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Abstract— Optical coherence tomography angiography
(OCTA) is an imaging modality that can be used for analyz-
ing retinal vasculature. Quantitative assessment of en face
OCTA images requires accurate segmentation of the capil-
laries. Using deep learning approaches for this task faces
two major challenges. First, acquiring sufficient manual
delineations for training can take hundreds of hours. Sec-
ond, OCTA images suffer from numerous contrast-related
artifacts that are currently inherent to the modality and
vary dramatically across scanners. We propose to solve
both problems by learning a disentanglement of an anatomy
component and a local contrast component from paired
OCTA scans. With the contrast removed from the anatomy
component, a deep learning model that takes the anatomy
component as input can learn to segment vessels with a lim-
ited portion of the training images being manually labeled.
Our method demonstrates state-of-the-art performance for
OCTA vessel segmentation.
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I. INTRODUCTION

OPTICAL coherence tomography (OCT) angiogra-
phy (OCTA) is an noninvasive imaging modality with

applications in various retinal and neurological diseases. It pro-
vides detailed visualizations of the retina’s vascular struc-
ture [1]–[7] and foveal avascular zone (FAZ) [8], [9]. Although
OCTA data are acquired as volumes, for a variety of reasons
including the presence of so-called projection artifacts [10],
[11], it is common to project selected slabs into en face images
for analyzing macular OCTA images [5]–[7]. The resulting
two standard OCTA en face images depict the superficial
vascular plexus (SVP), which incorporates the ganglion cell
layer (or lies within the ganglion cell layer and nerve fiber
layers), and the deep vascular plexus (DVP), which incorpo-
rates the inner nuclear layer [12]–[15].

Quantitative studies of en face OCTA images usually require
segmentation of the retinal vessels and capillaries. Different
methods for segmenting OCTA images have been explored in
recent years [16]–[24]. In particular, supervised trained deep
learning methods have drawn a lot of attention, because of
their success in many related applications. However, manually
segmenting capillaries in OCTA images is extremely time-
consuming and obtaining a sufficient number of such pixel-
level annotations for supervised training of deep networks is
impractical,1 especially when it must be done for different
scanners. Moreover, for many scans identifying capillaries
is impossible due to the limited image resolution and the
presence of noise and artifacts. For this reason, existing
publicly available datasets mainly focus on large vessels [23]
with limited capillary delineation [25]. An example scan with
its manual delineation from the ROSE dataset [25] is given

1From our experience, manually delineating (1/64)th the area of one scan
and verification with repeated scans requires at least 30 minutes. Therefore,
we estimate that 40 hours is needed to delineate an entire scan and complete
an independent review by a second manual rater. Thus, manually delineating
39 scans (the number of scans in the ROSE-1 dataset [25]) would take more
than 1, 500 hours.
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Fig. 1. An example subject from the ROSE dataset [25]. The Optovue
SVP scan is shown on the left, with its pixel-level annotation shown on
the right. For each image, a zoomed-in view for the region inside the
green box is shown in the bottom left corner.

in Fig. 1. Although, we can see numerous capillaries in the
zoomed-in view of the image, most of them are not included
in the manual delineation.

While vessel and capillary delineations require a great deal
of manual labor and time to acquire, it is relatively easy to
acquire multiple unlabeled OCTA images of the same subject’s
eye from the same or different scanners [8], [18], [19], [21],
[26]. In this work, we consider those repeated scans as paired
data. Although there are inherent scanner differences, those
repeated scans from the same eye should have similar anatomy
but different artifacts and are corrupted by independent noise.
When examining such paired scans, we can identify vessels
and capillaries from their shared intensity pattern; conversely,
inconsistent patterns are usually associated with noise and
artifacts. For example, Fig. 2 shows two Optovue scans and
one Heidelberg scan from the same eye. The green boxes in the
three scans, also shown zoomed up, cover the same region of
the macula. Although different noise and artifacts are present,
we can readily identify very similar capillary structures in the
zoomed-up views; some of these are highlighted for clarity.
Although we could not practically require such multiple scans
to be available for each future subject, in this paper we show
how to take advantage of such paired images, available for
many past subjects, to help train a segmentation algorithm that
requires only one scan as input and tends to ignore artifacts,
noise, and contrast variations.

The proposed method, named Artifacts and Contrast
Robust Representation for OCTA Semi-supervised Segmen-
tation (ACRROSS), disentangles the anatomy and contrast
in OCTA images for accurate segmentation of vessels and
capillaries. ACRROSS is trained using two datasets: one
dataset with unlabeled registered paired OCTA images and
the other with a very limited set of manual labels. ACRROSS
learns to disentangle an OCTA image into separate contrast
and anatomy components by identifying shared structures
in the paired OCTA images. While learning to do this,
it also learns to segment capillaries and vessels from the
anatomy component using a limited set of manual delineations.
In experiments, we first use two publicly available datasets of
OCTA images, ROSE [25] and OCTA-500 [23]; the manual
delineations in both datasets focused on large vessels with
limited capillary delineations. We show that ACRROSS trained
with only patches of manual delinations (total area used was

less than a single scan) can achieve comparable or even better
accuracy than the comparison methods that trained on the
entire dataset. We also built an in-house dataset with capillary
level delineations and show quantitatively that detailed cap-
illary segmentation can be achieved without a large amount
of manual delineations. Since FAZ segmentation is closely
related to the segmentation of capillaries, we also show that
based on our segmentation results, a simple post-processing
approach can segment the FAZ with close to state-of-the-art
performance.

