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Abstract—Graph Convolutional Neural Networks (GCNs) are
widely used for graph analysis. Specifically, in medical applica-
tions, GCNs can be used for disease prediction on a population
graph, where graph nodes represent individuals and edges
represent individual similarities. However, GCNs rely on a vast
amount of data, which is challenging to collect for a single medical
institution. In addition, a critical challenge that most medical
institutions continue to face is addressing disease prediction in
isolation with incomplete data information. To address these
issues, Federated Learning (FL) allows isolated local institutions
to collaboratively train a global model without data sharing. In
this work, we propose a framework, FedNI, to leverage network
inpainting and inter-institutional data via FL. Specifically, we
first federatively train missing node and edge predictor using
a graph generative adversarial network (GAN) to complete
the missing information of local networks. Then we train a
global GCN node classifier across institutions using a federated
graph learning platform. The novel design enables us to build
more accurate machine learning models by leveraging federated
learning and also graph learning approaches. We demonstrate
that our federated model outperforms local and baseline FL
methods with significant margins on two public neuroimaging
datasets.

Index Terms—Federated Learning, Graph Convolutional Net-
works, Population Network, Disease Prediction

I. INTRODUCTION

Neurological disorders and diseases, such as autism spectrum
disorder (ASD) and Alzheimer’s disease (AD) [1], can cause
significant social, communication, cognitive, and behavioral
challenges [2], [3]. It is highly desired to detect neurological
disorders, promoting early intervention and effective treatment
of the disease in clinics. Recent studies have applied deep
learning techniques for early disease diagnosis [4], [5], such
as convolutional neural networks (CNNs) [6], [7], recurrent
neural networks (RNNs) [8], [9], and graph convolutional neural
networks (GCNs) [3], [10]. Although CNNs and RNNs have
achieved plausible and promising results in the early diagnosis
of ASD and AD, they extract individual imaging information
independently and have limitations in exploring information
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from unlabeled individuals and the complex structure inherent
to the data, e.g., ignoring the interaction and association
between subjects in the population, failing to guarantee learning
effective models.

Disease prediction on a population can be naturally mod-
eled using graphs or networks1. Specifically, the nodes are
represented as image features and labeled by their health
condition (patients or healthy controls), while the edge that
connect two nodes capture the similarity between individuals.
GCNs can synergize the representation power of all kinds of
information on individual subjects to predict individual labels
based on partially labeled individual subjects together with
the interactions among the whole population. Hence, GCNs
are widely used for graph analysis in disease prediction. For
example, Parisot et al. applies GCN for semi-supervised
disease prediction on neuroimaging data, where nodes are
defined as subjects and an edge represents the interaction and
association between two subjects [10].

A critical challenge that most medical institutions continue
to face is addressing disease prediction in isolation without any
insight from other institutions. Specifically, multi-institutional
collaboration that centrally shares patient data faces privacy and
ownership challenges, such as general data protection regulation
(GDPR) [11] and health insurance portability and accountability
act (HIPAA) [12]. To address this issue, Federated Learning
(FL) allows isolated institutions to collaboratively ‘utilize’ their
private data without data sharing but transmit knowledge to
each other. For example, Li et al. [13] proposes to implement
a decentralized iterative optimization algorithm and preserve
the privacy of shared local model weights through differential
privacy for disease diagnosis. Yang et al. [14] proposes to
share only a partial model between the server and institutions
to automatically conduct diagnosis of COVID-19.

However, most existing FL strategies were designed for
CNNs and multilayer perceptrons (MLPs) [15], [16], while few
methods have learned to combine GCN with FL for disease
prediction [17]. Different from CNNs and MLPs with only the
feature matrix as the input, GCN has another input, i.e., the
graph containing the interaction and association information
between two subjects. If implementing GCN in FL, the global
graph will be separated into several local graphs, where edges
between local graphs are missing. When focusing on a node
with missing neighbors (an ego), the corrupted information

1Graph and network are interchangeable in our manuscript.
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destroys its original ego network structure2. Ego-network
information has shown to be important in GCN-based node
classification [19], [20]. However, the current GCN models
overwhelmingly assume that the node and edge information
are complete. As a result, simply combining GCN with the
standard cross-silo FL strategy on distributed local graphs
could undermine the effectiveness of GCN. One solution is to
connect the local graphs,but it requires sharing node information
across clients and may violate privacy regulations. Therefore,
to address this issue, network inpainting, which predicts the
missing neighbors and their associated edges, is a promising
strategy to improve the completeness of the graph for GCN
learning [21].

In this work, we propose a new FL framework for disease
prediction, FedNI, which conducts the GCN node classifica-
tion on a population graph and addresses the above issues. To
this end, we propose a two-phase FL pipeline (as shown in
Fig. 1). In the first phase, we start with training missing node
generators for network inpainting. Specifically, we randomly
remove nodes from the local graph with Breadth-First Search
(BFS), resulting in a set of corrupted graph and hidden nodes.
We train the generator to predict the hidden nodes and edges
from the corrupted graphs using spectral normalized generative
adversarial networks (SN-GAN) [23]. Then, we feed the
original local graphs to the trained missing node generator
to inpaint missing neighbors and generate new fused graph
with augmented nodes and edges. In the second phase, we
federatively train GCN for node classification on local fused
graph, where each institution iteratively trains local GCN model
weights, shares them with a global trusted administration center,
and then receives the averaged model weights.

Our main contributions are summarized as follows:

1) We are the first to formulate cross-silo federated graph
learning for disease classification using disjointed small
local graphs that are partitioned from a global population
graph. We increase the effectiveness of GCN on ego-
networks by a novel network inpainting module and
improve performance by training node generators and
node classifiers in a FL framework.

2) The proposed FL network inpainting module includes
three components to ensure its effectiveness: BFS node
removal to avoid generating isolated corrupted local
graphs; SN-GAN to synthesize nodes with realistic data
distribution; and edge construction employing both image
and non-image information to better integrate information
over the graph.

3) We conduct extensive experiments on comparisons, abla-
tion study and hyperparameter discussion. Our method
achieves 66.7% and 75.8% classification accuracy on
the widely-used ABIDE and ADNI datasets, respectively,
notably outperforming the alternative FL methods.

