (15)

and the solenoidal and irrotational components of p̃
β β

θ as:

βT T̃ S



(
ανu + βνv

)
β

= (νusinθcosφ)2 X̃1

(
νuα + νvβ

)

+ (νusinθsinφ)2 X̃2

(
νuα + νvβ

)

+ (νucosθ)2 X̃3

(
νuα + νvβ

)
, (16)

βT T̃ I
�

(
ανu + βνv

)
β

= −2νvcosθcosφ�̃1

(
νuα + νvβ

)

− 2νvcosθsinφ�̃2

(
νuα + νvβ

)

+ 2νv sinθ�̃3

(
νuα + νvβ

)
. (17)

III. ALGORITHM

We see from (14) and (15) that the directional X-ray
transform p

θ θ
θ is composed of only the solenoidal component

containing three unknowns X1, X2, X3. Thus, the solenoidal
component can be reconstructed from the X-ray transform p

θ θ
θ

around three axes. Based on (16) and (17), we acquire p
β β

θ
around three axes (more likely the same three axes), together
with solutions for X1, X2, X3, to reconstruct the irrotational
component.

A. Solenoidal Component Reconstruction Using pθ θθ

For convenience, we identify projections p
θ θ
θ rotating about

the x, y and z axes as Px , Py , Pz and consider reconstructing
the three unknowns X1, X2, X3.

For projections acquired around the x-axis, φ in (3) is 90◦,
θ1 = (0, sinθ , cosθ), α1 = (−1, 0, 0), β

1
= (0,− cos θ , sinθ).

By summing (14) and (15), we have

P̃x
(
νu1, νv1

) = ν2
v1

X̃1

(
νu1α1 + νv1β1

)

+ (νu1cosθ)2 X̃2

(
νu1α1 + νv1β1

)

+ (νu1sinθ)2 X̃3

(
νu1α1 + νv1β1

)
. (18)

Similarly, for projections acquired around the y-axis, φ in
(3) is 0◦, θ2 = (sin θ , 0, cosθ), α2 = (0, 1, 0), β

2
= (− cos θ ,

0, sinθ). We can write p̃
θ θ
θ as:

P̃y
(
νu2, νv2

) = (νu2cosθ)2 X̃1

(
νu2α2 + νv2β2

)

+ ν2
v2

X̃2

(
νu2α2 + νv2β2

)

+ (νu2sinθ)2 X̃3

(
νu2α2 + νv2β2

)
. (19)

For projections acquired around the z-axis, θ in (3) equals
90◦, θ3 = (cosφ, sinφ, 0), α3 = (−sinφ, cosφ, 0), β

3
=

(0, 0, 1). We have

P̃z
(
νu3 , νv3

) = (νv3sinφ)2 X̃1

(
νu3α3 + νv3β3

)

+ (
νv3cosφ

)2
X̃2

(
νu3α3 + νv3β3

)

+ ν2
u3

X̃3

(
νu3α3 + νv3β3

)
. (20)

In these three equations, the zenith angle θ and the azimuth
angle φ are not necessarily the same, neither are vectors α
and β. Hence the corresponding coefficients of the vectors,
νv and νu vary according to (18) - (20). This is why we add
subscripts 1, 2, 3 to indicate the difference.

To solve (18) - (20) for X̃1, X̃2 and X̃3, we need to change
their coordinates to the global coordinate system

(
νx , νy, νz

)
so that the three equations are sampled in the same 3D grid.
With the coordinate transformation as

[νx , νy, νz]T = νu1α1+νv1β1
= [−νu1,−νv1cosθ, νv1sinθ ]T ,

[νx , νy, νz]T = νu2α2 + νv2β2
=[−νv2cosθ, νu2 , νv2sinθ ]T ,

[νx , νy, νz]T = νu3α3 + νv3β3
= [−νu3sinφ, νu3 cosφ, νv3 ]T ,

(21)

T̃ S

(ν) = 2π i

⎡
⎢⎣
ν2

y X̃3(ν)+ ν2
z X̃2(ν) −νyνx X̃3(ν) −νzνx X̃2(ν)

−νxνy X̃3(ν) ν2
z X̃1(ν)+ ν2

x X̃3(ν) −νzνy X̃1(ν)

−νxνz X̃2(ν) −νyνz X̃1(ν) ν2
x X̃2(ν)+ ν2

y X̃1(ν)

⎤
⎥⎦

T̃ I
�(ν) = 2π i

⎡
⎣ 2νx �̃1(ν) νy�̃1(ν)+ νx �̃2(ν) νz�̃1(ν)+ νx �̃3(ν)

νy�̃1(ν)+ νx �̃2(ν) 2νy�̃2(ν) νz�̃2(ν)+ νy�̃3(ν)

νz�̃1(ν)+ νx �̃3(ν) νz�̃2(ν)+ νy�̃3(ν) 2νz�̃3(ν)

⎤
⎦ (13)
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we change (18) - (20) to:
P̃x
(
νx , νy, νz

) = (
νy/cosθ

)2
X̃1
(
νx , νy, νz

)
+ (νx cosθ)2 X̃2

(
νx , νy, νz

)
+ (νx sinθ)2 X̃3

(
νx , νy, νz

)
, (22)

P̃y
(
νx , νy, νz

) = (
νycosθ

)2
X̃1
(
νx , νy, νz

)
+ (νz/sinθ)2 X̃2

(
νx , νy, νz

)
+ (

νysinθ
)2

X̃3
(
νx , νy, νz

)
, (23)

P̃z
(
νx , νy, νz

) = (νzsinφ)2 X̃1
(
νx , νy, νz

)
+ (νzcosφ)2 X̃2

(
νx , νy, νz

)
+ (νx/sinφ)2 X̃3

(
νx , νy, νz

)
. (24)

Notice that νv1 , νv2 and νu3 each has two expressions,
νv1 = −νy/cosθ = νz/sinθ , νv2 = −νx/cosθ = νz/sinθ ,
νu3 = −νx/sinφ = νy/cosφ.

Using Cramer’s rule [48], the solutions of X̃1, X̃2 and X̃3
to the system of linear equations are:
X̃1

= (b2c3 − b3c2)P̃x + (b3c1 − b1c3) P̃y + (b1c2 − b2c1) P̃z

a3b1c2 + a2b3c1 + a1b2c3 − a2b1c3 − a3b2c1 − a1b3c2
,

X̃2

= (a3c2 − a2c3)P̃x + (a1c3 − a3c1) P̃y + (a2c1 − a1c2) P̃z

a3b1c2 + a2b3c1 + a1b2c3 − a2b1c3 − a3b2c1 − a1b3c2
,

X̃3

= (a2b3−a3b2)P̃x + (a3b1 − a1b3) P̃y + (a1b2 − a2b1) P̃z

a3b1c2 + a2b3c1 + a1b2c3 − a2b1c3 − a3b2c1 − a1b3c2
,

(25)

where

a1 = (νy/cosθ)2 = (νz/sinθ)2, b1 = (νxcosθ)2,

c1 = (νxsinθ)2,

a2 = (νycosθ)2, b2 = (νz/sinθ)2 = (νx/cosθ)2 ,

c2 = (νysinθ)2,

a3 = (νzsinφ)2, b3 = (νzcosφ)2,

c3 = (νx/sinφ)2 = (νy/cosφ)2.

Once solving for X̃1, X̃2 and X̃3, we can evaluate X1,
X2, X3 via the inverse Fourier transform. However, interpo-
lating from polar to Cartesian coordinates in direct Fourier
reconstruction produces angular aliasing artifacts in the recon-
structed image [49]. Hence, we reconstruct X1, X2, X3 slice
by slice as in CT with a filtered back-projection method using
an external Hamming window. Using a filtered back-projection
reconstruction by filtering in frequency space or providing a
convolution reconstruction in real space also suppresses high
frequency noise providing smoother results.

