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Abstract—Tissue segmentation is the mainstay of pathological 
examination, whereas the manual delineation is unduly 
burdensome. To assist this time-consuming and subjective 
manual step, researchers have devised methods to automatically 
segment structures in pathological images. Recently, automated 
machine and deep learning based methods dominate tissue 
segmentation research studies. However, most machine and 
deep learning based approaches are supervised and developed 
using a large number of training samples, in which the pixel-
wise annotations are expensive and sometimes can be impossible 
to obtain. This paper introduces a novel unsupervised learning 
paradigm by integrating an end-to-end deep mixture model 
with a constrained indicator to acquire accurate semantic tissue 
segmentation. This constraint aims to centralise the components 
of deep mixture models during the calculation of the 
optimisation function. In so doing, the redundant or empty class 
issues, which are common in current unsupervised learning 
methods, can be greatly reduced. By validation on both public 
and in-house datasets, the proposed deep constrained Gaussian 
network achieves significantly (Wilcoxon signed-rank test) 
better performance (with the average Dice scores of 0.737 and 
0.735, respectively) on tissue segmentation with improved 
stability and robustness, compared to other existing 
unsupervised segmentation approaches. Furthermore, the 
proposed method presents a similar performance (p-value > 
0.05) compared to the fully supervised U-Net. 
 
Keywords—Semantic Segmentation, Unsupervised Learning, 
Unsupervised Segmentation, Deep Mixture Models, Tissue 
Segmentation 

I. INTRODUCTION 
iven an image, a segmentation algorithm aims to assign 
labels for pixels based on their feature representations. 

Tissue segmentation is essential for automated pathological 
examination, diagnosis and prognosis; however, manual 
delineation is time-consuming, onerous and unreproducible. 
To alleviate the burden of this manual procedure, researchers 
have explored conventional approaches to automatically 
segment organs or structures, including watershed [1], 
contour detection [2], clustering [3, 4], and random field [5], 
etc. However, these methods are unreliable and heavily rely 
on thresholds or preset parameters. Recently, machine and 
deep learning based methods have garnered great success in 
computational pathology [6-9].  For example, Mahbod et al. 

[9] proposed a progressive sequential causal GAN to 
synthesize the late gadolinium enhancement imaging for 
better segmentation of diagnosis-related structures. Liu et al. 
[10] incorporated CycleGAN with an adaptive Mask RCNN 
for unsupervised nuclei segmentation in histopathology 
images, by learning knowledge from fluorescence 
microscopy images. However, most learning-based methods 
are fully supervised which require manual labelling, or 
unsupervised that demand complex training procedures. In 
particular, complex pathological structures dramatically 
increase the difficulty of pixel-level annotation, resulting in 
an urgent need for developing segmentation methods with 
limited or no manual annotation.  

One way to overcome this hurdle is known as (deep) semi-
supervised learning, which builds the model with limited 
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Fig. 1. Current challenges and limitations of unsupervised 
segmentation for tissue segmentation (a) and our solutions (b). (a) 
examples of empty class (first row), redundant class (second row), 
collapse (third row), and instability (fourth row) issues. The red 
boxes highlight three subregions of the raw image, ground truth 
and prediction (from left to right) using existing unsupervised 
segmentation methods. P1 and P2 represent the first and second 
predictions obtained from repeated experimental studies (last 
row); (b) our proposed unsupervised segmentation based on a 
centralised constraint deep mixture network. The representative 
results of our proposed model are highlighted in green boxes (last 
row), and from left to right, these show clearly that our 
unsupervised segmentation can tackle empty class, redundant 
class, collapse, and instability issues. All box plot scales range 
from [0, 1] for the Dice scores. 
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annotations or prior knowledge of the targets. Self-training is 
a commonly used method that trains the model with limited 
annotated labels and fine-tunes it via pseudo labels generated 
by itself. For instance, Liang et al. [11] proposed an iterative 
learning scheme to segment gastric tumours based on a 
partially labelled dataset. In addition to self-training, one can 
use the prior knowledge given by conventional methods or 
empirical constraints such as target labels to train a network. 
This includes the utilization of coarse masks given by image 
processing algorithms, pre-trained weights from correlated 
datasets, or image-level annotations provided by domain 
experts. Hu et al. [12] applied activation maps to detect 
COVID-19 infections without pixel-level annotation. 
Atlason et al. [13] took coarse masks from an automated 
labelling system as attention maps to force the network to 
concentrate on the constrained region.   