2An ego network is the graph of all nodes that are less than a certain
distance, such as immediate neighbors, from a focal node (“ego”) [18].

II. RELATED WORK

A. GCNs for disease prediction

Recently, there has been an increasing focus on graph
learning on unstructured data in the medical domain. For
example, Parisot et al. [10] exploits the GCN and involves
representing populations as a sparse graph in which nodes are
associated with imaging features, and phenotypic information
is described as edge weights. Hi-GCN [24] uses a hierarchical
GCN to learn the graph feature embedding for the classification
of ASD and AD.

However, two issues remain in the current GCN models.
First, the effectiveness of GCN highly relies on the quality of
the graph. When a low-quality graph is input, i.e., a graph with
missing component [19], [21], the classification performance is
affected. To address the problem of graphs containing missing
features, the most popular strategy is to estimate and fill in the
unknown values before [25], [26] or jointly with [19] applying
GCN. Different from the existing methods, we combine edge
augmentation strategies to generate fused graphs. Second, many
GCNs solely rely on a single modality, i.e., imaging data [27],
to explore the similarity between two nodes. Consequently, they
fail to comprehensively capture interactions and similarities
between subjects or their individual scans [28]. To tackle this
issue, we explore imaging and non-imaging data to represent
the population graph.

B. Federated learning for disease prediction

Federated learning (FL) [22] is a collaborative and decentral-
ized privacy protection technology, which is designed to tackle
the problem of data island while protecting data privacy [29].
Driven by the achievement of FL in data privacy protection,
FL could have wide popularization and application prospects
in data-sensitive fields, such as disease prediction. Li et
al. [30] is one of the first works that implements a practical
FL system for brain tumor segmentation. Li et al. [13] apply
FL and domain adaptation techniques on heterogeneous multi-
institutional neuroimaging data analysis. Dayan et al. [14]
promote COVID patient risks prediction via collaborating 20
hospitals in FL.

In contrast to the previous FL research, we investigate an
under-explored but realistic setting of expressing multi-centric
medical data as distributed population graphs and address
the unique challenge of FL on a local graph with missing
neighbors. The closest related work is Zhang et al. [19].
However, this work targets the general graph node classification
problem and does not consider the uniqueness of our considered
disease population network (i.e., small local subgraphs), utilize
auxiliary information (e.g., phenotypes), or consider the extreme
privacy requirement in healthcare applications. Our proposed
FedNI improves upon Zhang et al. [19] by addressing the
above limitations.

III. THE PROPOSED METHOD

The goal of our work is to enable multiple institutions to
collaboratively learn a powerful GCN model for population-
based disease prediction without data sharing. For this purpose,
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Fig. 1: The flowchart of the proposed method. Specifically, given m local hospitals and a medical administration, we construct m
local population graphs containing nodes (individual subjects), node features (imaging representations), and edges (similarities).
The links between the local nodes and the unseen nodes in the other hospitals are missing (dash links in the global graph). The
green block shows SN-GAN-based network inpainting module to predict missing nodes and generate a fused graph, which
is trained first. Then, we generate fused graphs from the pretrained generator from the original local graphs. Last, the fused
graphs are fed into the yellow block, a GCN node prediction module, to predict node labels. The missing node generators in
the local network inpainting modules and the local GCN model for node classification are trained using a FedAvg [22] scheme
coordinated by a trusted medical administration center. The detailed procedure of our proposed framework is in Algorithm 1

we first define the population graph formulation (in Sec. III-A).
Then, we propose a two-phase FL framework as shown in
Fig. 1, which contains a network inpainting module with
missing node generator and a GCN learning module for
node classification. The local network inpainting module (in
Sec. III-B) is designed to predict missing nodes and augment
edge connections, resulting in a larger fused local graph that
serves as the input to the GCN node classifier. To leverage the
distributed data, the two proposed modules are trained in a
certain FL fashion (in Sec. III-C).

A. Population graph formulation

Graph data consists of a set of nodes and a set of edges.
Each node is represented by the node feature containing the
properties of this node, while each edge implies the similarity
between two nodes. A standard approach to construct graph
edges is performing clustering based on node features. However,
this approach has two limitations. First, if node features are
high dimensional vectors, it is difficult to reveal the real local
structure due to the curse of dimensionality. Second, generating
edges using a single modality is not enough to mine the
complex relationship inherent to the graph data. To address the
above challenges, inspired by Parisot et al. [10], in this paper,

we generate edges by conducting dimensionality reduction
on the image features as well as considering the phenotypic
information of the subject.

First, we derive low-dimensional and discriminative features
from raw medical images and then use them to construct
a similarity graph S ∈ Rn×n where n denotes the number
of nodes in the population graph, aiming at reducing the
adverse influence of high-dimensional features, e.g., noisy
and redundant features as well as the curse of dimensionality.
Specifically, given the raw feature matrix X ∈ Rn×d, we
employ the Gaussian kernel to define the weight of the edge
as:

sij = exp

(
− (hi − hj)

2

2σ2

)
, (1)

where H ∈ Rn×dh(dh < d) is the low-dimensional features
extracted by dimensionality reduction algorithms (e.g., principal
component analysis and recursive feature elimination) and σ
is the width of the Gaussian kernel.

Second, we calculate node similarity from another angle
by utilizing phenotype data (e.g., sex, age and gene), aiming
at providing much information to output high-quality graphs.
Specifically, given the phenotype data matrix Uq ∈ Rn×dq
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where q (q = 1, ..., Q) denotes different types of phenotype
data, we define a phenotypic graph S̃ as

s̃ij =

Q∑
q=1

fq(uqi ,u
q
j), (2)

where Q represents the number of different phenotypes and
fq(·) is the similarity measure function for the q-th phenotype
data. As the phenotype representation’s distribution and under-
lying generation process are different from node feature, we can
pick different similarity metrics from that of node features in
Eq. 1. Particularly in this work, we define fq as I{uqi = uqj}
for sex and gene phenotype data, and I{

∥∥uqi − uqj
∥∥ ≤ γ}

where γ > 0 for age phenotype data.
Finally, we fuse the edges derived from image-based node

features (Eq. 1) and the edges derived from phenotype
information (Eq. 2) to obtain the initial graph A by performing
the Hadamard product between the similarity graph matrix S
and the phenotypic graph matrix S̃ (i.e., A = S◦ S̃). Moreover,
we sparse graph A by keeping k edges with the largest weights
for each node and setting others as zeros. Furthermore, we add
the diagonal matrix I to A (i.e., I + A→ A).