II. RELATED WORK

Several works have explored the use of deep learning meth-
ods for OCTA vessel segmentation. A U-net [27] architecture
was used by Morgan et al. [28] for vessel and FAZ segmen-
tation in SVP images from two scanners. Mou et al. [22],
[29] proposed an attention module for vessel segmentation,
and applied it to OCTA images. Pissas et al. [30] proposed an
iterative approach for 8×8 mm SVP scans. Li et al. [23], [24]
and [31] proposed to directly output 2D vessel maps and FAZ
segmentations from 3D OCTA images. Hu et al. [32] inves-
tigated segmenting 3D vessels from the 3D OCTA volumes;
Yu et al. [33] proposed a method for segmenting vessels from
2D OCTA images and estimated the depth information for
the segmented vessels to facilitate 3D vessel analysis. All of
the previous supervised methods require a significant amount
of training data with corresponding manual delineations. More
recently, Xu et al. [34] proposed a partially-supervised method
that used 3% to 5% of the training data compared with other
supervised methods. In contrast, our method needs less than
2% of manually delineated scans used by supervised methods
to achieve similar performance. Unlike our previous work [21],
which uses a dedicated encoder and decoder structure for each
scanner, the majority of the network weights in ACRROSS are
shared across different scanners. Thus, ACRROSS requires
less computational resources and can be easily extended to
multiple scanners without additional computational overhead.

The design of a semi-supervised method usually depends
on the availability of weak labels. For brain lesion seg-
mentation, unsupervised image translation between healthy
and disease subjects was used [35], [36]. Zhou et al. [37]
used disease severity grading to learn lesion attention maps
for semi-supervised segmentation. Semi-supervised learning
based on disentanglement has been previously used for both
classification and segmentation. Robert et al. [38] designed
an autoencoder structure with two encoders to separate a
class-specific component and a complementary component.
The two components were combined by a decoder to recon-
struct the unlabeled input image, and classification is learned
from the class-specific component. For segmenting cardiac
cine magnetic resonance (MR) images, a similar structure
was used by Chartsias et al. [39], where the outputs of
two encoders are interpreted as spatially and non-spatially
dependent components. In both methods, a self-reconstruction
loss is used for learning the disentanglement. However, self-
reconstruction and segmentation may play contradictory roles
in feature extraction [38]. This is crucial for segmentation
tasks, because a self-reconstruction loss reinforces the noise
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Fig. 2. Two Optovue scans (left and middle), and one Heidelberg scan (right) of the same eye are shown. In the upper right corner of each sub-image,
we show the zoomed regions highlighted by the green box. A manual tracing for some capillaries are provided in the lower right corner of each
image; not every recognizable capillary is highlighted for clarity in the figure. The three scans are not registered.

and allows artifacts to be learned as part of the anatomy
representation. Although our method also reconstructs the
encoder’s input image, we avoid this problem by learning
the disentanglement from paired images, which have different
noise and artifacts.

Several methods for disentangled representation learning
use autoencoders [40]. Zhang et al. [41] used the encoder
to learn a label-irrelevant spatial component along with a
non-spatial embedding code conditioning. Dewey et al. [42]
and related works [43], [44] proposed an encoder-decoder
network structure for disentangling MR image modality and
anatomy. Although they did not explicitly use a condition-
ing network, the modality vector learned from the encoder
feeds into their decoder as a condition, and therefore, their
method can be interpreted as a modified conditional variational
autoencoder (CVAE). In fact, the two-encoder structure used
in Chartsias et al. [39] is also a CVAE, where the spatial
component branch serves as the conditioning. ACRROSS is
different from the above methods in two important aspects.
First, all three methods in [39], [42], and [41] seek to disen-
tangle a subject specific anatomy component that is spatially
dependent from a scanner-specific contrast component that is
non-spatially dependent. Because of the spatially-varying con-
trast in OCTA images, we chose to disentangle two spatially
dependent components. This allows us to model the contrast
and artifacts regionally. Second, in [41] and [42] the anatomi-
cal component is the latent representation of the CVAE, which
requires sampling during training. On the other hand, we have
chosen the anatomical component to be the conditioning. With
this choice, we avoid independently sampling the anatomy
representation at each pixel location, which produces less
noisy anatomy representations and consequently is beneficial
for the segmentation task.

III. METHOD

A. Overview

As shown in Fig. 3(a), our proposed model consists of four
networks: an encoder, a decoder, a conditioning network (CN),
and a segmenter. The CN and the segmenter branch performs
the segmentation. During supervised training, a cross-entropy

Fig. 3. (a) An overview of the training process of the proposed method.
The dimension of each variable are provided, with H and W being the
height and width of the original scan. The blue and yellow paths indicate
CVAE and supervised training flow, respectively, with the CN being
shared by both. As a preview, an example of test time input (b) and
segmentation result (c) are provided. The model was trained using the
XJU-CVAE and the XJU-MD subsets (see Sec. IV for complete details).

loss computed between the output of the segmenter and
manual delineations can be back-propagated to both the CN
and segmenter. However, when the number of training data
samples is small, supervised training can lead to unsatisfactory
results during test time. This is especially true for OCTA
images, where different artifacts and contrast variations in
unseen images cannot be fully covered in the training dataset.
To address this problem, we introduced two additional net-
works: an encoder and a decoder. The encoder, decoder, and
CN together form a CVAE that uses a second dataset of
unlabeled, registered, paired OCTA scans for training. With
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the additional components, the CN learns to extract a contrast-
disentangled anatomy representation for the segmenter to
use. As a preview, a test time example result, which uses
only the CN and the segmenter to generate, is shown in
Figs. 3(b) and 3(c). Methodological details of our approach
are provided in the following sections.