Another solution is (deep) unsupervised learning, which 
produces general semantic predictions such as ‘background’ 
and ‘foreground’ without using any manual annotations.  For 
instance, Kanezaki et al. [14] employed Simple Linear 
Iterative Clustering [15] to obtain super-pixel level 
segmentation results, combining with convolutional neural 
networks to segment natural images. Shen et al. [16] 
introduced a coupled “deep-image-prior” module to segment 
background and foreground regions. However, most of these 
studies focused on natural images, whose effectiveness for 
pathological images remains unclear. Moreover, image 
quality variations (e.g., different brightness, contrast, noise, 
and shade levels in pathological images) may lead to poor 
generalisability for models originally developed for natural 
images. The randomized initializations of some unsupervised 
learning methods may further result in unreliable 
performance and weak reproducibility. In particular, there 
are several degenerative issues (Fig. 1) for unsupervised 
segmentation, including (1) empty class (2) redundant class 
(3) collapse, and (4) instability issues. The empty class 
problem indicates that the model confounds a certain class 
with another one, e.g., the prediction only has two classes 
even if the pre-defined number of classes is three (Fig. 1 (a) 
first row). The redundant class indicates the demand for an 
additional class to achieve better performance during 
unsupervised segmentation. This redundant class is used to 
represent the hard samples, which are defined as pixels 
whose intensities are diffusely/narrowly vary from the 
average intensity of their true/false class. For example, the 
white regions in the second row of Fig. 1 (a) are considered 
a unique class, since the model cannot treat them as the same 
class (background) as stroma. Collapse issue refers to the 
phenomenon when a certain class dominates the major 
predictions of an image while other classes only appear 
sporadically (as shown in Fig. 1(a), the third row). The 
instability means the fluctuant performance when conducting 
repeated training (Fig. 1 (a) fourth row). 
 To address these limitations, our study proposes a novel 
unsupervised approach that integrates a deep neural network 
with log-likelihood maximisation and centralised constraint 
(Fig. 1 (b)), namely Deep Constrained Gaussian Network 
(dubbed DCGN). Unlike previous methods that utilise prior 
knowledge, the proposed DCGN takes raw images as inputs 
and produces pixel-wise predictions for tissue structures. 