B. Network inpainting

In FL, each local graph is a subset of the global graph and
there is no overlapped nodes across the local graphs of different
institutions. Thus, if the neighbors of local graph nodes are
located in another institution, the local graph is incomplete.
Focusing on a certain node with missing neighbors, its original
ego network structure of the global graph is incomplete. Thus,
the node information of local graph is incomplete. Directly
apply GCNs on the corrupted graph with missing features may
result in degraded and unstable performance. To address this,
we first design a missing node generator to generate missing
nodes and edges for each local graph. We then conduct FL on
local missing node generators to generate new nodes and edges
to complete the ego-networks of the corrupted local graph and
augment message passing.

1) Node masking for missing node generation: A practical
approach to predict missing nodes for graph inpainting is
training a self-supervised regression model to predict the hidden
nodes and then using this model to predict missing node in
the local graphs. To accomplish this, we need to hide nodes
and edges of each local graph to construct the regression
model. In the literature, the random method is widely used to
randomly remove nodes [19], but it is not conducive for feature
propagation in the graph. Moreover, the random method may
generate isolated and disconnected components that may hurt
the completeness of the ego-network structure, resulting in sub-
optimization of the generation network. To overcome the above
issues, we propose to use the BFS algorithm to represent a
graph as a subtree structure for a given root node. The intuition
is that removing the leaf nodes in the subtree structure has little
effect on applying our selected Weisfeiler-Lehman algorithm
GCN strategy [31] to the local graph structure.

Specifically, given a connected graph G = {V,E} with a
root node vr ∈ V , we first build a BFS tree by traversing the
nodes in the graph with information broadcasts to neighbor

nodes. Based on this property, we can generate sub-graphs
by removing leaf nodes at different depths. More specifically,
selecting a root node (vr) and using the BFS algorithm on
the local graph G, we mask some nodes belonging to the b-th
depth to obtain an incomplete local graph G− as

G− = fbfs(G; vr; b). (3)

By randomly visiting the nodes of the local graph G as root
nodes and removing its leaf nodes, we can generate many
pairs (incomplete graph G−, hidden nodes) that are used as
(inputs, labels) for missing node generator training (the number
of hidden nodes usually take up 10%-15% of the total nodes
in our experiments). We further denote vk ∈ N−i as one of
masked neighbors of the node vi (vi ∈ G−), and N−i denote
the set of missing neighbors of vi. As each masked node has
its corresponding parent node in the graph G−, the goal of the
missing generator is to reconstruct the information of masked
neighbors vk by its parent node vi based on the incomplete
local graph G−.

2) Local network inpainting: After masking some nodes by
the BFS algorithm in each local graph, we need to correctly
predict the number of missing neighbors for each node as well
as the corresponding feature and phenotype information of
each missing neighbor (i.e., missing node).

As GCN [31] and its variants (e.g., GraphSAGE [32]) have
been widely used to capture semantic information and structural
information in the graph data, in this study, we employ a
GCN encoder fθg (·) to obtain the embeddings of each node
in the local graph G−. Note that GCN is more robust for
small graph data, while GraphSAGE is more flexible for
large-scale graph data [33]. Therefore, we apply GCN in this
study considering that the local population graph of a local
system is usually a small graph. Although different GNN
structures can result different performance, our primary focus
in this paper is not on different GNN structures, but on federal
learning over population graph. Therefore we choose the most
commonly used GNN structure (i.e., GCN). Concretely, with
G− = {X−,A−} where X− and A− means the feature matrix
of nodes and the graph matrix of the incomplete graph, the
embeddings are obtained by

Z = fθg (X
−,A−), (4)

where the GCN encoder fθg has several hidden layers, and
each hidden layer includes two operations, i.e., feature learning
and neighborhood aggregation. More specifically, the GCN
operation on the l-th hidden GCN layer is defined as:

f
(l)
θg

(Z(l),A) = σ(D−
1
2 AD−

1
2 Z(l)Θ(l)

g ), (5)

where D is the diagonal matrix of A, and Θ
(l)
g is a weight

matrix which needs to be trained in the l-th layer, and σ(·)
represents the function for activation operation.

Furthermore, our proposed missing node generator constructs
a regression model between the embeddings Z ∈ Rn×dz
and the ground truth to predict the number of missing
nodes/neighbors, the features and the phenotype information
of these nodes.
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Predicting the number of missing nodes. The number of
missing nodes for each parent node is predicted by

Lnum =
∑
i∈Vm

∥∥N−i − S(fθn(zi))∥∥22 , (6)

where N−i denotes the number of missing neighbors of the i-th
node which is normalized to [0, 1], fθn(·) is a MLP predictor
mapping the embedding zi ∈ Rdz to an integer, S(·) is the
sigmoid function, and zi is the embedding of vi obtained by Eq.
(4). Since the embedding zi aggregates the information from its
remaining neighbors by the GCN encoder, the predictor fθn(·)
can be used to predict various number of missing neighbors
based on the different representations of zi for vi ∈ G−.
Node feature prediction. Jointly with predicting the number
of missing nodes, we predict the feature and the phenotype in-
formation of each missing node. Specifically, we design another
regression model (i.e., a MLP), fθz (·), taking in the embedded
feature zi form the GCN encoder fθg (·) to reconstruct the
feature of each masked neighbor (e.g., vk ∈ V−, k ∈ N−i )
from its parent node vi by

x̃k = fθz (R(z−i )), (7)

where R(·) is a Gaussian noise generator for generating diverse
missing neighbors. Moreover, we introduce the reconstruction
loss Lrec to optimize the parameters θg and θz by

Lrec =
∑
i∈Vm

∑
k∈N−

i

‖xk − x̃k‖22 . (8)

The missing node generator can be regarded as an encoder-
decoder. That is, fθg (·) is the GCN encoder which considers
the incomplete graph information (i.e., G−), while fθz (·) is the
MLP decoder for reconstructing the features of masked neigh-
bors. However, it is challenging to make the features generated
by the generator realistically match the data distribution of the
missing neighbors. To do this, we adopt the SN-GAN [23] to
improve the effectiveness of the generator. Specifically, letting
X be the original data distribution and X̃ be the generated
data distribution, we obtain the generator loss by

Lgen = −Ex̃∼X̃ [1− log (fθd(x̃))] , (9)

where fθd(·) denotes the discriminator to evaluate the gap
between generated features and the features of hidden neighbors.
Integrating reconstruction loss (Eq. 8) with generator loss (Eq.
9), the final loss for feature reconstruction is formulated as:

Lfea = αLrec + βLgen, (10)

where α and β are the weights of Lrec and Lgen, respectively.
The discriminator fθd(·) is trained to identify if the feature
comes from the generator or the real missing neighbor.