B. Conditional Variational Autoencoder

Consider x A1 and x A2 as an unlabeled pair of registered
OCTA scans acquired from the same eye. These images
could be from the same or different scanners, but to avoid
anatomical changes they should be acquired within a few
days of each other. The CVAE framework assumes that the
encoder’s input x can be reconstructed by the decoder from
a latent representation z given the conditioning c. Specifically
for ACRROSS, an OCTA scan x A1 is reconstructed from
zA1 given the conditioning cA2 (see Fig. 3). The superscript
indicates that zA1 is learned from x A1 but cA2 is extracted
from its paired scan x A2 . In theory, the encoder and the
decoder approximate the posterior and likelihood distribu-
tions q(zA1 |x A1 ; cA2 ) and p(x A1 |zA1 ; cA2 ) with a parametric
encoder qφ and a parametric decoder pθ , respectively. Similar
to a variational autoencoder (VAE) [45], a CVAE can be
trained using the negative variational lower bound given by

LCVAE = −Eqφ [log pθ ] + DKL(qφ||p(z′)), (1)

where p(z′) is assumed to be a multivariate Gaussian. The
first term in (1) is the expectation of the log posterior,
which has a similar effect as a mean squared error loss that
encourages reconstruction of x A1 . The second term in (1) is
the Kullback–Leibler divergence between the two distributions
and can be thought of as a regularization term acting on the
learned latent representation z.

The architectures of the encoder and decoder are shown in
Fig. 4. The encoder with four max-pooling layers compresses
x A1 by a factor of 16 in each spatial dimension. The outputs
of the encoder are interpreted as the mean μA1 and standard
deviation σ A1 of a multivariate Gaussian that characterizes the
distribution of the latent representation. Samples (zA1 ’s) of
this distribution are generated by following [45] for training
the decoder. The number of channels in μA1 and σ A1 is a
hyper-parameter that determines the compression rate of the
encoder-decoder branch. In this work, we use 10 channels, but
we found the result to be similar when using between 4 and
32 channels. Accordingly, each 16 × 16 block from the input
is represented by a vector of length 10.

C. Anatomy-Contrast Disentanglement

A CVAE is generally considered to be a generative model
where diverse samples for a particular class can be generated
from the decoder by sampling the learned latent representation
and input the samples to the decoder with the class label
as conditioning. In contrast, ACRROSS uses a CVAE to
learn the disentanglement of an anatomy component and a
contrast component from paired scans. For an OCTA image,
the anatomy component captures the vessels and capillaries
whereas the contrast component captures the representation

Fig. 4. Detailed architecture of the encoder and decoder. All convolu-
tional layers used in this work have a kernel size of 3 × 3 and padding of
size one.

of the vessels and capillaries that makes those anatomy dis-
tinguishable from noise or background. This is achieved by
the novel training strategy we adopted: instead of manually
assigning a conditioning, ACRROSS uses a feed-forward CN
to learn a conditioning from x A2 ; thus, the decoder uses
two sources of information—zA1 from the encoder and cA2

from the CN—to reconstruct x A1 Similar to the common
autoencoder structure with a bottleneck, z A1 will be a lossy
compressed representation of x A1 given its limited capacity.
With the use of cA2 , we can guide the encoder to focus on
compressing local contrast information.

We designed the conditioning variable cA2 to have the same
spatial dimension as x A1 . Since zA1 can only encode limited
information from x A1 , if some of the information is also
contained in cA2 , then the full capacity of z A1 can be used for
information specific to x A1 . When we use registered paired
OCTA images as input to the encoder and CN, respectively,
then this information comprises the local contrast, noise, and
artifacts of x A1 . The encoder can confidently ignore the vascu-
lar structures in producing zA1 because the decoder can expect
that information to come from cA2 , which has a much larger
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capacity. Therefore, the encoder and CN learn to cooperate
for a better reconstruction of x A1 . In particular, the CN learns
to extract vessels and capillaries that x A2 shares with x A1

so that the encoder can focus on the local contrast, artifacts,
and noise that are only accessible from x A1 . Otherwise, the
redundant information in zA1 further limits its representation
power, which would result in a higher reconstruction loss.

Importantly, we did not design an architecture that would
learn the conditioning information from x A1 . If we were to try
it this way, then the CN and decoder would simply learn an
identity mapping to perfectly reconstruct x A1 without needing
zA1 . Methods with such an alternative design require con-
straints to achieve disentanglement, e.g., forced binarization
for the conditioning [42] or an additional cycle-consistency
loss [39].

Once trained, the CN can extract the vascular structures
that are shared between x A1 and x A2 , but in fact it predicts
the intensity patterns from x A2 that are useful to reconstruct
x A1 without actually observing x A1 . This is beneficial at
test time because the CN can remove the contrast, noise,
and artifacts from x A2 that are irrelevant for reconstructing
x A1 without the need of a paired scan as input to the
encoder.