Besides, a centralised constraint, which can greatly enhance 
the model’s robustness and performance, is devised, aiming 
to shrink the estimated mean value of the components closer 
to the real data centroids. Comprehensive experimental 
studies were conducted on a multicentre open access dataset 
(i.e., MoNuSeg, acquired from the TCGA archive) and our 
in-house dataset. In addition, repeated experiments are 
performed to evaluate the stability of different approaches. 
The proposed method achieves a new state-of-the-art 
performance in unsupervised segmentation in pathological 
images, with Dice scores of 0.743 and 0.737 on MoNuSeg 
and our in-house dataset, respectively, outperforming all 
comparison models significantly (Wilcoxon signed-rank test 
p-value<0.001). The main contributions of this paper are: 
1) Major challenges and limitations of current unsupervised 
tissue segmentation approaches in the pathological image 
domain have been investigated comprehensively and 
summarised concisely. These include the missing class 
problem, the redundant class problem, collapse, and the 
instability issues. We observed that these degenerative issues 
are caused by large intra-class variations or small inter-class 
variations.  
2) A DCGN with a centralised constraint is proposed to 
address all the degenerative problems. This centralised 
constraint forces the estimated mean to approximate the 
observed mean value by considering the heterogeneity of the 
training data to solve a) the missing class or collapse issue 
when previous unsupervised methods may consider outliers 
as a single class, b) the instability issue when previous 
unsupervised methods may be trapped at the local optimum, 
and c) the redundant class issue when the existing 
unsupervised methods could encounter small inter-class 
variations and result in weak predictions. The proposed 
centralised constraint is a succinct yet effective module that 
can be easily adapted to other unsupervised approaches for 
tissue segmentation. 
3) Comprehensive experimental studies have been conducted 
to demonstrate the significantly improved performance of 
our proposed DCGN with greatly enhanced reproducibility. 
Our study also suggests that the assessment of future 
unsupervised tissue segmentation methods must consider 
degenerative problems and repeated experiments should be 
carried out to prove stability and robustness. 
 The rest of this paper is organised as follows. The related 
studies on unsupervised segmentation are summarised in 
Section II. Details of the proposed method are illustrated in 
Section III. The experimental settings, including dataset 
details and training parameters, are described in Section IV.  
Sections V and VI present the discussion and conclusion of 
this study. 

II. RELATED WORKS 
This section describes the most related previously published 
studies, including both conventional and deep learning-based 
unsupervised segmentation approaches.  

A. Conventional Unsupervised Segmentation 
In general, unsupervised segmentation can be treated as a 
clustering task. Given a three-channel RGB image, the 
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clustering algorithm first flattens the 3D array to a 2D vector, 
then each pixel group (pixels along with R, G, and B channels) 
is considered as a multidimensional sample for clustering. 
These methods include graph/normalised cuts [17, 18], 
Markov random field [18], minibatch K-means [19], 
Gaussian mixture model (GMM) [20], mean shift [21], and 
have been widely used in medical image analysis tasks, such 
as registration [22], lesion detection [23] and segmentation 
[20]. In addition to clustering, learning and distinguishing 
different feature representations can also segment regions of 
interest from images.  For instance, Fan et al. [24] applied 
hierarchical image matting to segment vessels from fundus 
images. Tosun et al. [25] proposed an object-oriented method 
with a homogeneity measurement to segment biopsy images. 

B. Deep Clustering and Mutual Information 
Recent studies of unsupervised learning aim to combine 
conventional clustering methods with deep neural networks 
[26-28]. Specifically, these methods use clustering-based 
objective functions to train a neural network. For instance, 
DeepCluster [26] jointly updated parameters of the neural 
networks and clustering during the training, and used pseudo 
labels to calculate objective functions. Kim et al. [29] 
proposed a spatial constraint to the softmax cross-entropy 
loss (given by pseudo labels and predictions) to keep the 
spatial continuity of semantic predictions. Wellmann et al. 
[28] integrated domain knowledge as probabilistic relations 
and proposed a deep conditional GMM. However, using 
pseudo labels for training is prone to weak solutions, such as 
empty clusters, and trivial parametrisation [26].  

Maximizing the mutual information of paired predictions 
is effective [30]. To further alleviate degenerative issues, 
Invariant Information Clustering (IIC) [31] modified co-
clustering approaches and proposed mutual information 
based objective functions between paired samples to train a 
segmentation model. Given a pair of variables X, Y and their 
marginal distribution 𝑝(𝑥) and 𝑝(𝑦), the mutual information 
between X and Y, jointly distributed according to 𝑝(𝑥, 𝑦), is 
defined 
as

𝐼(𝑋; 𝑌) = ∑ 𝑝(𝑥, 𝑦)log !(#,%)
!(#)!(%)#,% . (1) 

IIC generated paired images by randomised rotation to assist 
the network to learn the invariant information and textual 
representations. More generally, IIC aimed to find common 
parts of paired samples while ignoring the redundant ones. 
However, it still suffers from degenerative issues and 
unstable performance (as shown in Section IV). 