Taking X1 as an example. It can be denoted as the 3D
inverse Fourier transform as

X1 (x, y, z)

=
∞∫

0

∞∫
0

∞∫
0

X̃1
(
νx , νy, νz

)
e2π i(xνx+yνy+zνz)dνxdνydνz . (26)

If we transform the coordinates according to [νx , νy, νz]T =
[−νu,−νvcosθ, νvsinθ ]T , (26) becomes

X1 (x, y, z)

=
2π∫

0

∞∫
0

∞∫
0

X̃1 (νu , νv , θ)e
2π i(−xνu−yνvcosθ+zνv sinθ)

× νvdνudνvdθ,

=
π∫

0

∞∫
−∞

∞∫
−∞

X̃1 (νu, νv , θ)e
2π i(−xνu−yνvcosθ+zνv sinθ) |νv |

× dνudνvdθ. (27)

With the same coordinate transformation, the expression of
X̃1 in (25) becomes

X̃1 (νu , νv , θ)

= − (νv)2 P̃x +(νucosθ)2 P̃y +((sinθ)2νv
)2 (

1+(cosθ)2
)

P̃z(
(cosθ)3νuνv

)2 + (νvsinθ)4 − (νvsinθcosθ)4 − (νv )
4
.

(28)

Substituting this expression into (27) for X̃1, we obtain
in (29), as shown at the bottom of the next page.

The first integral is the same as the back-projection in a
classic filtered back-projection (FBP) algorithm. The inner
double integral can be seen as the inverse Fourier transform
of the sum of three terms is obtained in (30), as shown at the
bottom of the next page. Here each term is the projection along
one axis filtered by the product of the characteristic ramp filter
|νv | and a factor of coordinate transformation.

We denote the inverse Fourier transform of the above three
terms as Mx ,My and Mz, and rewrite (29) as

X1 (x, y, z) =
∫ π

0
[Mx (−x,−ycosθ + zsinθ, θ)

+ My (−x,−ycosθ + zsinθ, θ)

+ Mz (−x,−ycosθ + zsinθ, θ)]dθ. (31)

This is the back-projection of the filtered projections
Mx ,My and Mz . Similar expressions can be derived for X2
and X3. Then the solenoidal component is calculated accord-
ing to (9). However, to avoid the differentiation in computing
the solenoidal components in (9), we use the differentiation
property of Fourier transform in (30). For example, instead of
implementing ∂2 X1/∂z2 after X1 is ready, we multiply terms
in (30) with −ν2

z X̃1 and then back-project the sum to directly
obtain the result.

The algorithm to reconstruct the solenoidal component
of the tensor field is summarized below as Reconstruction
1. In the implementation, we simulate p

θ θ
θ around x, y, z

axes to obtain projections Px , Py , Pz . Then P̃x
(
νu1, νv1

)
,

P̃y
(
νu2, νv2

)
, and P̃z

(
νu3 , νv3

)
are calculated via the 2D

Fourier transform of these projections. We transform the
coordinate system according to (21) to keep projections around
three axes sampled in the same grid. After that, X1 (x, y, z)
can be calculated by filtering the projections as in (30) and
then back-projecting the filtered projections as in (31).
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Reconstruction 1 Solenoidal Component From p
θ θ
θ

Input: Directional X-ray Projections Px , Py , Pz

for m = x, y, z do
Compute P̃m : 2D Fourier transform of Pm and interpolation

according to (21)
Compute M̃m : Filter P̃m according to (30)
Compute Mm : Inverse Fourier transform of M̃m

end for
X1 = Back-project Mx ,My and Mz, according to (31)
Similarly obtain X2 and X3
Output: the solenoidal component according to (9)

B. Irrotational Component Reconstruction Using p
β β

θ

To reconstruct the irrotational component, we use Qx , Qy ,

Qz to identify projections p
β β

θ acquired rotating about x, y and
z axes and reconstruct the three unknowns �1, �2 and �3.

For projections acquired around the x-axis, φ in (3) is 90◦,
thus summing (16) and (17):

Q̃x
(
νu1 , νv1

)
= (

νu1 sinθ
)2

X̃2

(
νu1α1 + νv1β1

)
+ (νu1cosθ

)2
× X̃3

(
νu1α1 + νv1β1

)
− 2νv1cosθ�̃2

(
νu1α1 + νv1β1

)

+ 2νv1sinθ�̃3

(
νu1α1 + νv1β1

)
. (32)

For projections acquired around the y-axis, φ equals 0◦
in (3), thus:

Q̃y
(
νu2, νv2

) = (
νu2 sinθ

)2
X̃1

(
νu2α2 + νv2β2

)

+ (
νu2cosθ

)2
X̃3

(
νu2α2 + νv2β2

)

− 2νv2cosθ�̃1

(
νu2α2 + νv2β2

)

+ 2νv2sinθ�̃3

(
νu2α2 + νv2β2

)
. (33)

For projections acquired around the z-axis, θ is 90◦ in (3),
hence:

Q̃z
(
νu3, νv3

) = (
νu3cosφ

)2
X̃1

(
νu3α3 + νv3β3

)

+ (
νu3sinφ

)2
X̃2

(
νu3α3 + νv3β3

)

+ 2νv3�̃3

(
νu3α3 + νv3β3

)
. (34)

In these three equations, X̃1, X̃2 and X̃3 have been calcu-
lated as discussed in Section A. We then subtract terms of
X̃1, X̃2 and X̃3 from Q̃x , Q̃y and Q̃z in (32)-(34) to form the
following expressions Ñx , Ñy and Ñz in terms of the three
unknowns �1, �2 and �3:

Ñx
(
νu1, νv1

)
= Q̃x

(
νu1, νv1

)− (νu1sinθ
)2

X̃2

(
νu1α1 + νv1β1

)

− (
νu1 cosθ

)2
X̃3

(
νu1α1 + νv1β1

)
,

= −2νv1cosθ�̃2

(
νu1α1 + νv1β1

)

+ 2νv1sinθ�̃3

(
νu1α1 + νv1β1

)
, (35)

Ñy
(
νu2 , νv2

)
= Q̃y

(
νu2, νv2

)− (νu2sinθ
)2

X̃1

(
νu2α2 + νv2β2

)

− (
νu2 cosθ

)2
X̃3

(
νu2α2 + νv2β2

)
,

= −2νv2cosθ�̃1

(
νu2α2 + νv2β2

)

+ 2νv2sinθ�̃3

(
νu2α2 + νv2β2

)
, (36)

Ñz
(
νu3, νv3

)
= Q̃z

(
νu3, νv3

)− (νu3 cosφ
)2

X̃1

(
νu3α3 + νv3β3

)

− (
νu3 sinφ

)2
X̃2

(
νu3α3 + νv3β3

)
,

= 2νv3�̃3

(
νu3α3 + νv3β3

)
. (37)

Likewise, to solve (35)-(37) for �1, �2 and �3, we change
to the global coordinate system

(
νx , νy, νz

)
:

Ñx
(
νx , νy, νz

) = 2νy�̃2
(
νx , νy, νz

)+ 2νz�̃3
(
νx , νy, νz

)
(38)

Ñy
(
νx , νy, νz

) = 2νx �̃1
(
νx , νy, νz

)+ 2νz�̃3
(
νx , νy, νz

)
(39)

Ñz
(
νx , νy, νz

) = 2νz�̃3
(
νx , νy, νz

)
(40)

X1 (x, y, z) =
π∫

0

∞∫
−∞

∞∫
−∞

− (νv )2 P̃x + (cosθνu)
2 P̃y + ((sinθ)2 νv

)2 (
1 + (cosθ)2

)
P̃z(

(cosθ)3 νuνv
)2 + (sinθνv)4 − (sinθcosθνv )4 − (νv )