D. Semi-Supervised Segmentation

The representation learned by the CN greatly reduces the
contrast variations from OCTA images caused by either the
OCTA algorithms or contrast-related artifacts. This allows
the use of a segmenter network with just two convolu-
tional layers to segment vessels from the conditioning. For
training, we use a dataset of OCTA images with manual
delineations. An image x B goes through the segmentation
path (the CN and segmenter) to produce pB , as shown
in Fig. 3(a), and the cross entropy loss LCE is computed
between pB and the manual delineation. This supervised
training procedure injects our preference into the segmentation
model, e.g., the thickness of the vessels to be segmented
or the minimum intensity to be considered as foreground.
As shown in Sec. IV, different manual delineations lead to
different results, but the same CVAE training procedure is
used.

During each forward pass, both LCVAE and LCE are cal-
culated using the two datasets, then the combination of the
two losses is back-propagated to update the parameters in
all sub-networks. The LCVAE has effects on the encoder,
decoder, and CN, whereas LCE has effects on the segmenter
and CN. After training, only the CN and the segmenter—i.e.
no paired images—are needed for segmentation of an OCTA
image. Unlike other sub-networks in the proposed method,
the CN is the most flexible component. Because it is used for
generating the conditioning, the only requirement for the CN
is to preserve the spatial dimension of the input. Therefore,
any previously proposed dense prediction network can be
used for the CN. In our experiments, we report the results
of two versions of the proposed method using two previously
proposed network structures for our CN: U-Net [27] and
CS-Net [29].

IV. EXPERIMENTS

A. Datasets

The performance of vessel segmentation was evaluated
on two publicly available datasets, OCTA-500 [24] and
ROSE [25], both with manual delineation of vessels, and a
proprietary dataset, XJU [18]. All training and evaluations
were carried out on OCTA scans representing the superficial
vascular plexus (SVP). We constructed a subset of unlabeled
registered paired OCTA scans from the XJU dataset for CVAE
training; this subset is termed XJU-CVAE. Taking advantage
of the paired data for reliable delineation of capillaries, we
built a subset of manually delineated scans from the XJU
dataset; this subset is termed XJU-MD. We also use the
manual delineations for FAZ from both the OCTA-500 and
the OCTAGON [46] datasets to demonstrate how our trained
vessel segmentation model can be used for FAZ segmentation.
The details of each dataset are provided below.

1) XJU: Scans from Angiovue (RTVue XR Avanti, Optovue,
Inc. Fremont, CA), Angioplex (Cirrus HD-5000, Zeiss
Meditec. Dublin, CA), Triton (Topcon DRI OCT Triton,
Topcon, Japan) and Spectralis OCT2 module (Heidelberg
Engineering, Germany) were included [18]. Each eye was
scanned twice on the Topcon, Zeiss, and Optovue scanners and
once on the Heidelberg scanner. For each eye, all seven scans
were registered to a designated Optovue scan by a deformable
transformation using ANTs [47]. The registered scans were
manually reviewed and 138 out of 146 eyes were found to
be successfully registered. The 8 failure cases were caused by
major artifacts or field of view differences between the scans.

2) XJU-CVAE: From the 138 successfully registered scans
in the XJU dataset, we randomly selected 110 eyes for CVAE
training in ACRROSS. Each training sample is a pair of
different OCTA images randomly selected from the seven
repeats.

3) XJU-MD: From the remaining 28 successfully registered
eyes in the XJU dataset, we randomly selected four eyes
(22 scans) for manual delineation. Each scan was divided into
patches of size (1/64)th of the image and a set of such patches
were randomly selected for delineation. To improve the delin-
eation quality in regions with noise and artifacts, potential
capillaries were verified by comparing with its repeated scans
in the same location. All delineations were reviewed by a
second person and corrected if necessary. In total 48 patches
were delineated (13 Heidelberg, 13 Optovue, 11 Topcon,
11 Zeiss), an example of which can be seen in Fig. 10. The
total area of these 48 patches is approximately equal to 3/4 the
area of a single scan. Despite the relative small total area
finally delineated, the overall task–including initial labeling,
verification with repeat scans, and independent review–was
extraordinarily time-consuming; ultimately taking eight weeks
to complete with rater fatigue also being a handicap.

4) OCTA-500: All 200 subjects (No. 10301—No. 10500)
with 3 mm × 3 mm SVP scans from the OCTA-500
dataset [24] are included in our experiments. The data were
collected using a commercial 70 kHz SD-OCT (RTVue-XR,
Optovue, CA). We use the maximum projection map between
internal limiting membrane (ILM) and outer plexiform
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layer (OPL) because it was used for vessel delineations.
We followed the same training, validation, and testing split as
in [24] (No. 10301—10440 for training; No. 10441—10450
for validation; and No. 10451—10500 for testing). For each
scan, a manual delineation of FAZ is also provided.

5) ROSE-1: All 39 scans in the ROSE-1 subset of the ROSE
dataset [25] are included in our experiments. For each subject,
we used the 3 mm×3 mm SVP scans and their corresponding
manual delineations. The ROSE-2 subset is not included,
because it only contains centerline-level annotations of vessels.
All 39 scans were acquired on a RTVue XR Avanti SD-OCT
system (Optovue, USA). As specified in [25], 30 selected scans
were used for training and 9 were used for testing.

6) OCTAGON: OCTAGON [46] is a publicly available dataset
for FAZ segmentation; it includes 55 SVP 3 mm×3 mm scans
acquired from a Topcon device (DRI OCT Triton) and their
manual FAZ segmentations.