C. Deep Generative Models and Log Likelihood  
Deep generative models aim to learn image representations 
by reconstructing the input images through generative 
models, such as generative adversarial networks (GAN), 
variational auto-encoder (VAE), and encoder-decoders. 
These representations can then be used to produce semantic 
predictions or calculate objective functions [32]. For instance, 
Chen et al. [33] employed redrawing ideas to segment 
foreground and background samples. Gandelsman et al. [34] 
proposed double Deep Image Prior (DIP) to composite 
images as background and foreground samples. However, 

these methods can only segment limited classes, which 
would be computationally redundant when producing multi-
class predictions.  

Another attempt is to combine deep neural networks with 
the GMM. Zong et al. [35] proposed a deep auto-encoder 
Gaussian mixture model (DAGMM), adding GMM to the 
low-dimensional feature representations within an auto-
encoder for unsupervised anomaly detection. Oord et al. [36] 
incorporated GMM on the top layers in hierarchical 
structures for unsupervised classification. Based on these 
studies, Zanjani et al. [37] extended DGMM for 
segmentation via classifying each pixel for stain 
normalisation. They proposed three novel schemes, 
including GAN-based, VAE-based, and deep convolutional 
Gaussian mixture model (DCGMM) based approaches. 
Among these attempts, the VAE-based approach and 
DCGMM can be well transferred to segmentation. The VAE-
based method performed log-likelihood loss and Kullback-
Leibler (KL) divergence loss to assess the reconstruction 
performance of raw data and the correlation between latent 
variables and prior distribution, respectively. The DCGMM 
trained the network by maximising the log-likelihood 
objective function. However, most of these methods only 
simply combine expectation maximisation with deep neural 
networks, without addressing the common issues in 
unsupervised tissue segmentation. 

III. METHODOLOGY 
A. Overview 

To address the limitations of existing unsupervised 
segmentation approaches, we summarise the properties that 
a well-performed model should possess: 

1. The model should have strong reproducibility during 
the training and validation stages. 

2. The model should be as light as possible and does not 
require complex pre-processing or post-processing 
steps. 

3. The model should have the ability to alleviate 
degenerative issues (e.g., the empty clusters problem).  

By considering the above properties, DCGN is proposed to 
segment pathological tissue images. 

B. Deep Constrained Gaussian Network  
In biomedical image segmentation, especially in pathological 
images, the semantic labels are more related to colour 
representations compared to natural images. This suggests 
that a mixture model can be well integrated with a deep 
neural network for unsupervised segmentation. 

Let 𝜔  denote learnable parameters of a deep neural 
network and 𝒥  refer to the objective function. In fully 
supervised learning, 𝜔  is updated by minimizing the 
objective function 𝒥 , which is commonly defined by 
calculating the errors between ground truth labels and 
predictions. Therefore, the key to unsupervised segmentation 
can be treated as finding the best objective function for 
training deep neural networks without annotation (ground 
truth label). In addition to maximizing the mutual 
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information between paired samples in Eq. (1), maximizing 
the log-likelihood can also be integrated into the gradient 
descent training framework, by minimizing the negative log-
likelihood.  

The proposed DCGN includes a feature extractor, a 
decoder, and a log-likelihood estimation module. Different 
from the accurate objective functions that calculate the error 
between the ground truths and predictions in supervised 
learning, log-likelihood maximization is a biased estimation 
that only produces a rough ‘direction’ to the global optimum 
[38, 39]. Therefore, we believe that complex and deep 
network structures are more likely to be over-fitted and 
trapped at local optima when there is no strong supervised 
optimisation function. In order to formulate a light 
architecture, MobileNet-V2 [40] is employed as the feature 
extractor, followed by a decoder that is comprised of 
Upsampling layers, Convolution layers, Batch normalisation 
layers, and ReLU activations. To adapt the prediction of the 
network to the pseudo posterior of the latent variable Z in the 
mixture model, a differentiable softmax layer is applied to 
the output, forming a [𝑊,𝐻, 𝐾] shaped prediction (W, H and 
K are the width, height, and the number of classes, 
respectively). Given input images 𝐼  with 𝛫	 classes, the 
network ∅  aims to produce semantic probability maps 𝜑 , 
which are considered as the pseudo posterior 𝛾  in the 
conventional GMM, that is 