4

× e2π i(−xνu−yνvcosθ+zνv sinθ) |νv | dνudνvdθ (29)

M̃x (νu, νv , θ) = − (νv)2 P̃x (νu, νv , θ)(
(cosθ)3νuνv

)2 + (sinθνv)4 − (sinθcosθνv)4 − (νv )
4

|νv |

M̃y(νu, νv , θ) = (cosθνu)
2 P̃y(νu, νv , θ)(

(cosθ)3νuνv
)2 + (sinθνv)4 − (sinθcosθνv)4 − (νv )

4
|νv |

M̃z(νu, νv , θ) =
(
(sinθ)2νv

)2 (
1 + (cosθ)2

)
P̃z(νu, νv , θ)(

(cosθ)3νuνv
)2 + (sinθνv)4 − (sinθcosθνv)4 − (νv )

4
|νv | (30)
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After coordinate system transformation, the solutions of �̃1,
�̃2 and �̃3 are:

�̃1 = Ñy − Ñz

2νx

�̃2 = Ñx − Ñz

2νy

�̃3 = Ñz

2νz
(41)

Like the reconstruction of X1, we reconstruct �1 with
projections around the x-axis. Exchanging νx , νy and νz to
νu , νv in (41), we have

�̃1 = Ñy − Ñz

−2νu
. (42)

The 3D inverse Fourier transform of �̃1 is

�1 (x, y, z)

=
∞∫

0

∞∫
0

∞∫
0

�̃1
(
νx , νy, νz

)
e2π i(xνx+yνy+zνz)dνxdνydνz.

(43)

We transform νx , νy and νz to νu and νv :

�1 (x, y, z)

=
2π∫

0

∞∫
0

∞∫
0

�̃1 (νu, νv , θ)e
2π i(−xνu−yνvcosθ+zνv sinθ)

× νvdνudνvdθ.

Substituting the expression for �̃1:

�1 (x, y, z)

= −
2π∫

0

∞∫
0

∞∫
0

Ñy − Ñz

2νu
e2π i(−xνu−yνvcosθ+zνv sinθ)νvdνudνvdθ

= −
π∫

0

∞∫
−∞

∞∫
−∞

Ñy − Ñz

2 |νu | e2π i(−xνu−yνvcosθ+zνv sinθ) |νv |

× dνudνvdθ. (44)

Let

L̃ y = Ñy

2 |νu | |νv | ,

L̃z = Ñz

2 |νu | |νv | , (45)

then taking the inverse Fourier transform, we have �1 (x, y, z)
obtained by the back-projection of L y and Lz :

�1 (x, y, z) =
π∫

0

[L y (−x,−ycosθ + zsinθ, θ)

− Lz (−x,−ycosθ + zsinθ, θ)]dθ. (46)

�2 and �3 can be derived similarly.
The algorithm to reconstruct the irrotational component

of the tensor field is presented below as Reconstruction 2.

We also implement a hamming window in the filtered
back-projection method based on the expressions for �1, �2
and �3. The implementation to reconstruct the irrotational
component is the same as that for solenoidal component
presented in Reconstruction 1.

Reconstruction 2 Irrotational Component From p
β β

θ

Input: Directional X-ray Projections Qx , Qy , Qz

for m = x, y, z do
Compute Q̃m : 2D Fourier transform of Qm

Compute Ñm : Subtract Q̃m according to (35)-(37) and
interpolate according to (21)

Compute L̃m : Filter Ñm

Compute Lm : Inverse Fourier transform of L̃m

end for
Reconstruct �1: Back-projection according to (46)
Similarly obtain �2 and �3
Output: the irrotational component according to (12)

IV. IMPLEMENTATION

The following presents how we implemented the simulation
study to assess our algorithm. In particular we used two
phantoms, one a discrete numerical phantom and the other
a realistic diffusion tensor field of an excised human heart.

A. Discrete Representation of the Tensor Field
The discretized tensor field was stored as a 9 × N3 matrix,

containing the nine elements of the second rank tensor field
for each voxel of an N × N × N voxel grid. Projection data
were represented by a 3 × nθ × h × w matrix, where for each
of the 3 rotation axes (X, Y and Z axes), h × w tomographic
projections were acquired at nθ angular steps with h being the
number of two-dimensional slices and w being the radius of
rotation.

B. Phantoms

1) A Simple Illustrative Phantom: The first phantom was
constructed using (9) and (12) from two balls of uniform inten-
sities placed in a 128 × 128 × 128 array as shown in Fig. 2(a).
Six 128 × 128 × 128 arrays were assembled, such that in each
array the two balls took on one of the scalar values for X1, X2,
X3,�1, �2 and�3 in Fig. 2(b). Thus, each array had two balls
with the same constant value and a uniform background. Using
first and second order partial derivatives as shown in (9) and
(12), solenoidal and irrotational components were generated
separately, and then summed to obtain the tensor field for the
phantom. The generated solenoidal, irrotational components
and tensor field only contain the borders of the balls, the other
space is 0. Fig. 3 (a), (b), (c) display the x-y slice through the
center of the 9 elements for the solenoidal component, the
irrotational component, and the sum forming the tensor field
for the phantom, respectively.

2) Cardiac Diffusion Tensor Image: The second phantom
used for the simulations in this work was a cardiac diffusion
tensor image that was obtained by scanning a normal excised
human heart with a 4-element phased array coil on a 1.5 T
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Fig. 2. Six scalar fields were used to form the tensor field using (9)
and (12). (a) Illustration of the central transaxial slice through the two
balls that were assigned the scalar values in the table (b) for the tensor
potential (X1, X2, X3) and the vector potential (Φ1, Φ2, Φ3).

GE CV/I MRI Scanner (GE Medical System, Waukesha,
WI). Details about the heart and acquisition parameters are
described in [50].

The diffusion tensor T was obtained from [50] as eigen-
vectors ε1, ε2 and ε3 with eigenvalues λ1, λ2 and λ3 for
λ1 ≥ λ2 ≥ λ3 ≥ 0. The data set was arranged in a 256 ×
256 × 134 array for each eigenvector and eigenvalue, with a
voxel size of 429.7 μm × 429.7 μm ×1000 μm. Denoting V
as the matrix of eigenvectors and D = diag (λ1, λ2, λ3) as
the diagonal matrix of eigenvalues, the diffusion tensor was
computed from T = V DV T . The 9 elements of the cardiac
diffusion tensor phantom are shown in Fig. 4, which were
reformulated from the eigenvalues and eigenvectors.

C. Forward Model

We used the same method to generate the projections for the
simple numerical phantom and the heart diffusion tensor field
calculated using the eigenvectors and eigenvalues. Both the
phantom and projections had the same pixel size. A discrete

version of the scalar projections pθ θθ and p
β β

θ were formed

using ray tracing. For example, taking p
θ θ
θ acquired around

the x-axis, φ in (3) is 90◦ and θ = (0, sinθ , cosθ). Due to
symmetry, tyz is the same as tzy . Our approach generated each
projection one angle (one θ value in this example) at a time
for the directional X-ray transform

pθ θθ =
∞∫

−∞
θT T

(
tθ + uα + vβ

)
θdt

=
∞∫

−∞

(
tyysin2θ + 2tyzsinθcosθ + tzzcos2θ

)
dt .

Using ray-tracing, the contribution of each voxel to the
integral was calculated by multiplying the length of the
voxel intersection with the ray multiplied by the value of
the tensor elements (tyy , tyz and tzz) times their coefficients
(sin2θ , 2sinθcosθ and cos2θ) in the voxel. For each of the
three rotation axes, the phantom rotated through 180◦ in 1◦
increments so that a total of 540 parallel projections were
formed about three axes.