B. Illustration of Disentanglement

In Fig. 5, we show some additional results for the same
eye as in Fig. 3 produced by ACRROSS. In addition to
the Optovue scan from Fig. 3, we also show its registered
paired Heidelberg scan. To produce each contrast-removed
conditioning result (cB in Fig. 3(a)), an original scan is
provided as input (x B in Fig. 3(a)) to the CN. With the contrast
largely removed, we can easily see the capillary structure
in this intermediate result. The segmentation result for each
scan is produced from the conditioning using the segmenter
followed by binarization at a 0.5 threshold. Because the CN is
robust to contrast variations, the loss-of-signal-strength artifact
that can be seen in the Heidelberg scan has minimum impact
on the conditioning. This allows us to observe a very similar
vascular pattern in the segmentation results even in the artifact-
affected region.

Although typically not used after training is complete, it is
instructive to see a reconstructed image (̂x A1 in Fig. 3(a))
from a registered paired set of scans. The reconstructed image
shown in the bottom left of Fig. 5 is generated using the
Optovue scan as x A1 and the Heidelberg scan as x A2 (i.e. the
contrast component from the Optovue scan and the anatomy
component from the Heidelberg scan.). The reconstructed
image shown in the bottom right of Fig. 5 uses the opposite
assignment. It is clear from these two reconstructed images
that artifacts are encoded in the variable zA1 , which comes
from the image x A1 . This visualization confirms the effect of
disentanglement and reinforces our contention that ACRROSS
segmentation results are not greatly affected by artifacts.

C. Metrics for Vessel Segmentation

To evaluate the performance of vessel segmentation algo-
rithms, the following metrics are calculated between the man-
ual delineation and the segmentation results produced by each
algorithm:

• Area under the ROC curve: AUC;
• Accuracy: ACC = (TP + TN)/(TP + TN + FP + FN);
• Kappa score: KAPPA = (ACC − pe)/(1 − pe);

Fig. 5. An example of the inputs and outputs from ACRROSS. The
two columns represent the processing of two different scanner manu-
facturers: Optovue and Heidelberg. From top to bottom, the rows are
the original input OCTA images, the conditioning, the corresponding
segmentation, and the reconstruction of the input. The two scans are
registered. The XJU-MD subset is used for supervised training.

• False discovery rate: FDR = FP/(FP + TP);
• G-mean score: GMEAN = √

sensitivity × specificity;
• Dice coefficient: DSC = 2 × TP/(FP + FN + 2 × TP),

where TP, TN, FP, FN represent the True Positives, True
Negatives, False Positives, and False Negatives, respectively,
and pe = ((TP+FN)(TP+FP)+(TN+FP)(TN+FN))/(TP+
TN + FP + FN)2. Sensitivity and specificity are computed
as TP/(TP + FN) and TN/(TN + FP), respectively. These
metrics are also reported in [25]. All the p-values reported
were computed using a paired, two-sided Wilcoxon signed
rank test (null hypothesis: the difference between paired values
comes from a distribution with zero median).
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TABLE I
COMPARISON OF THE VESSEL SEGMENTATION RESULTS FOR 50 SUPERFICIAL VASCULAR PLEXUS en face TEST SCANS (MEAN ± STD. DEV.)

FROM THE OCTA-500 DATASET, USING ALL TRAINING IMAGES (140 SCANS) FOR SUPERVISED TRAINING.
BOLD NUMBERS INDICATE THE BEST MEAN VALUE

Fig. 6. The box plots of the area under the ROC curve (AUC) and Dice coefficient (DSC) for the segmentation results produced by CS-Net [29],
U-net [27], and ACRROSS(U-net) when trained using different amounts of training data. The amount of training data used is indicated on the
horizontal axes. Each plot is divided into two parts, with the left part shows the results when trained using patches as training samples and the right
part shows the results when trained using scans as training samples. The total area used for training in P = 32, P = 64, and P = 128 are equal
to N = 0.5, N = 1, and N = 2 subjects, respectively. For training with scans, the equivalent number of patches are also shown. The results for the
OCTA-500 dataset are shown in (a) and (b) and the results for the ROSE-1 dataset are shown in (c) and (d).

D. Implementation Details
Our model was implemented using Pytorch, and all net-

works were trained using the Adam optimizer with a learning
rate of 4×10−4 and weight decay of 1×10−6. When there is a
corresponding validation dataset available, the training termi-
nates when the validation loss stops decreasing; otherwise the
number of training epochs was determined empirically. Specif-
ically, the OCTA-500 dataset has its own validation dataset,
and for our semi-supervised ROSE-1 experiment the unused
images serve as the validation dataset. Our other experiments
use an empirically determined number of training epochs.
During CVAE training, the CN may take scans from different
manufacturers as input. To handle the contrast difference, the
inputs of CN are processed by four convolutional layers (with
LeakyReLU activation), which learn a different set of weights
for each scanner. It has been shown previously that such dedi-
cated sub-networks can improve network generalizability [50].
The source code for this work is currently proprietary while
under review for potential commercialization.

In all experiments, ACRROSS used the XJU-CVAE for
CVAE training (batch size of 8) and a dataset with manual
delineations (OCTA-500, ROSE-1, or XJU-MD) for super-
vised training (batch size of 2). Because each loss term
is calculated separately before the combined loss is back-
propagated, scanners used in CVAE training are not required
to be used for supervised training. For example, ACRROSS
can be trained using XJU-CVAE with scans from four scanners
together with OCTA-500, which only has Optovue scans. For
each of our three datasets, the test time procedure for new

unseen images is the same. This procedure is depicted as the
yellow portion of our network in Fig. 3(a). First, we pass
the unseen image, x B , through the condition network CN to
generate the conditioning, cB . The conditioning is then passed
to the segmentation network to generate, pB , which is then
binarized to generate a segmentation (threshold at 0.5 intensity
value). All the comparison methods were concatenated with
the same segmenter network as in ACRROSS and trained using
the same settings except for those methods that cannot use the
unlabeled XJU-CVAE subset.