𝛾 ≈ 𝜑 = ∅(𝐼, 𝜔) ∈ ℝ'×)×* . (2) 
    Based on the above assumption, the E-step can be 
conducted by forward propagation through a neural network, 
while M-step is applied by optimising the likelihood function 
via gradient descent.  

Given the pseudo posterior 𝛾+, , the log-likelihood 
ℒBΘ|Θ(-)E of the multivariate GMM can be estimated using 

ℒBΘ|Θ(-)E = 	
FF𝛾+,

.

+/0

[log𝛼, −
D
2 log(2𝜋) − log𝛾+,

1

,/0

−

1
2 log|Σ,| −

1
2
(𝑋+ − 𝜇,)2Σ,30(𝑋+ − 𝜇,)]]

, (3) 

where 4
5
log(2𝜋) is a constant that can be ignored, D is the 

dimension of each sample (D=3 for a flattened RGB image 
array), N is the number of samples (pixel groups) of the 
image, 𝛼, is the weight of the k-th Gaussian mixture model 
that ∑ 𝛼,*

, = 1. Therefore, by integrating Eqs. (2) and (3), 
the network ∅  can be trained by minimising the log-
likelihood ℒ 

𝜔 = arg	min
6

[−ℒ(𝜔)]. 	 (4) 
It is of note that one major concern for existing deep 

Gaussian models is the redundant class issue, which is mainly 
caused by small inter-class and large intra-class variations. It 
makes the model assign the same (different) label(s) to 
samples of different (same) classes. The hard samples 
(outliers) may also lead to an incorrect estimate of the 
optimisation function, resulting in local optima trapping or 
an unstable training process. Another problem is the 
instability issue, which is a common drawback of existing 
unsupervised learning algorithms. Due to randomised 
initialisation, most existing methods require multiple training 
procedures to obtain the best performance.  

Here, we propose a centralised constraint for the log-
likelihood objective function to alleviate the degenerative 
issues of deep Gaussian networks. The objective function of 
the deep Gaussian network is calculated using the estimated 
parameters	Θ	and	pseudo posterior 𝛾. However, the variance 
in batch data makes it difficult to derive the real parameters 
𝜇789: . To better demonstrate the idea of our proposed 
centralised constraint, two simplified examples are shown in 
Fig. 2. We first introduce a simplified scenario in Fig. 2 (a), 
which is a group of single-class samples following the 
Gaussian distribution. Given a batch of data X, let 𝜇8;- be the 
estimated mean value of the mixture model, 𝜇<=;  be the 
observed mean value of minibatch data X, and 𝜇789: be the 
real (ideal) mean value of the mixture model. The centralised 
constraint will slightly drive 𝜇8;- close to the 𝜇<=;. Note that 
𝜇<=;  does not equal to 𝜇8;-  since it is the mean value of 
minibatch samples.  

For multi-class samples, this centralised constraint can 
alleviate the negative effect of small inter-class variations 
(Fig. 2 (b)). Assume there are two classes a and b, which 
denote 𝑎> and 𝑏> as the estimated classes. The model treats 
the majority samples of class a and b as the class	𝑎>, while 
some outliers of class b are considered as 𝑏>. This could lead 
to poor segmentation results when performing existing 
methods on samples with small inter-class variations.  