D. Evaluation

To evaluate the difference between the reconstruction results
and the phantom, we used the relative 2-norm error by
summing the normalized difference between the reconstruction
and the true value for each tensor element and for each
first principal eigenvalue, as in (47) and (48), shown at the
bottom of the next page. Here the difference is calculated for
each voxel i and normalized by the difference between the
maximum true value and the minimum true value in the N
voxels of the region of interest (ROI).

Fractional anisotropy (FA) was also used to deduce the accu-
racy of the reconstructions. FA gives the degree of anisotropy
of a diffusion process and is defined using the eigenvalues (λ1,
λ2 and λ3) of the tensor:

FA =
√

3

2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

(49)

where λ = λ1+λ2+λ3
3 .

To evaluate the noise property of the algorithm, we cal-
culated the signal-to-noise ratio (SNR) for the first principal
eigenvalue of the reconstructions, which is defined:

SN R = mean(λ1)

σλ1

(50)

where mean (λ1) and σλ1 are the mean and the standard
deviation of the reconstructed tensor principal eigenvalue λ1
in the ROI, respectively.

V. RESULTS

A. A Simple Illustrative Phantom

1) Solenoidal Component: Both the qualitative and quanti-
tative results show that the algorithm is accurate in recon-
structing the solenoidal component of the simulated tensor
field for the simple illustrative phantom. We reconstructed
the solenoidal component according to Reconstruction I. The
reconstructed image matrix was 128 × 128 × 128, the same
as that of the phantom. Fig. 5 shows the central slice, where
the three columns from left to right form the nine elements
of the phantom (as defined in Fig. 3(a)), the reconstructed
image, and their profiles along the red line in the first column
in Fig. 5(a). The profiles of the reconstructed image match
those of the phantom.

Table I summarizes for each tensor element the results of
the errors calculated according to (47). The errors are small
(<0.0008). Due to symmetry of the tensor, Txy and Tyx are
identical, so are Txz and Tzx; and Tyz and Tzy.

2) Irrotational Component: Fig. 6 presents each element
of the estimates through the center slice of the irrotational

component for the simulated phantom. The projections p
β β

θ

acquired around three axes were reconstructed following the
steps in Reconstruction 2. Profiles in Fig. 6 indicate the
similarity between the reconstructed images and the phantom.
We calculated the relative error for each reconstructed element
of the reconstructions as listed in Table I. The errors are small
but mostly larger than those for the solenoidal component.
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Fig. 3. The x-y slice through the center of the 9 elements for (a) solenoidal component, (b) irrotational component and (c) tensor field.

Fig. 4. Nine elements of cardiac diffusion tensor phantom.

3) Tensor Field: The reconstruction of the tensor field is
obtained by summing the solenoidal component and the irro-
tational component. The x-y slice through the center of the
9 elements of the reconstructions together with that of the

TABLE I
THE RELATIVE ERROR CALCULATED ACCORDING TO (47)
FOR EACH ELEMENT OF THE SOLENOIDAL COMPONENT,

IRROTATIONAL COMPONENT AND TENSOR FIELD

FOR THE SIMPLE ILLUSTRATIVE PHANTOM

phantom are given in Fig. 7. Some Gibbs artifacts are in the
profiles at the sharp boundaries. The quantitative results in
Table I show that the errors for the reconstructed tensor field
are small but generally larger than each of its solenoidal and
irrotational components, except for Txy/Tyx and Txz/Tzx.

B. Cardiac Diffusion Tensor Image

The solenoidal and irrotational component of the cardiac
diffusion tensor field with image matrix size of 256 × 256 ×
256 were estimated from simulated projections with Gaussian
noise added. The Gaussian noise was with zero mean and two

St (Tuv) =

∑N
i=1

⎛
⎜⎜⎝

Recon
T i

uv
−T rue

T i
uv

max
k = 1, · · · , N

(
T rue

T k
uv

)
− min

k = 1, · · · , N

(
T rue

T k
uv

)

⎞
⎟⎟⎠

2

N
(47)

Se(E11) =

∑N
i=1

⎛
⎜⎜⎝

Recon
Ei

11
−T rue

Ei
11

max
k = 1, · · · , N

(
T rue

Ek
11

)
− min

k = 1, · · · , N

(
T rue

Ek
11

)

⎞
⎟⎟⎠

2

N
(48)
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Fig. 5. Reconstruction of the solenoidal component of the phantom. (a) The x-y slice through the center of the 9 elements of the phantom, (b) The
x-y slice through the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example in (a).

Fig. 6. Reconstruction of the irrotational component of the phantom. (a) The x-y slice through the center of the 9 elements of the phantom, (b) The
x-y slice through the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example in (a).

Fig. 7. Reconstruction of the tensor field of the phantom [solenoidal + irrotational]. (a) The x-y slice through the center of the 9 elements of the
phantom, (b) The x-y slice through the center of the 9 elements of the reconstructed image, (c) Profiles in each element along the red line as example
in (a).

different standard derivations (0.01 and 0.02). Summing the
reconstructed solenoidal and irrotational components resulted
in the complete tensor field. The reconstructions were then
transformed into a matrix formulation of the eigenvalues and
eigenvectors.

The first principal eigenvalues for three slices are shown in
Fig. 8 and the relative errors are listed in Table II for the first
principal eigenvalue calculated according to (48). Fig. 9 gives
the FA calculated according to (49) for the same three slices.
Also, Table III lists the SNR calculated according to (50).
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Fig. 8. First principal eigenvalue of reconstructed image with Gaussian noise SD = 0.01 [solenoidal + irrotational] (left); reconstructed image with
Gaussian noise SD = 0.02 [solenoidal + irrotational] (middle); and profiles along the red line (right). The series of images from top to bottom are
slice 78, slice 128, slice 160, respectively.

TABLE II
THE RELATIVE ERROR FOR FIRST PRINCIPAL EIGENVALUES OF THE

CARDIAC DIFFUSION TENSOR PHANTOM, CALCULATED ACCORDING TO

(48), FOR DIFFERENT NOISE LEVELS IN THREE SLICES. THE

ERROR INCREASES WITH THE NOISE VARIANCE

TABLE III
THE SNR (AS IN (50)) FOR THE FIRST PRINCIPAL EIGENVALUES OF

THE CARDIAC DIFFUSION TENSOR PHANTOM FOR DIFFERENT

NOISE LEVELS IN THREE SLICES

In each slice, we chose a relatively uniform ROI to calculate
the SNR, which has a value range from 1.65 to 2.53. We can
see more degradation in the image quality with higher noise
level.

VI. DISCUSSION

This study provides the derivation of a new filtered back-
projection algorithm for the reconstruction of tensor fields
from data acquired about three axes. The tensor field is

decomposed into solenoidal and irrotational components, both
of which have three unknown elements. Fourier projection
theorem provides relationships between the Fourier transform
of the directional X-ray projections and the Fourier transform
of the solenoidal and irrotational components of the tensor
field [37]–[40]. In solving for the three unknowns in the
solenoidal and irrotational component, new filters are formed
involving coefficients of three equations times the characteris-
tic ramp filter [see expressions (30) and (45)]. Different from
previous work acquiring projections about at least six [51] or
three orthogonal axes [43], our proposed algorithm provides
the possibility for using projections about three axes to solve
the unknowns of the solenoidal and irrotational component
separately. The three axes for acquiring projections p

θ θ
θ for

the solenoidal component are the same as the three axes for

acquiring projections p
β β

θ for the irrotational component. All
derived formulas lead to an analytical reconstruction algorithm
for a tensor field from projections acquired about three axes.