E. Supervised Vessel Segmentation on OCTA-500

We first used all 140 scans from the OCTA-500 training
set to test the performance of the proposed method in a fully
supervised setting. We provided two versions of ACRROSS
using different network architectures as the conditioning
network: ACRROSS(CS-Net) used CS-Net and ACRROSS
(U-net) used U-net. For the comparison methods, we included
U-net [27], nnU-Net [49], R2U-Net [48] and CS-Net [29].
For training U-net, R2U-Net, and CS-Net, we used the same
hyper-parameters as our methods for fair comparison. nnU-Net
was originally designed for 3D images with the ability to
automatically determine its hyper-parameters, we followed
an example provided by the authors to make it work for
2D images. The results on the 50 test scans are summarized
in Table I. Our methods (ACRROSS(CS-Net) and ACRROSS
(U-net)) produce comparable or better results when measured
by AUC, and ACRROSS(U-net) is significantly better than all
comparison methods in terms of DSC (p-value < 0.001).
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Fig. 7. Examples of test result from the OCTA-500 dataset when training with a different number of samples. Leftmost column shows the original
image (top) and the zoomed-in region (middle), along with its corresponding manual delineation (bottom). The predicted vessel probability maps of
CS-Net [29] (row 1), U-net [27] (row 2), and ACRROSS(U-net) (row 3) are shown in the right columns. See the text for an explanation of P and N.

F. Semi-Supervised Vessel Segmentation on OCTA-500

To test the semi-supervised setting when there are fewer
training samples, we decreased the number of training data
used for supervised training from N = 140 subjects to N =
20 and N = 4 in two additional experiments. Further reduction
in the number of training samples may cause a high variance
in repeated experiments where training samples with different
quality and variety are selected. To address this problem,
we divided the total area of each scan into 8×8 square patches
and treated one patch instead of one scan as a training sample.
This is implemented by only computing the cross-entropy loss
inside the selected patches. However, we still input the entire
image into the network to make sure the normalization layers
work properly. We first randomly select 4 scans, and then
32, 16, and 8 patches are randomly selected from each of
the 4 scan as training data. As a result, the total number of
patches used in this three additional experiments are P = 128,
P = 64, and P = 32, equivalent to N = 2, N = 1, and
N = 0.5 subjects in terms of total area that is used. For
example, the total area for P = 32 is (32/(8 × 8)) subjects,
which is equivalent to half a scan.

To further reduce the randomness in the result, each exper-
iment was run three times with different random seeds and
the same set of random seeds were used for all methods.
We evaluated the performance of U-net [27], CS-Net [29],
and ACRROSS(U-net) on the 50 test scans. The results of the
three repeats are combined (50 × 3 data points) and reported
in Fig. 6 (a) and (b). We can see that for AUC and DSC,
ACRROSS consistently produces better results across all sets
of experiments with different amount of training data. This can
also be seen from the example shown in Fig. 7, where only
large vessels were segmented because the manual delineations

for OCTA-500 do not include capillaries. When measured
by AUC, the proposed method ACRROSS(U-net) trained with
32 patches produces comparable results to the U-net trained
with 20 subjects (p-value = 0.995) and CS-Net trained with
140 subjects (p-value = 0.324). It is significantly better than
CS-Net trained with 20 subjects (p-value < 0.001). We also
observed that for all methods, N = 4 underperforms P = 128,
although the latter case uses less area during training. This
may be analogous to training using 2D slices outperforming
training using 3D volumes, when the number of subjects is
small [51].

G. Ablation Study

We conducted ablation studies on the OCTA-500 dataset.
We first trained ACRROSS without the Kullback-Leibler
divergence loss in Eq. 1. The removal of this regularization
reduced the CVAE to an autoencoder structure (AE). We also
investigate the impact of using dedicated sub-networks as input
layers for CN (see Sec. IV-D). In Fig. 8, we compared the
DSC of these two methods against the original ACRROSS,
where we denote the version without the use of dedicated
sub-networks as “w/o DA”. In all experiments, the models
were trained in the same way as described in Sec. IV-F.
The results show that both the Kullback-Leibler divergence
loss in Eq. 1 and the dedicated sub-networks improve the
segmentation results, especially in the semi-supervised setting.

H. Reproducibility Test

We test the reproducibility of ACRROSS under different
contrasts in supervised and semi-supervised settings. The train-
ing follows the strategy described in Sec. IV-F. The trained
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TABLE II
COMPARISON OF THE VESSEL SEGMENTATION RESULTS FOR SUPERFICIAL VASCULAR PLEXUS en face SCANS (MEAN ± STD. DEV.), USING ALL

THIRTY SCANS FROM ROSE-1 TRAINING SET FOR SUPERVISED TRAINING. BOLD NUMBERS INDICATE THE BEST MEAN VALUE

Fig. 8. The results of the ablation study using OCTA-500 dataset.

models were then applied to the XJU-MD dataset, in which
seven repeated scans from four scanners were captured for
each eye (see Sec. IV-A). Because all manually delineated
scans in the OCTA-500 dataset come from Optovue scanners,
we separately compared the segmentation results between the
two Optovue scans (i.e. intra-Optovue) and the segmentation
results between the first Optovue scan and other contrast
scans (i.e. inter-Optovue), which include scans from Heidel-
berg, Topcon and Zeiss. We calculated the DSC and reported
the averaged numbers in Fig. 9. The results from U-net and
CS-Net were also included for reference. Since all the scans
were registered, if the segmentations are consistent we would
anticipate a higher DSC; which means better reproducibility
of the algorithm across the various scanners. It can be seen
from Fig. 9 that the intra-Optovue experiments generally
have a better consistency compared with the inter-Optovue
experiments. This is expected because supervised training only
include Optovue scans. For CS-Net and U-Net, we observed
decreasing consistency—lower DSC scores—of their results as
we reduce the amount of training data. In contrast, the results
produced by ACRROSS are not affected by the amount of
supervised training data.