Ldis = − E
x∼X

[1− log (fθd (x))]− E
x̃∼X̃

[log(fθd(x̃))] . (11)

In sum, the features of missing nodes are reconstructed by
node feature predictor fθz (·) in Eq. (7), which is optimized
by reconstruction loss (Eq. (8)) and GAN loss (Eq. (9) and
Eq. (11)).

As the features of missing nodes may not be enough to
explore the complex structure across subjects in a disease

population network, we further predict the phenotype to obtain
the connections (i.e., edges) for missing nodes.
Phenotype prediction and edge construction. Given the
number of missing nodes as well as their features, we use
both the phenotype information of these nodes and their node
property to find the connection between each missing node and
known nodes. In this respect, we first adopt a model fθu(·) to
predict the phenotype information for masked nodes and then
find the connection between two nodes.

For the k-th masked neighbor of the parent node vi, the
q-th type of phenotype prediction ũqk is generated by ũqk =
fθu(R(z−i )), where z−i and R(·) are defined as in Eq. (7). For
phenotype data with class labels (e.g., sex and gene), we adopt
the cross-entropy loss function to update model parameters

Lpheno=
∑
i∈V

∑
k∈N−

i

(uqk log(ũ
q
k)+(1− uqk) log(1− ũqk)) , (12)

where uqk is the phenotype label. Similarly, age prediction can
be optimized by regression losses.

It is worth noting that our FedNI’s local graph inpainting
strategy significantly differs from that used by Zhang et
al. [19]. The differences are as follows: 1) We improve random
node masking to BFS-based node masking to avoid generating
isolated components in local graph; 2) We incoperate SN-GAN-
based training scheme and novel loss functions to improve the
quality of generated node features, instead of requiring auxiliary
information from the other local graphs that can expose more
privacy risk; 3) In addition to predicting missing node feature,
we also predict its associated phenotype to construct weighted
edges; 4) The phenotype is further used to rebuild new edges
to augment message passing. The advantages of our strategies
are verified in Sec. IV-C.

After obtaining the phenotype information of each missing
node, we can generate edges for these missing nodes by the
same way as described in Sec. III-A.

C. Federated learning

Although the missing node generator is able to generate
missing nodes for each local graph, it is well known that
GAN may perform poorly on small data [34]. Similarly,
training an effective GCN model for node classification
also requires a large amount of samples. With the privacy
constraints on analyzing multi-institutional medical data, the
proposed FedNI includes two FL phases: i) Federated network
inpainting is proposed to fill in the incomplete features of local
graphs, ii) Federated GCN is proposed to obtain a global node
classifier. Our FL strategy follows the widely used FedAvg [22]
aggregation strategy.

1) Federated network inpainting: In Sec. III-B1, we describe
a local missing node generator for each local system. To
empower the node generator, we aim to federatedly learn a
global node generator that leverages the local graphs from
different institutions without centralizing the data. However,
we keep the discriminator local as we notice averaging the
discriminator can hurt model performance (shown in Sec IV-C).
The intuition is that the generator should predict missing nodes
following the data distribution of the global population network,
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while local discriminators can fit the heterogeneity of local
graphs better. To achieve this goal, the FL process is to repeat
the following steps until convergence: i) each local missing
node generator (including the number of nodes predictor fθn
trained on Eq. (6), node feature generator fθg trained on Eq.
(10), and phenotype regression fθu trained on Eq. (12)) is
trained in parallel and updated; ii) the global missing node
generator on the medical administration side aggregates and
averages the local model parameters, and then broadcasts the
updated model weights to all the local missing node generators.

After the global missing node generator is well trained and
deployed to each local institution, we do graph merge by
performing network inpainting as inference on the original
local graphs Gm in institution m, for m ∈ [M ]. As described
in Sec. III-B, our proposed missing node generator predicts the
number of missing neighbors ñi, missing node feature x̃i, and
their phenotype information ũi for node vi, for vi ∈ Gm. We
further build new edges from the predicted nodes and existing
nodes following the edge construction method illustrated in
Sec. III-A. We denote the new fused local graph of institution
m as Gm+ = (Xm+,Am+).

2) Federated GCN node classification: As the ultimate goal
of our method FedNI is to obtain a global GCN node classifier,
we perform a federated GCN learning method to collaboratively
train on multiple local graphs while maintaining data privacy.
After obtaining the fused local graphs Gm+(m ∈ [M ]) for all
local institutions, we iteratively apply FedAVG [22] on GCN
as follows: i) train each local GCN node classifier for a certain
number of steps and then share GCN weights to the medical
administration center, and ii) update the global GCN node
classifier by averaging local GCNs’ parameters and broadcast
the updated global GCN to local institutions.

Specifically for the local GCN node classifier training, the m-
th institution trains a local GCN node classifier fφm(·) with the
fused graph Gm+ and its output is Pm = fφm(Xm+,Am+),
where fφm(·) is expressed as Eq. (5) with learning parameters
φm. Furthermore, the cross-entropy loss is regarded as the loss
of the local GCN model:

Lmce = −
∑
i∈Ym

L

(ymi log(p
m
i ) + (1− ymi )log(1− pmi )) , (13)

where Y mL is the set of labeled nodes on the m-th local system.
At the t-th iteration, the parameters φtm of the m-th local model
are updated (i.e., φt+1

m ← φtm−η∇Lmce(Xm+;Am+;Ym)) and
sent to the server subsequently.