A. Summary of Results

The proposed algorithm provides estimates of a total of
6 unknowns, 3 for the solenoidal and 3 for the irrotational
component of the tensor field. Two phantoms were used to
evaluate our algorithm. One was a numerical phantom with
no special imaging modality in mind from which we could
test our algorithm. Potential values were assigned to the
solenoidal and irrotational components. Using the definition of
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Fig. 9. FA of reconstructed image with Gaussian noise SD = 0.01 (left);
reconstructed image with Gaussian noise SD = 0.02 (right). The series of
images from top to bottom are slice 78, slice 128, slice 160, respectively.

the curl and gradient in equations (7) and (10), the calculation
of the partial derivatives formed tensor elements with two
spherical surfaces with interior and background equal to zero.
The operations for calculating the gradient and curl were
done numerically; thus, the numerical phantom has relatively
sharp boundaries but not δ-function singularities on the border
of the corresponding spherical shells as one would expect
of an analytical reconstructed tensor field. We choose the
particular tensor field to evaluate the algorithm performance; in
particular, to evaluate the algorithm performance of potential
Gibbs artifacts at sharp boundaries. If one wants to inter-
pret the phantom for a particular imaging modality, such as
X-ray dark-field imaging, one might construe the phantom
to be two spherical surfaces that are imbedded in a uniform
background of material with microstructure having anisotropic
small-angle scatter at the boundary of the surfaces but virtually
no anisotropic small-angle scatter in the background mater-
ial, only isotropic scatter that attenuates the signal with no
anisotropic structure. We see in Fig. 5-7 that the algorithm
gives reconstructed results, where at the boundary of the
spherical surfaces there are undershoots and overshoots of
reconstructed values compared to the original phantom values.

The second phantom was a cardiac diffusion tensor field
that was obtained by scanning a normal excised human heart
on a 1.5 T GE CV/I MRI Scanner (GE Medical System,
Waukesha, WI). Transforming the tensor matrix to its diagonal

form provides a singular value decomposition with singular
values (eigenvalues), which specify the principal eigenvector
with potentially positive and negative elements that one could
consider in the first phantom provide the principal direction
of the scatter and in the second phantom provide the principal
direction of the diffusion relative to the Cartesian coordinate
system in Fig. 1. In Fig. 8 the eigenvalues, determined from
the reconstructed tensor field of the cardiac diffusion tensor
phantom, have larger errors in the reconstruction when noise is
added to the projections. These errors are demonstrated better
in the FA images in Fig. 9. Our calculations of the signal to
noise ratio (SNR) for the first principal eigenvalues (Table III)
ranged between 9 and 18, which is low but in line with what
one would expect in a single MR-DTI with typical values of
15:1 to 30:1 [52]. It is likely that the noise in the original
cardiac tensor image is amplified with the addition of noise in
the projections as shown in Table II.

B. X-Ray and Radon Projections of Tensor Fields

Our work in this paper focused on developing a filtered
back-projection algorithm for reconstructing longitudinal and
transverse X-ray projections, in the same way reconstruction
algorithms can be developed for Radon projections of second
rank tensor fields [36], [40], [44], [53]–[55]. To illustrate
the differences between X-ray and Radon projections, let
x = (x, y, z) be a point in R3 and let the components
ti j (x) of a second rank symmetric tensor field T (x) be
real, rapidly decreasing C∞ functions defined on R3. For
the tensor field T (x), the 3D directional X-ray transform of
T (x) is defined by p

a b
θ (s; θ) = ∫

R aT T (s + lθ)bdl, and the
3D directional Radon transformation of T (x) is defined by
r

a b
θ

(
t; θ) = ∫ 3

R aT T
(
x
)

bδ
(
x · θ − t

)
dx . These are scalar

projection measurements in the direction of θ formed by the
product of the tensor T with the three-dimensional unit vectors
a and b. For this work we focused primarily on the X-ray
scalar projection measurements of the tensor field for vectors
a and b equal to combinations of the orthogonal vectors
θ = (sinθcosφ, sinθsinφ, cosθ)T , α = (−sinφ, cosφ, 0)T

and β = (−cosθcosφ,−cosθsinφ, sinθ)T in developing a
filtered back-projection reconstruction algorithm. In this paper
we demonstrate that there is indeed a reconstruction algorithm
for transvers reconstruction tomography for a general tensor
field using data from only three rotation axes. The method
first performs a slice-by-slice reconstruction of six functions
by two-dimensional back-projection and filter methods. The
components of the tensor field are related to these functions
by a linear operator with coefficients that are rational functions
of the Fourier transform variables.

C. Solution for Three Orthogonal Axes

It has been shown in other work [42], [55] that three
orthogonal chosen directions are sufficient for reconstruction
of a tensor field. It has also been shown [33], [34], [36]
that three orthogonal axes are sufficient for a full recovery
of a vector field from slice-by-slice vector field tomography.
In [33] an efficient mollifier methodwas proposed for the three-
dimensional vector tomograph problem. The mollifier method
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originally proposed by Louis in 1990 [56] is seen throughout
his group’s work [35], [36], [44] and provides an approximate
solution to a continuous inverse problem which one might
see very similar to the determination of a regularized solution
in the implementation of discrete Bayesian reconstruction
methods. For the tensor tomography problem there isthe
longitudinal projection in addition to a transverse projection
[34], [43] needed for every projection angle to solve for the
6 unknown tensor elements, whereas only one longitudinal
projection for each angle is required for the vector tomography
problem. For stability it is proposed that 3 orthogonal axes
are needed to recover vector fields and 6 orthogonal axes
are needed to recover tensor fields [34]. Different from these
works, our filtered back-projection algorithm uses longitudinal
and transverse projections about three orthogonal axes to solve
the unknowns of the solenoidal and irrotational component
separately.

D. Helmholtz Decomposition

1) Unbounded Domains: It was shown by Sharafutdinov
in [47], that a smooth symmetric tensor field which vanishes
rapidly at infinity can be decomposed in a unique way as
ti j (x) = t S

i j (x)+ 1
2 (∂iϕ j (x)+ ∂ jϕi (x)) where ϕ(x) is a vector

potential and TS(x) is a symmetric solenoidal tensor field,
which is divergence free:

∑
i ∂i t S

i j (x) = ∑
j ∂ j t S

i j (x) = 0.
Here we considered a similar decomposition of a symmetric
tensor field T : T (x) = T S


(x)+ T I
�(x), where the symmetric

divergent-free solenoidal component T S

(x) is the curl of a

tensor potential, T S

(x) = ∇ ×
(x), and the symmetric irro-

tational component T I
�(x) is the gradient of a vector potential,

T I
�(x) = ∇�(x) + [∇�(x)]T [37]. This formulation provides

a parameterization of the solenoidal and irrotational compo-
nents each by three scalar functions [(9), (12), and Appendix].
This combines the results of Sharafutdinov [47] with that
of the Helmholtz decomposition [57] for vector fields where
the solenoidal component is the curl of a vector potential
and the irrotational component is the gradient of a scalar
potential. We showed in this paper a solution for the solenoidal
and irrotational components involves a reconstruction using
the Fourier filter back-projection algorithm. Another example
o decomposing tensor field into solenoidal and irrotational
components to solve for both the tensor elements and poten-
tials is presented in [44]. A solution on general differential
manifolds is presented in [41] providing an explicit inverse
formula for reconstruction of the solenoidal component of a
second rank tensor field from projections acquired about three
axes. Different from these decompositions is thesingular value
decomposition of a dynamic acquisition of 2-tensors in R2

ued to solve the inverse of the dynamic tensor projections
[58]. This is to our knowledge the first application of tensor
tomography to a dynamic acquisition of tensor projections.