I. Supervised Vessel Segmentation on ROSE-1

The ROSE-1 subset provides delineations for large vessels
as well as some capillaries. We used the provided training
and testing split where all 30 training samples in the dataset
were used for supervised training and test results were com-
puted on the 9 held-out scans. We observe that our method

TABLE III
COMPARISON OF SEMI-SUPERVISED VESSEL SEGMENTATION

RESULTS FOR ROSE-1 DATASET

produces comparable or better results in terms of AUC (see
Table II) and, when measured by the DSC, ACRROSS(U-net)
results are significantly better than all comparison methods
(p-value < 0.005).

J. Semi-Supervised Vessel Segmentation on ROSE-1

To test the semi-supervised setting where there are insuffi-
cient training samples, we randomly selected 4 subjects for
training and, to further reduce the training data, we used
the same patch sampling technique as in our OCTA-500
experiments. Specifically, 4 subjects were randomly selected
and then a total of P = 32, P = 64, and P = 128 patches
were randomly selected from the 4 subjects (8, 16, and
32 patches from each) so that the total areas used in training
are equivalent to N = 0.5, N = 1, and N = 2 subjects. The
performances were evaluated on the same 9 held-out scans.
We compared with the results from U-net and CS-Net that
were trained under the same setting. Each method was trained
three times with different random seeds and the same set of
random seeds were used for all methods. The results of the
three repeats were combined (9 × 3 data points) and averaged
performances were reported in Fig. 6 (c) and (d). In addition,
we compared with three semi-supervised methods in Table III,
including: 1) Mean teacher (MT), a consistency-based semi-
supervised learning approach [52] modified for the segmen-
tation task [34]; 2) MixMatch, a data augmentation based
semi-supervised method [53]; and 3) PSL, a recently proposed
patch-based semi-supervised method that combined MixMatch
and active learning [34]. These results were originally reported
in [34]. For each method, the area of manually delineated data
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Fig. 9. The results of the reproducibility test for CS-Net, U-net, and ACRROSS when trained with different amounts of training data from the
OCTA-500 dataset. The DSC between the two Optovue scans are shown on the left (intra-Optovue) and the DSC between the first Optovue scan
and scans from other scanners are shown on the right (inter-Optovue).

Fig. 10. Examples of applying our model (trained on XJU-MD) on scans from XJU-MD, OCTA-500, and ROSE-1. The supervised training does
not use any examples from OCTA-500 or ROSE-1. Our trained model can produce detailed capillary segmentation for scans from OCTA-500 and
ROSE-1 that is previously not available in the OCTA-500 and ROSE-1 manual delineations.

used for training relative to the total area of all scans in the
training dataset was also reported in Table III. When using

3.3% of the manual delineation, our method outperformed
MT [52] and MixMatch [53] and was comparable to PSL [34].
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The minimum amount of training data PSL tested on was
3.3%, however, ACRROSS achieves comparable results with
only 1.7% of the training data and without involving the
iterative training and labeling process in PSL.

K. Semi-Supervised Vessel Segmentation on XJU-MD

Although ROSE-1 has 39 subjects with manual delineation,
in many cases the delineation does not align well with the
true capillaries, as shown in Figs. 1 and 10. Our experiments
using the OCTA-500 and ROSE-1 datasets show that high
accuracy results can be achieved with the proposed method
using very few manual delineations for training. For accurate
segmentation of OCTA images at the capillary level, the
proposed method was trained on an in-house dataset with
manual delineations (XJU-MD).

Given the limited number of manually labeled
patches (48 patches), we used 47 patches (73.4% the
area of one scan) for supervised training. We provide the
qualitative result of the remaining patch in Fig. 10. To avoid
potential data leakage issue, none of the other patches from
this eye were used for training. Since XJU-MD contains
scans from Heidelberg, Optovue, Topcon, and Zeiss, we were
also able to apply the trained model on scans from both the
OCTA-500 and ROSE-1 datasets without using any scans
or manual delineations from those datasets during training.
Qualitative results on scans from OCTA-500 and XJU-MD
are shown in the two additional rows in Fig. 10. Despite
the site differences between the training (XJU-MD) and
testing (OCTA-500 and ROSE-1) data, ACRROSS is able
to provide detailed capillary segmentation that is previously
not available in the manual delineation for OCTA-500
and ROSE-1.