3) Privacy preservation techniques: Recent work reveals
that input data can be reconstructed from the shared model
parameters [35]. To enhance the security of FedNI, we employ
differential privacy (DP) [36], which is a popular approach
to privacy-preserving FL. For the parameters of local models,
i.e., missing node generator and GCN node classifier, shared
from local institutions to the medical administration center, we
add Gaussian noise with mean 0 and standard deviation as
0.01 to local model weights to satisfy differential privacy in
this work. Above all, we present the detailed procedure of our
proposed framework in Algorithm 1.

Algorithm 1 Algorithm of FedNI.
1: Require: Data owners set {G1, . . . ,GM}, server S, local network

inpainting model with weights θmG = {θmg , θmz , θmn , θmh } for generator
and θmd for discriminator, local GCN classifier fφm (·) with weights φm
on m-th client, and the noise generator of differential privacy T (·).

2: First-phase: Training missing node generators under FL setting (Run
Procedure A and Procedure C iteratively)

3: Obtain fused graphs: {G1+, . . . ,GM+}. Network inpainting inference
4: Second-phase: Training GCN node classification under FL setting (Run

Procedure B and Procedure D iteratively)
5: On the server side:
6: procedure A FEDERATEDNETWORKINPAINTING
7: for t← 1, 2, · · · , do
8: θ̃mG,t+1 ← LOCALNETWORKINPAINTING(Gm+, θmG,t, θ

m
d,t, t)

9: θG,t+1 ← 1
M

∑
m∈[M ] θ̃

m
G,t+1 and broadcast to local clients.

10: end for
11: end procedure
12: procedure B FEDERATEDGCNNODECLASSIFICATION
13: for t← 1, 2, · · · , do
14: Collect φ̃mt+1 ← LOCALGCNCLASSIFIER(Gm+, φmt , t)

15: φt+1 ← 1
M

∑
m∈[M ] φ̃

m
t+1, and broadcast to local clients.

16: end for
17: end procedure
18: On the data owners side:
19: procedure C LOCALNETWORKINPAINTING(Gm, θmG , θ

m
d , t)

20: for tc ← 1, 2, · · · do
21: {Lfea,Lpheno,Lnum} ← Eq. (10), Eq. (12), Eq. (6) and back

propagation. Ldis ← Eq. (11) and interval back propagation.
22: end for
23: Send θmG,t+1 + T (t+ 1) to Sever S
24: Gm+ ← Feedforward(Gm, θmG ) . Network inpainting inference
25: end procedure
26: procedure D LOCALGCNCLASSIFIER(Gm+, φm, t)
27: for td ← 1, 2, · · · do
28: Lmce ← Eq. (13), and back propagation
29: end for
30: Send φmt+1 + T (t+ 1) to Sever S
31: end procedure

Data ABIDE ADNI
Information ASD HC MCI AD
Subject # 485 544 492 375
Gender*

(Female/Male) 71/414 145/399 223/269 166/209

Age*
(Mean±Std)

17.19
(±10.07)

16.52
(±8.91)

72.89
(±7.53)

75.60
(±7.81)

TABLE I: Demographic information of studied subjects in
ABIDE and ADNI. (Std: standard deviation). ASD: autism
spectrum disorder, HC: healthy control, MCI: mild cognitive
impairment, and AD: Alzheimer’s disease. The term ∗ denotes
that there is no significant difference (p > 0.05) between ASD
and NC, MCI and AD groups in terms of gender/age via
two-tailed two sample t-test.

IV. EXPERIMENTS

We evaluate the effectiveness of our FL method on neuro-
disorder classification of two real brain disease datasets: Autism
brain imaging data exchange (ABIDE) [37] and Alzheimer’s
disease neuroimaging initiative (ADNI) [38].

A. Experimental setup

1) Datasets: The demographic information of the subjects
in the used datasets and are listed in Table I.

ABIDE includes 1029 subjects from ABIDE-I and ABIDE-
II, i.e., 485 ASD patients and 544 healthy controls (HC) with
functional magnetic resonance imaging (fMRI) data. The fMRI
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data are pre-processed using the data processing assistant
for resting-state fMRI (DPARSF [39])3. The registered fMRI
volumes are partitioned into 122 regions-of-interest (ROIs)
using the Bootstrap Analysis of Stable Clusters (BASC-122)
template. We construct a 122×122 FC network for each subject,
where each node is an ROI and the edge weight is the Pearson’s
correlation between the time series of BOLD signals of paired
ROIs. We use the upper triangle of the fully connected matrix
to represent a subject, yielding a 7, 503-dimensional feature
vector.

ADNI includes 911 subjects with T1 MRIs from ADNI-
1, ADNI-GO and ADNI 2 (i.e., 375 AD patients and 536
mild cognitive impairment (MCI) subjects.) The structural
MRI data are pre-processed by the following operations: (1)
anterior commissure-posterior commissure (AC-PC) correction,
the resampled images adopt the standard 256×256×256 mode,
and the N3 algorithm [40] applied to correct the non-uniform
tissue intensity; (2) skull removal and cerebellectomy; (3)
spatial normalization to the MNI template with 3×3×3 mm3

resolution; (4) spatial smoothing using a full width at half
maximum Gaussian smoothing kernel with a size of 6 mm.
We use FreeSurfer [41] to preprocess brain tissue (white and
gray matter and cerebrospinal fluid) of a T1 MRI [42] and
extract anatomical statistics, getting a 345-dimensional feature
vector. We also apply z-score normalization of each feature
vector separately, considering the heterogeneity for different
measurements.

Layer Details

1 G-conv(D, 256) + ELU
2 G-conv(256, 64) + ELU
3 FC(64, 1) +Sigmoid
4 Random-vector(4)
5 Linear(68, 128) + ReLU+BN(128)
6 Linear(128, 256) + ReLU+BN(256)
7 FC(256, D) + tanh
8 Linear(D, 32) ReLU
9 FC(32, 2)

TABLE II: Network architecture of the missing node generator.