2) Bounded Domains: The application of our algorithm to
bounded domains is an interesting study. The early work
related to vector field tomography on bounded domains
resulted in several papers [22], [24], [25], [59]. Specifically,
Braun and Hauck [24] recognized that bounded domains admit
harmonic vector fields that are both irrotational and solenoidal.

Therefore, the decomposition into irrotational and solenoidal
components is not unique. In their paper, they proposed that
the decomposition should be V = V S + V I + VH , where
V S = ∇ ×
 , V I = ∇�, and VH is the harmonic component
of the vector field satisfying ∇T VH = 0 and ∇ × VH = 0.
The solenoidal component V S is homogeneous in the sense
that the normal component of V S is zero on the boundary and
is totally tangential to the boundary. The curl-free component
V I is homogenous in the sense that the tangential compo-
nent of V I vanishes on the boundary and is exactly normal
to the boundary. If these Neuman boundary conditions for
vector fields are satisfied, then fewer scalar projections are
required. A complete summary of work since these early days
related to vector tomography can be found in [35]. For tensor
tomography Louis et al. [36] claimed that the reconstruction
on a bounded domain has no unique solution, but claimed
the solenoidal part can be uniquely determined because it
is overdetermined.Recent work of McGraw et al. [60] shows
how the decomposition of the tensor field on a bounded
domain provides a solenoidal and irrotational component with
an addition of a homogeneous component. The generalized
Helmholtz decomposition on bounded domain is given by
Dij = ∂iφ j + εimn

(
∂mψnj

) + Hij , where the harmonic
tensor field,

[
Hij
]
, is both solenoidal and irrotational and

typically is of small magnitude [60], [61]. The paper by
McGraw et al. [61] gives some visual examples of the decom-
position of tensor fields where it is shown that the harmonic
component is a constant background of low intensity.

In our work we took the approach of Sharafutdinov [47]
and assumed that the tensor field that we are reconstructing
is a sufficiently smooth symmetric tensor field which vanishes
rapidly at infinity. We recognize that this may be a stretch
if applied to medical images such as the heart where there
can be sharp contrast at organ boundaries that may produce
background artifacts. Our cardiac diffusion tensor field was
obtained from an MR imaging experiment and thus may not
have a unique decomposition, whereas the numerical phantom
of the two spherical surfaces was designed to have a unique
decomposition of the solenoidal and irrotational components
by constructing the phantom as the sum of a particular
solenoidal and irrotational components. For the reconstruction
of the cardic diffusion tensor field some of the mismatch
between the results and the the original tensor field may be a
harmonic tensor field of small magintude. We speculate that
the same would be true for the reconstruction of a tensor
field on a bounded domain, i.e., using our decomposition and
algorithm would result in a non-uniqueness (missing part) of
a constant homogeneous background of low intensity.

Work in vector tomography has also shown that if the con-
stant attenuator of the scalar projections is known, then only
longitudinal scalar projections in the direction of the projection
angle [62] are required to reconstruct the vector field. Later
Natterer [63] showed that transverse scalar projections would
only be required; however, in practice these measurements
can be difficult to acquire. Previously we investigated this
for vector [64] and tensor [65] fields by simulating atten-
uated projections of scalar measurements around one orbit.
The results indicated that the elements of the vectors are
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recovered, whereas components of the tensor field are not fully
recovered.

E. X-Ray Dark-Field Imaging

1) X-Ray Tensor Tomography (XTT): Of particular interest to
us is the application of tensor tomography in X-ray dark-field
imaging of fiber orientation in tissue. The X-ray tensor tomog-
raphy (XTT) method [8], [66] divides the reconstruction of
tensor fields into two steps: first to reconstruct coefficients of a
Cartesian vector representation at each voxel; and then fit the
estimated vector coefficients to an ellipsoidal representation
of the second rank tensor at each voxel. The forward model
represents the small-angle scatter as the discrete supposition
of the anisotropic scatter signal, much like the Beer–Lambert
model for the X-ray attenuation signal [66]. Vogel et al. [67]
formulated the reconstruction of the ellipsoidal representa-
tion of the fixed basis set of vectors as a regular inverse
problem whereby an iterative reconstruction algorithm is used
to estimate vector coefficients constrained by an ellipsoidal
function. Iterative approaches have advantages in addition
to modeling noise, to provide constraints on the solution.
A Bayesian approach adding constraints to XTT was pursued
by [68] who proposed a cost function with regularization to
iteratively reconstruct simultaneously attenuation, phase, and
scatter images (with independent penalty functions) from dif-
ferential phase contrast acquisitions, without the need of phase
retrieval. In our work we performed simulations evaluating the
model of [8], [67] with the reconstruction of coefficients for a
fixed basis set of 7 vectors. The coefficients were reconstructed
from Moiré fringe analysis of single-exposure dark-field pro-
jections obtained from X-ray bi-prism interferometry [69].
Wieczorek et al. [12] modified the forward model [8], [67] to
develop an anisotropic X-ray dark-field tomography (AXDT)
method by replacing the discretization of the scatter function
as a fixed basis set of vectors at each voxel with a spherical
harmonic expansion. They demonstrated signific differences
in the results between XTT and AXDT in the small-angle
scatter indicating that the spherical harmonic approach may be
a more general representation of the small-angle scatter than
the tensor approach. Early on a different forward model was
proposed by Bayer et al. [9] where instead of a vector basis
expansion; the isotropic scatter contribution, the anisotropic
scatter contribution, and the in-plane scatter angel was mod-
eled using a sinusoidal expansion where coefficients were
reconstructed from X-ray dark-field projections using Talbot-
Lau grating interferometry. More recently, Kim et al. [14]
proposed the use of a periodic array of multi-circular gratings
for Talbot-Lau interferometry instead of linear gratings to
capture 2D-omnidirectional X-ray scattering signals within a
single projection shot, removing the necessity of rotation of
the sample relative to the gradient alignment. In this work
vector coefficients were reconstructed following the model of
Malecki et al. [8], [66].

2) Reciprocal Space Representation of X-Ray Scatter: Other
groups investigated the possibility of directly reconstructing
a q-vector representation of reciprocal space as a measure of
the small-angle scatter (SAXS) from direct dark-field mea-
surements using X-ray raster scanning [10], [11]. The use of

raster scanning to measure small-angel X-ray scatter (SAXS)
is a valuable imaging technique to obtain which q-vectors are
probed for each projection. A virtual tomography axis is pre-
sented where projection-dependent rotation matrix describes
the relationship between laboratory and sample coordination
systems. Schaff et al. [13] later investigated the possibility of
instead of using raster scanning, using XTT data obtained from
Talbot-Lau X-ray grating interferometry to fit models of recip-
rocal space representation of small-angle scatter. Ellipsoids are
fit to the reconstructed results. As with the use of spherical
harmonics in real space representation of scatter, spherical
harmonics were also used for the basis representation of
q-vectors in reciprocal-space modeling of small-angle scatter
from data obtained with X-ray raster scanning [10], [70].
To improve the speed of the reconstruction, a fast iterative
back-projection reconstruction algorithm [46] was designed to
directly reconstruct elements of a second rank tensor. This was
the first tensor tomography approach to directly reconstruct
elements of a second rank tensor representation of small-angle
scatter from dark-field projections. The tensor representation
of the projections was transverse corresponding to the direction
of the sensitivity of the gratings.