L. FAZ Segmentation

The FAZ is the avascular region around the fovea. If the
capillaries are accurately detected, a simple post-processing
algorithms can be used to provide an accurate segmentation
of the FAZ. Accordingly, we applied a morphological closing
operation to our vessel segmentation result and found the FAZ
as the largest connected component in the background (see
Fig. 11). We compared our FAZ segmentation results to two
FAZ segmentation methods [46], [54]. Despite the simplicity
of our post-processing steps, we achieved similar results in
terms of Jaccard Index (see Table IV). The OCTA-500 dataset
also contains manual delineations of the FAZ that we could
compare to. Our post-processing based FAZ segmentation
has a mean DSC of 0.954 ± 0.025 and a Jaccard Index of
0.912 ± 0.044, which is close to the performance of several
supervised trained deep learning methods reported in [24].
Note that our training used the manually delineated patches
from the XJU-MD, without any examples or FAZ masks
from OCTAGON or OCTA-500. This result suggests that our
vessel segmentation model can accurately detect the capillaries
around the FAZ. We note that the current post-processing
method is not suitable for many disease cases as non-perfusion
areas can be falsely detected as the FAZ by our use of the
largest connected component. However, it demonstrates the

Fig. 11. Examples of FAZ segmentations for a Topcon scan
from OCTAGON dataset [46] and an Optovue scan from OCTA-500
dataset [24]. The corresponding vessel segmentations and FAZ seg-
mentations are shown in the middle and right column.

TABLE IV
COMPARISON OF THE MEAN JACCARD INDEXES FOR 3 MM × 3 MM

SVP SCANS (MEAN ± STD. DEV.). THE PREVIOUS METHODS HAVE

NOT REPORTED THEIR STANDARD DEVIATIONS. BOLD NUMBERS

INDICATE THE BEST MEAN VALUE IN THAT ROW

potential for achieving accurate FAZ segmentation in healthy
controls without the need of extra manual delineations of the
FAZ for supervised training.

V. DISCUSSION AND CONCLUSION

We proposed a deep network architecture called ACRROSS
for disentangling local contrast and vascular structures from
en face OCTA images so that retinal vessel and capillary
segmentation can be learned with limited manual delineations.

ACRROSS is closely related to our previously reported
method [21] called VICCE. The CVAE training in ACRROSS
can be considered as the cross-scanner synthesis in VICCE
but applied to the CN and decoder. Also, both methods can
be interpreted as special cases of unsupervised representa-
tion learning [55] where similar anatomy representations are
extracted from the paired scans. Without the negative sam-
ples that are commonly used in unsupervised representation
learning, VICCE forces the representation learned from one
scan to be able to synthesize its paired scan in order to
avoid the model collapse problem. This, however, implic-
itly assumes that the underlying anatomical information is
identical in both scans, which is generally not true since
there are inherent hardware and software differences between
different scanners. Alternatively, ACRROSS uses the extra
input (z) during CVAE training to encode the scan-specific
information, which includes the scan-specific anatomy. For
example, a layer segmentation error can cause more vessels
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to be included in the SVP projection map, but this will not
affect the segmentation result because those extra vessels
are considered scan-specific and encoded in z. In contrast,
scanner-specific anatomy is encoded in c, because it is shared
by repeated scans from the same scanner.

Generally, supervised training with diverse data is a pre-
ferred way to learn the variability in a real data distribution.
By learning the disentanglement from the unlabeled data,
ACRROSS reduces the requirement of diverse training sam-
ples in labeled data. In particular, we found when using the
OCTA-500 dataset that training using 128 patches selected
from 4 scans (with 32 patches per scan) is comparable to using
128 patches selected from 32 scans (with 4 patches per scan).
The learned disentanglement also shows the potential for trans-
ferring the knowledge of manual delineations from one dataset
to another. Our method trained using the OCTA-500 dataset
and the XJU-CVAE subset can segment Topcon scans from the
OCTAGON dataset without using any manual delineations from
Topcon scans. Notice that this is different from the concept of
domain adaption because the CVAE training uses unlabeled
Topcon scans to learn the disentangled representation.

Despite these advantages, ACRROSS and similar disentan-
gled representation learning methods are limited to segmen-
tation tasks where all structures are labeled. Otherwise, extra
manual delineations are needed to separate the labeled struc-
tures from the unlabeled structures. Essentially, the labeled
and unlabeled structures determined by the manual delineation
become entangled components in the conditioning. In such
tasks [39], the segmentation cannot take full advantage of
the disentangling. Another limitation of our method is the
over-segmentation problem, in which some noise is falsely
recognized as capillaries. This is observed when applying
our model trained on healthy subjects to disease cases. This
phenomenon is related to the artifact-affected scans in the
XJU-CVAE dataset. As paired scans are unlikely to be affected
by the same imaging artifact, the CVAE training allows
artifacts like loss-of-signal-strength to be disentangled from
the anatomy representation and recover the capillaries in the
affected area. This is undesirable, however, when the subject
experiences a true loss of capillaries. Since the training dataset
only consists of healthy subjects, ACRROSS may interpret
missing capillaries in disease cases as an artifact. This problem
can likely be solved by including paired disease cases in the
CVAE training or excluding regions affected by artifacts in
healthy subjects, though further investigation is needed.

Our experiments are limited to 3 mm × 3 mm SVP scans
because we find it difficult to acquire consistent and reliable
manual segmentations for the DVP; also 3D OCTA data with
manual delineations are currently unavailable. In practice,
acquiring repeated scans from one scanner is more common
than repeat scans from different scanners. Therefore, we exper-
imented with training ACRROSS using only Optovue scans.
In this case, ACRROSS still outperforms the comparison meth-
ods, but including scans from another scanner can significantly
improve the results. Whether the inclusion of multiple scanners
helps disentangled representation learning or is simply a result
of the fact that more scans prevent over-fitting is a subject for
future research.
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