Layer Details

1 SN-Linear(D, 128) + ReLU
2 SN-Linear(128, 32) + ReLU
3 SN-Linear(32, 1)

TABLE III: Network architecture of the discriminator.

Layer Details

1 G-conv(D, 64) + ELU
2 G-conv(64, 32)
3 FC(32, 2)

TABLE IV: Network architecture of the GCN node prediction
module.

3Downloaded from http://rfmri.org/dpabi.

2) Model training Setting-up: We list the detailed settings
for FL and implementation platforms as follows.
Federated learning settings. Given the population size of
ABIDE and ADNI, we set the number of institutions to
5 (i.e., M = 5) for both datasets for all methods except
CentralGCN which is trained on the whole dataset. For both
datasets, we equally and randomly divide subjects into 5 subsets
and assign each subset to an institution4. Specifically, each
institution has 206 subjects for the ABIDE dataset and 182
subjects for the ADNI dataset. Following Kipf et al. [31],
we use full-batch training on our small local graphs. We use
Adam as our optimizer and set the learning rate as 0.001 for all
the experiments. We detail the training iterations for different
methods in Sec. IV-B.
Implementation platform and experimental factors control.
All experiments are implemented in PyTorch and conducted
on a server with 8 NVIDIA GeForce 3090 GPUs (24 GB
memory for each GPU). The labeled rate is set to 80% and the
training/testing data is split according 5-fold cross-validation.
We obtain the author-verified codes for all comparison methods
and follow the advice of parameter settings in the corresponding
literature so that all comparison methods achieve the best
performance on each dataset. Additionally, all methods (in-
cluding our method) use the same settings for the original
graph structure, the train/test partitioning, the dimension of the
networks and the training procedures. Besides, Tables II-IV
present the used network architectures of the missing node
generator, the discriminator and the GCN node prediction
module, which are implemented with the PyTorch framework.
A graph convolution layer is represented by ‘G-conv’, and a
batch normalization layer is denoted by ‘BN’. We use ‘Linear’
to denote a linear transformation layer and ‘FC’ to denote a
fully-connected layer for classification. The ‘ReLU’ is used as
the non-linearity function, and ‘ELU’ denotes the exponential
linear unit. The sigmoid function is represented by ‘sigmoid’,
and the hyperbolic tangent function is denoted as ‘tanh’. In
addition, we show the channel dimension in the bracket where
D denotes the input dimension.

3) Performance evaluation: The diagnosis results of all
methods are evaluated by five evaluation metrics, including
Accuracy, Area under the ROC Curve (AUC), Precision, Recall
and F1-score. For all of these metrics, a higher value means
better performance. In all experiments, we performed 5-fold
cross-validation and repeated the experiments 5 times for each
method with random seeds to report their average performances
and corresponding standard deviation. We conduct significance
testing using the two sample t-test.

B. Comparison with alternative methods
1) Alternative methods: We compare with two centralized

methods and three FL methods. The details of the comparison
methods are listed as follows:

CentralGCN [10] assumes data are centralized and trains
a GCN model on the original global graph. The graph
construction strategy is the same as ours.

4The main goal of our work is not to handle the significant distribution
heterogeneity of data collected in different institutions. To control this factor,
we randomly divide the samples instead of clustering them by institution.
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ABIDE ADNI

Method Accuracy AUC Precision Recall F1-score Accuracy AUC Precision Recall F1-score

LocalGCN 0.600 0.598 0.580 0.559 0.560 0.703 0.695 0.666 0.637 0.643
(±0.012) (±0.011) (±0.012) (±0.017) (±0.012) (±0.016) (±0.018) (±0.022) (±0.037) (±0.028)

CentralGCN 0.655 0.654 0.635 0.633 0.633 0.757 0.750 0.734 0.691 0.710
(±0.008) (±0.008) (±0.010) (±0.015) (±0.011) (±0.007) (±0.006) (±0.013) (±0.014) (±0.008)

FedMLP 0.630 0.627 0.618 0.573 0.591 0.731 0.721 0.625 0.631 0.625
(±0.011) (±0.011) (±0.017) (±0.029) (±0.015) (±0.026) (±0.030) (±0.081) (±0.077) (±0.079)

FedGCN 0.644 0.643 0.625 0.616 0.613 0.742 0.735 0.704 0.693 0.692
(±0.009) (±0.009) (±0.011) (±0.022) (±0.012) (±0.007) (±0.009) (±0.010) (±0.014) (±0.009)

FedSage+ 0.658 0.655 0.641 0.627 0.626 0.751 0.744 0.722 0.699 0.700
(±0.006) (±0.008) (±0.013) (±0.017) (±0.009) (±0.008) (±0.010) (±0.009) (±0.015) (±0.010)

FedNI(ours) 0.667 0.663 0.647 0.640 0.637 0.758 0.754 0.725 0.721 0.717
(±0.006) (±0.007) (±0.009) (±0.014) (±0.007) (±0.007) (±0.007) (±0.008) (±0.017) (±0.011)

TABLE V: Comparison of performance (i.e., Accuracy, AUC, Precision, Recall and F1-score) in the format of mean and
standardard deviation on both ABIDE and ADNI datasets. CentralGCN indicates pulling data together. The best performance
among FL settings is highlighted.

LocalGCN follows the model architecture in CentralGCN,
but trains the GCN model exclusively on each local graph
under non-FL setting.

FedMLP [13] applies the FedAvg strategy [22] to train the
basic MLP model with individual flattened brain connectivity
matrix, without considering the population graph information.

FedGCN is built on LocalGCN by simply employing
FedAvg [22] on local GCN.

FedSage+ [19] trains a missing node generator and a
GraphSage classifier for each local graph to conduct FL. In
particular, the missing node generator is a regression model
only and it is designed to generate the features of missing nodes
without considering generating the phenotype information and
augmenting edges.

The learning epochs for centralized training methods (Cen-
tralGCN and LocalGCN) are set to 100. For FL methods, we
need to set both the local update epochs between each global
aggregation E and the local-global model communication round
T . For FedMLP, FedGCN, and FedSage+, we set E = 10 and
T = 10. As our method FedNI uses a two-phase training
strategy, we set E = 10 and T = 30 for federated network
inpainting, then E = 10 and T = 10 for federated GCN node
classification. We choose a two-phase strategy as it can stabilize
GAN training by reducing the complexity of optimization. Also,
we have observed better and stable performance compared to
the end-to-end training strategy.