3) Scatter as a Tensor: In many of these approaches the
question arises as to whether sufficient data is obtained to
uniquely reconstruct the coefficients of the models used to
represent the small-angle scatter. We know from our work
presented in this paper with that of using a filter back-
projection algorithm, 3 orthogonal axes obtaining 6 sets of
projections provide 6 independent equations to solve for the
6 unknows of a tensor representation of small-angle scatter.
However, specific orientation dependence of small-angle scat-
ter and the non-linear function of the underlying anisotropic
mass distribution brings into question as to whether a tensor
representation is a correct model of the anisotropic small angel
scatter [15]. Graetz [15] investigated whether two approxima-
tive linear tensor models with reduced orientation dependence
were applicable models of small-angle scatter for grating based
X-ray or neutron dark-field tensor tomography. In so doing he
showed that X-ray dark-field scatter could be approximated
as a tensor and using X-ray interferometry, longitudinal and
transverse directional measurements could form scalar direc-
tional tensor projections. Simulations verified that in using
tomographic applications with full sampling over a sphere,
these linear tensor models can recover orientations up to a
statistical accuracy on the scale of 1◦. However, if the tensor
representation was reconstructed using only a minimal set
of three circular acquisition trajectories, principal orientations
for isolated volume elements could still be recovered to a
statistical accuracy of 5◦ to 10◦.

F. Magnetic Resonance Imaging

1) Diffusion Tensor Magnetic Resonance Imaging (DT-MRI):
The application of tensor tomography in MR diffusion tensor
imaging is more in question as to its applicability since
most of MRI acquisition schemes (protocols, pulse sequences)
acquire data that directly map Fourier space requiring no
tomography, only an inverse 2D or 3D Fourier transform to
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directly obtain the real space image. Even more changeling is
the work in the last two decades in developing better diffusion
models for brain tractography – where the brain covers a wide
range of spatial scale of anatomy from global structure of
white matter fiber tracts to microstructure of axons–that go
beyond the tensor representation [71], [72]. Some of these
methods are modification of the diffusion tensor model; here
we present three examples: 1) Neurite Orientation Disper-
sion and Density Imaging (NODDI) distinguishes between
intracellular, extracellular, and cerebrospinal fluid (CSF) com-
partments by assuming the diffusion signal is the sum of
diffusion signals from multiple compartments [73]. Multi-
compartment models are limited in modeling bending and
fanning fiber configurations in a voxel and in determining the
correct number of compartments [74]. 2) Diffusion Kurtosis
imaging (DKI) is another class of methods aimed at using a
fiber orientation distribution function (fODF) [75] to estimate
a fiber orientation which is important for tractography and
connective analysis by way of a diffusion orientation function
(dODF). DKI is a statistical measure of the deviation from a
Gaussian distribution [which is the assumed distribution for
diffusion tensor imaging (DTI)], and thus, DKI provides a
significantly more complete characterization of water diffusion
and tissue structure. This technique is largely based on the
same type of pulse sequences employed for DTI, but DKI
requires multishell diffusion MRI (dMRI) at higher b values
than those conventionally utilized for DTI analysis. 3) Q-space
diffeomorphic reconstruction (QSDR). Other limitations of
DTI relate to its inability to independently resolve crossing
fibers and sensitivity to partial volume effects (PVE) as in
studies using dODF to characterize the diffusion distribution.
To overcome these effects, the spin distribution function (SDF)
can be obtained from generalized Q-sampling imaging (GQI),
where SDF represents the proportion of spins undergoing dif-
fusion in different orientations. Notice this is like thecase with
developing models of X-ray small-angle scatter, investigation
of reciprocal space to obtain a q-space representations of
small-angle scatter in tissue as a better model of small-angle
scatter than a tensor representation. Q-space diffeomorphic
reconstruction calculates the transformed SDFs in any given
deformation field that satisfies diffeomorphism.To overcome
some of these problems Karimi et al. [71] proposed to learn
a direct mapping between the diffusion measurements in the
q-space and the target fODF by using deep neural networks
to learn the relationship between the DW-MRI signal and
the fiber orientation distribution. The estimation of an fODF,
on the other hand is sensitive to noise and prone to predicting
false fibers, while other possible methods such as diffusion
spectrum imaging (DSI) require a very large number of
measurements that can lead to unrealistic scan times.

2) Diffusion Tensor Tomography Magnetic Resonance
Imaging (DTT-MRI): Our previous work focused on developing
diffusion tensor tomography magnetic resonance imaging
(DTT-MRI) for the heart; one the most difficult organs to
perform MR diffusion tensor imaging (MR-DTI) due to
motion and the length of time required to obtain adequate
images. For ex vivo samples we have acquired images
for up to 12 hours on 3T small animal systems [76].

It can take a long time to acquire an MR diffusion tensor
image of the heart with sufficient signal to noise, making
it impractical for human imaging, though recent imaging
times have significantly improved [19], [77]–[79]. For this
reason, in our previous attempts to measure the heart fiber
structure required in constructing mechanical models of
the heart, we investigated ways of reducing the number of
measurements (pulse repetitions), such as measuring and
reconstructing only the principal eigenvectors in order to
reduce the acquisition times but to provide some structural
information of cardiac fiber structure [80]. With the hope that
the heart fiber structure could be specified from its solenoidal
tensor field, we also performed simulations of reconstructing
solenoidal and irrotational images of a numerical helical heart
phantom (representing a section of the mid-ventricular wall
of the left ventricle) from scalar Radon projections (note: not
X-ray projections) of the phantom [53]. Sampling projections

around a single axis, we found Radon projections r̃α αθ , r̃
α β

θ ,

and r̃
β β

θ were needed for each projection θ to reconstruct
the three unknowns in the solenoidal tensor field and Radon

projections r̃
θ θ
θ , r̃

θ α
θ , and r̃

θ β

θ were needed to reconstruct the
three unknowns in the irrotational component of the tensor
field [53]. In this work, we found that a realistic model of
the helical fiber structure of the myocardial tissue specifies
a diffusion tensor field for which the first principal vector
(the vector associated with the maximum eigenvalue) of
the solenoidal component accurately approximates the first
principal vector of the diffusion tensor.

G. Summary

The second, third, and fourth rank tensors describe a wide
range of physical phenomena with potential imaging appli-
cations. Second rank tensors are used to represent diffusiv-
ity [81], mechanical stress and strain [82], electromagnetic
quantities [83] and physics related to gravity [84]. Third rank
tensors have been used to describe the apparent bidirectional
reflectance distribution function (BRDF) in face relighting
applications [85]. Fourth rank tensors can approximate the
diffusivity function from the DW-MRI data guaranteeing the
symmetric positive-definite property [75]. Other applications
include, X-ray strain imaging of crystals, specifically inverting
the transverse ray transform of the projections of the dif-
fraction pattern [51], neutron strain imaging of crystals [51],
[86], photoelasticity strain imaging of crystals [87], travel
time seismology studying the inner structure of the earth to
determine the anisotropic index of refraction of the medium
involving the mathematical challenge of determining a sym-
metric second rank tensor Riemannian metric from its integrals
along geodesics [88]–[90], neutron tomography of magnetic
vector fields in bulk materials [91], optical tomography of
dielectric tensors [92], tomographical imaging of electrical
and magnetic sources in brain and heart [93], [94], and tissue
magnetic susceptibility tensor MR imaging [95].

In our previous work we performed simulations evaluating
the reconstruction of the coefficients for a fixed basis set
of 7 vectors from Moiré fringe analysis of projections of
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a single-exposure of dark-field scatter obtained from X-ray
bi-prism interferometry [69]. To obtain a tensor representation
would have involved performing a second step of fitting the
estimated vector coefficients to an ellipsoidal representation of
the tensor at each voxel [8], [67]. In our simulations of this
previous work, we used a wave optics approach to simulate
the projections; whereas, in the present work we did not
simulate a specific imaging modality but evaluated our filtered
back-projection algorithm by numerically approximating the
projections of a generic numerical tensor field and a diffusion
tensor field of an excised human heart. Our future interests
involve developing algorithms to directly reconstruct the tensor
representation of small-angle scatter using X-ray bi-prism
interferometry [96]. This interest is heightened by the fact
that from the work of [15] it is appropriate to represent
small-angle scatter as a second rank tensor of which one can
measure longitudinal and transvers scalar projections of the
tensor representation of small-angle scatter using X-ray dark-
field imaging.