2) Results and analysis: Table V summarizes the classifica-
tion performance over institutions of all methods on the two
neurological disease datasets. First, our method outperforms
all methods in terms of accuracy, AUC, precision, recall and
F1-score on two datasets. Meanwhile, we find that the improve-
ments are significant (with p < 0.05 via t-test) compared with
comparison methods. Particularly, first, our method, FedNI,
improves by 9.2% (p = 8.53e−5) on average, compared to
the vanilla population-based disease classification on siloed
institutions (i.e., LocalGCN). This indicates the necessity of
deploying FL to encourage multi-institutional collaborative
learning with privacy constraints. FedNI’s performance may
even be slightly better than that of CentralGCN, owing to

the unique FL optimization scheme that alleviates the effect
of noise data on model updating direction. it is also worth
noting that the sample of neuroimaging data is limited, thus the
neighbors generated by FedNI not only inpaint the distribution
differences between local clients, but also involve more training
nodes at the global range to get better representation. Second,
FedNI outperforms FedGCN by 3.61% (p = 1.27e−3) on
ABIDE dataset and 3.07% (p = 2.23e−3) on ADNI dataset.
To this end, FedNI also achieves better performance than
the best FL competitor FedSage+. Specifically, compared to
FedSage+, our method achieves an average improvement of
1.2% (p = 0.009), 1.4% (p = 0.013), 0.6% (p = 0.073), 2.6%
(p = 0.003), and 2.1% (p = 0.005) in terms of accuracy,
AUC, precision, recall and F1-score, respectively. These results
suggest that the effectiveness of our proposed FedNI federated
network inpainting design can achieve better federated graph
learning performance on small siloed population graphs than
the state-of-the-art (i.e., FedSage+).

C. Ablation study

In this section, we conduct extensive ablation studies to
demonstrate the necessity of the three essential techniques
in the network inpainting module (see Sec. IV-C1); verify
the rationality of federatively training generators only (see
Sec. IV-C2); and demonstrate the power of complete, more
reliable local graphs through the proposed learning mechanism
(see Sec. IV-C3).

1) Ablation on BFS, edge prediction, and discriminator:
The proposed FL local network inpainting module consists of
three essential components, including applying BFS to generate
an incomplete graph, incorporating phenotype data for edge
prediction, and using SN-GAN discriminator to improve feature
fidelity. To substantiate the superiority of these components,
comprehensive ablation studies are performed by removing
each component from our method and Fig. 2 shows how each
of the components contributes to the final performance.
Effectiveness of BFS. To evaluate the effectiveness of BFS
algorithm (i.e., Eq. (3)), we report the performance of hiding
nodes by the BFS algorithm and the random method, respec-
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Fig. 2: Ablation analysis of our method on two datasets.
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Fig. 4: Comparison with random inpainting graphs on two datasets.

tively, in Fig. 2. It can be seen that when using BFS algorithm
for hiding nodes, the average performance of AUC gains 1.0%
and 1.1% comparing with random mask on the ABIDE dataset
and the ADNI dataset, respectively.

Effectiveness of edge prediction. Edge information is an
essential element for GCN model. A missing edge and its
feature can result in incomplete ego networks on the graph,
thus hurting performance of the disease prediction. In this
part, we investigate the effectiveness of utilizing phenotype
data to predict edges. To achieve this, we replace the edge
reconstruction operation (i.e., Sec. III-B2) in our missing
node generator method with adding binarized links between
the ego nodes and their missing neighbors [19]. As can be
seen from Fig. 2, our method can achieve better performance
on all evaluation metrics. For example, we obtain the AUC
result of 0.663, which is higher than that (i.e., 0.646) of the
ablation without generating new edges. It can be concluded that
generating edges based on phenotype predictions is essential
for generating a high-quality graph.

Effectiveness of discriminator. We perform federated graph
inpainting without the discriminator (i.e., Eq. (9) and Eq. (11))
to further verify its effectiveness in our method. From Fig. 5,
we can intuitively see the feature distribution of original nodes
and generated nodes in two cases. This figure suggests that our
method with discriminator can significantly generate a more

stable feature distribution, compared with the method without
discriminator. The main reason could be that the discriminator
use spectral normalization to make discriminator satisfy the
Lipschitz hypothesis, thereby making the discriminator model
more stable. Furthermore, through this rough comparison,
it can be seen that our FedNI gets the best accuracy and
precision results in Fig 2. This suggests that our method with
discriminator can significantly generate more stable and realistic
nodes, compared to the method without discriminator.

2) Different network inpainting module training strategies:
To further investigate the effectiveness of applying FL on the
network inpainting module, we conduct experiments with four
variants of training strategy on our network inpainting module:

w/o SN-GAN

Po
pu
la
tio
n

fMRI connectivity

Original nodes
Generated nodes

fMRI connectivity

Po
pu
la
tio
n

with SN-GAN
Original nodes
Generated nodes

Fig. 5: Feature distribution of original nodes and generated
nodes in two cases: (i) Without SN-GAN. (2) With SN-GAN.
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(a) ABIDE (b) ADNI

Fig. 6: Averaged testing accuracy over all the institutions of
our method (blue surface) with different parameter settings
(i.e., α and β). The red plane represents the best results of
Fedsage+. The blue surface is always on top of the red plane.

(i) Training the generator model (i.e., G) and the discriminator
model (i.e., D) of network inpainting module under non-FL
setting (i.e., NoFL-D-G); (ii) Only the discriminator model
under FL setting (i.e., FL-D); (iii) Only the generator model
under FL setting (i.e., FL-G); (iv) Training the generator model
and the discriminator model under FL setting (i.e., FL-D-G).
Fig. 3 shows the results of the proposed network inpainting
module with four variants of FL training strategy, from which
we observe the following: (1) Applying FL on generator model
(i.e., FL-G) generally outperforms other variants of training
strategy (e.g., NoFL-D-G and FL-D). For example, the FL-G
method achieves significantly better performance (with p <
0.05 via t-test) compared with NoFL-D-G and FL-D in terms
of accuracy, AUC, precision, recall and F1-score. The main
reason could be that applying FL on the generator model can
lead the local generator model to output node features that
are more similar with the node features of other organizations.
(2) There was no significant improvement when using FL on
the discriminator, as seen from comparing FL-G with FL-G-D
and comparing NoFL-D-G with FL-D. The reason might be
that the generator can directly influence the generated features,
while the discriminator influences it indirectly. The intuition
is that the generator should predict missing nodes following
the data distribution of the global population network, while
local discriminators can fit the heterogeneity of local graphs
better. These observations further verify the effectiveness of
our strategy (FL-G only) for network inpainting.

3) Comparison with random inpainting: In practice, the
generated missing nodes and edges might be inaccurate. To
further illustrate the strength of the proposed network inpainting
method, we conduct experiments on network inpainting by
our method and random inpainting method. Specifically, for
random network inpainting method, we uniformly generate
the same number of missing nodes as our method, and
randomly generate node features based on the original feature
distribution (i.e., normal distribution) as well as edges. Fig. 4
shows the results of network inpainting using the random
network inpainting method and our method in ABIDE and
ADNI datasets. It can be seen from Fig. 4 that our FedNI
achieves consistently better performance compared to the
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Fig. 7: Classification accuracy of FedNI with fixed number of
nodes in local clients at different numbers of FL clients (from
2 to 10) on two datasets.

random inpainting method. The experiments show that the
missing nodes generated by our proposed network inpainting
method are accurate and provide more useful information for
the local GCN classifier to improve the performance.

4) The scalability of FedNI: We conduct an experiment to
investigate the scalability of FedNI in terms of the number of
FL clients (increasing the number of FL clients and keeping the
number of nodes in local clients fixed). In this way, we fix the
number of nodes in each local client (i.e., 10% of nodes in the
dataset), and increase the numbers of the clients, i.e., from 2 to
10. The more clients, the more training samples are available
for global model learning their patterns. As shown in Fig. 7, we
observe that involving more clients can improve performance
and maintain consistency. On the basis of these results, we
can concluded that FedNI has a promising scalability, as
increasing the number of clients in global scope, resulting a
better performance. In this case, if we want obtain a better
result for practical application, we can achieve this goal by
involving more clients. Importantly, we report the computation
cost of our result in Table. VI. Intuitively, this makes sense
for the scalability, as low computation cost allows involving
more FL clients to get better results.

5) The computational cost: The experiment of computa-
tional cost is implemented with PyTorch (vision 1.9) framework
and reported by four metrics, including FLOPs (G), Params
(M ), Training time (s) and Total times (s). Note that, the
proposed FedNI includes two FL phases (i.e., Federated
network inpainting and Federated GCN node classification),
we report the computational cost for each phases as well as the
total time (The total time including training times of two phases
and graph merge process as we described in Sec. III-C1). For
Federated network inpainting phase, the input of the model
is one local graph for a client (i.e., a graph with 200 nodes
where each nodes contain a 7381 dimensional feature vector).
For Federated GCN node classification phase, the input of
the model is one local fused graph for a client (i.e., a graph
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with 300 nodes where each nodes contain a 7381 dimensional
feature vector). From Tab. VI, we observed that both two
phases of FedNI are low computational. Although Federated
network inpainting phase brings extra computational cost, it is
acceptable since they are in the same levels of computational
cost. The results indicate that FedNI has the has the potential
potential to be applied in practice and good scalability.

Federated network
inpainting

Federated GCN
node classification

FLOPs (G) 0.98 0.26
Params (M ) 3.1 0.47
Training time (s) 66 11
Total time (s) 89

TABLE VI: The computational cost of FedNI.

D. Hyperparameter Discussion

1) Parameter sensitivity analysis: In our experiment, we
use the default non-weighted losses in Eq. (10), namely α = 1
and β = 1 for both datasets. We investigate the sensitivity
of the weighted coefficient (i.e., α and β) of our method in
Eq. (10). We vary the values of α and β from 10−2 to 5 and
report the mean values of accuracy within 5 independent runs.
Fig. 6 indicates that our method is insensitive to α and β and
consistently better than FedSage+’s best performance (i.e., red
plane in Fig. 6). This is because our model has a well-designed
feature reconstruction framework and is robust.

We further conduct an experiment to investigate the hyper-
parameter k. The hyperparameter k in Section. III-A is the
number of nearest neighbors. We set the range of the k as
{3, 5, 10, 15, 20, 25, 30, 40}, and the results of different values
of hyperparameter k are summarized in Fig. 8. We can observe
that the classification accuracy of our method increased with
the increasing values of k, i.e., from k = 3 to k = 10, and
increasing the value of k beyond a threshold can slight hurt the
performance, i.e., , from k = 15 to k = 40. The reason is that
a small k value cannot fully exert the ability of neighbors, and
a large value of k may cause noise neighbors and over-smooth
problem in the GCN. Moreover the optimal k value in our
method can be easily found (i.e., , around k = 10) on both
two datasets.

2) Local updating epochs: We investigate the sensitivity of
local updating epochs E in FedNI. We evaluate the training
convergence and test accuracy with different values of local
updating epochs E ∈ {1, 5, 10, 15, 20}. As shown in Fig. 9,
we can observed that the loss is decreasing with the increasing
communication rounds of training process, and thus our method
has a good convergence property. Moreover, training large
local updating epochs requires fewer global communication
rounds to converge, while resulting in lower model performance,
especially in the ADNI dataset.

V. CONCLUSION

In this work, we have proposed a new FL framework for
distributed local population network analysis. To tackle the
realistic but ignored issue of incomplete information in local
networks, we designed a federated network inpainting module,
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Fig. 8: Classification results of FedNI with different values
of hyperparameter k.
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Fig. 9: The loss curve and the accuracy curve on the server
with different local updating epochs (i.e., E = [1, 5, 10, 15, 20])
on two datasets.

where a missing node generator allows each institution to
generate missing nodes and edges. We train the missing node
generator and GCN-based node classification model with fed-
eration. Extensive experiments on public datasets demonstrate
that our method obtains state-of-the-art performance. Our
future work will address the data heterogeneity issue to further
improve performance.
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