VII. CONCLUSION

We proposed a new filtered back-projection reconstruc-
tion algorithm to reconstruct tensor fields from projections
acquired around three axes. Using a tensor field decomposition
and Fourier projection theorem, we established relationships
between the Fourier transform of the directional X-ray projec-
tion measurements and the Fourier transform of the solenoidal
and irrotational components of the tensor field. A FBP algo-
rithm was then derived to reconstruct the solenoidal and irrota-
tional components from the directional X-ray transform of the
tensor around three axes. The decomposition of the tensor field
into solenoidal and irrotational components provides insight
into the development of algorithms for emerging medical
imaging technologies including the reconstruction of tensor
fields with sufficient samples of directional projections and
necessary orbits for the acquisition of projections for the tensor
field.

APPENDIX

TENSOR FIELD DECOMPOSITION

It was shown by Sharafutdinov [47], that a smooth
symmetric tensor field which vanishes rapidly at infinity
can be decomposed in a unique way as ti j = t S

i j

(
x
) +

1
2

(
∂iφ j

(
x
)+ ∂ jφi

(
x
))

, where φ(x) is a vector potential that
yields a curl free irrotational tensor field and t S

i j

(
x
)

is a
symmetric solenoidal tensor field, which is divergence free:∑

i ∂i t S
i j (x) = ∑

j ∂ j t S
i j (x) = 0. If we take the Fourier

transform, we see that
∑

i σi t̃ S
i j

(
σ
) =∑ j σ j t̃ S

i j

(
σ
) = 0.

In our paper we considered a similar decomposition, but
explicitly specify the solenoidal component as a curl of a
tensor potential as is done in the Helmholz vector field decom-
position with a vector potential. We consider the following
decomposition of a symmetric tensor field T :

T (x) = T S



(
x
)+ T I

�

(
x
)

where the solenoidal component T S

(x) is a symmetric tensor

and is divergence free and T I
�(x) is a curl free symmetric

tensor. We write the solenoidal component as T S

(x) = ∇ ×


(x), where


(x) =
⎡
⎣
x x 
xy 
xz


yx 
yy 
yz


zx 
zy 
zz

⎤
⎦ (x).

A correct interpretation of the curl of a second rank tensor is
the vector curl operation applied to each column of 
 , whereas
the formal definition of the curl of a second rank tensor
is [37], [61]

∇ ×
(x)

=

⎡
⎢⎢⎢⎢⎢⎣

∂
zx

∂y
− ∂
yx

∂z

∂
zy

∂y
− ∂
yy

∂z

∂
zz

∂y
− ∂
yz

∂z
∂
x x

∂z
− ∂
zx

∂x

∂
xy

∂z
− ∂
zy

∂x

∂
xz

∂z
− ∂
zz

∂x
∂
yx

∂x
− ∂
x x

∂y

∂
yy

∂x
− ∂
xy

∂y

∂
yz

∂x
− ∂
xz

∂y

⎤
⎥⎥⎥⎥⎥⎦
(x),

with elements defined by

tkl =
3∑

i=1

3∑
j=1

∇i
 j lεi j k ,

where εi j k , as shown at the bottom of the next page, is
the permutation tensor (Levi-Civita symbols): Next take the
Fourier transform of ∇ ×
(x)

∇̃ ×
(σ)

=
⎡
⎣ σy
̃zx − σz
̃yx σy
̃zy − σz
̃yy σy
̃zz − σz
̃yz

σz
̃x x − σx 
̃zx σz
̃xy − σx 
̃zy σz
̃xz − σx
̃zz

σx 
̃yx − σy
̃x x σx
̃yy − σy
̃xy σx 
̃yz − σy
̃xz

⎤
⎦

× (σ ).
Divergence free:

∑
i ∂i t S

i j (x) = ∑
j ∂ j t S

i j (x) = 0 implies∑
i σi t̃ S

i j (σ ) =∑ j σ j t̃ S
i j (σ ) = 0 thus

σx

[
σy
̃zx − σz
̃yx

]
+ σy

[
σz
̃x x − σx
̃zx

]

+ σz

[
σx
̃yx − σy
̃x x

]
= 0

⇒ [
σyσz − σyσz

]

̃x x = 0

σx

[
σy
̃zy − σz
̃yy

]
+ σy

[
σz
̃xy − σx 
̃zy

]

+ σz

[
σx
̃yy − σy
̃xy

]
= 0

⇒ [
σzσx − σxσz

]

̃yy = 0

σx

[
σy
̃zz − σz
̃yz

]
+ σy

[
σz
̃xz − σx 
̃zz

]

+ σz

[
σx
̃yz − σy
̃xz

]
= 0

⇒ [
σxσy − σyσx

]

̃zz = 0

If we choose 
̃x x = 
̃yy = 
̃zz = 0 and ∇̃ ×
(σ) is a
symmtric tensor then

−σx
̃zx = σy
̃zy ⇒ 
̃zx = −σy

σx

̃zy

σx 
̃yx = −σz
̃yz ⇒ 
̃yx = −σz

σx

̃yz

−σy
̃xy = σz
̃xz ⇒ 
̃xy = −σz

σy

̃xz
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εi j k =

⎧⎪⎨
⎪⎩

+1 (i, j, k) is an even permutation of indices

−1 (i, j, k) is an odd permutation of indices

0 otherwise

Choosing 
̃xz = −σy X̃1, 
̃yz = σx X̃2, 
̃zy = −σx X̃3,
we obtain

−σx 
̃zx = σy
̃zy ⇒ 
̃zx = −σy

σx

(
−σx X̃3

)

σx
̃yx = −σz
̃yz ⇒ 
̃yx = −σz

σx

(
σx X̃2

)

−σy
̃xy = σz
̃xz ⇒ 
̃xy = −σz

σy

(
−σy X̃1

)


̃zx = −σy

σx

(
−σx X̃3

)
= σy X̃3


̃yx = −σz

σx

(
−σx X̃2

)
= −σz X̃2


̃xy = −σz

σy

(
−σy X̃1

)
= σz X̃1

With 
̃x x = 
̃yy = 
̃zz = 0 and taking the inverse Fourier
transform of the elements 
̃ab, we have


(x) =

⎡
⎢⎢⎢⎢⎢⎣

0
∂X1

∂z
− ∂X1

∂y

−∂X2

∂z
0

∂X2

∂x
∂X3

∂y
− ∂X3

∂x
0

⎤
⎥⎥⎥⎥⎥⎦
(x),

and

T S



(
x
) = ∇ ×
(x)

=

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2 X3

∂y2 + ∂2 X2

∂z2 −∂
2 X3

∂y∂x
−∂

2 X2

∂z∂x

−∂
2 X3

∂x∂y

∂2 X1

∂z2 + ∂2 X3

∂x2 −∂
2 X1

∂z∂y

−∂
2 X2

∂x∂z
−∂

2 X1

∂y∂z

∂2 X2

∂x2 + ∂2 X1

∂y2

⎤
⎥⎥⎥⎥⎥⎥⎦
(
x
)

Note that T S



(
x
)

is a symmetric divergence free tensor:∑
i ∂i t S

i j (x) =∑ j ∂ j t S
i j (x) = 0, for example

∂

∂x

[
∂2 X3

∂y2 + ∂2 X2

∂z2

]
− ∂

∂y

∂2 X3

∂y∂x
− ∂

∂z

∂2 X2

∂z∂x

= ∂3 X3

∂x∂y2 + ∂3 X2

∂x∂z2 − ∂3 X3

∂y2∂x
− ∂3 X2

∂z2∂x
= 0.
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