Therefore, a centralised constraint ∆ is devised to let the 
estimated mean  𝜇8;-  approximate 𝜇<=;  by considering the 
diversity of X 

∆=
|𝜇8;- − 𝑋X|
𝜎?5

. (5) 

When dealing with hard samples with small inter-class 
variations, the observed variance is relatively small, resulting 
in a relatively large constraint value. This constraint will 
force the model to reallocate the estimated mean to 
approximate the observed mean; therefore, can reduce the 
degenerative issues. When dealing with “easy” samples (i.e., 
samples with large inter-class variations), the observed 
variance is high, leading to small constraints to the objective 
functions that can barely affect the parameter estimation.  

With this centralised constraint ∆, the objective function 
ℒ@ for our DCGN can be expressed as 

Fig. 2. Deviation of the estimated parameters: (a) normal 
distribution on single class samples (b) mixture model on multi 
class (number of class k=2) samples. Note that 𝜇!"#  is the 
estimated mean value of the mixture model, 𝜇$%" is the observed 
mean value of minibatch data X, and 𝜇&!'( is the real (ideal) mean 
value of the mixture model. 
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ℒ@ = ℒBΘ|Θ(-)E − 	𝜆FF
\𝜇,(-) − 𝑋AXXX\

𝜎A5

@

A/0

*

,/0

, (6) 

where 𝐶 is the dimension of the input samples (e.g., 𝐶 = 3 
for RGB images), 𝜎A5 is the variance of minibatch samples 
on channel c, and 𝑋AXXX denotes the mean value of minibatch 
samples on channel c. With the proposed constraint, the 
objective function ℒ@ would be penalised if the estimated 𝜇, 
is far away from the observed mean 𝜇<=;. As a result, outliers 
or hard samples would produce less interference to the 
objective function, hence, stabilising the training procedure, 
and in turn, improving the segmentation performance. 
 Assume the constraint weight as 𝜆, by calculating partial 
derivatives over 𝜇, , Σ,  and 𝛼,  of Eq. (6), the centralised 
mixture parameters can be obtained via 

𝛾+,,
(-B0) = ∅B𝑋,𝜔(-)E (7) 

𝜇,
(-B0) =

⎩
⎪
⎪
⎨

⎪
⎪
⎧d∑ 𝛾+,

(-B0)𝑋+C
+/0 − 𝜆∑ Σ,

(-)

𝜎A5
@
A/0 e

∑ 𝛾+,
(-B0)C

+/0

,					𝜇, ≥ 𝑋AXXX

d∑ 𝛾+,
(-B0)𝑋+C

+/0 + 𝜆∑ Σ,
(-)

𝜎A5
@
A/0 e

∑ 𝛾+,
(-B0)C

+/0
, 				𝜇, < 𝑋AXXX

(8) 

 

𝛼,
(-) =

∑ 𝛾+,
(-B0)C

+/0

𝑁
(9) 

Σ,
(-) =

∑ 𝛾+,
(-B0)(𝑋+ − 𝜇,

(-B0))2(𝑋+ − 𝜇,
(-B0))C

+/0

∑ 𝛾+,
(-B0)C

+/0

(10) 

    Note that in Eq. (10), the calculation of 𝜇,
(-B0) demands 

Σ,
(-); therefore, an initialisation of Σ, is required before the 

training process. A random initialisation from uniform 
distribution was used in this study. 

The pseudo-code of the entire training procedure for DCGN 
is shown in Algorithm 1. 

C. Preprocessing 
Each input image X is pre-processed by the min-max 
normalisation through RGB channels, that is  

𝑋>A =
?!3DEF	(?!)

DEF	(?!)3DHI	(?!)
, (11)  

where 𝑋A is the channel c of the input image X. 

IV. Experiments  
This section demonstrates all the experimental settings 
including datasets, evaluation metrics, implementation 
details and results. The efficiency of the proposed DCGN is 
assessed on a public dataset from the TCGA* repository 
(MoNuSeg†) and our in-house renal biopsy image (RBI) 
dataset. 

A. Datasets and Training Strategies 
MoNuSeg. MoNuSeg consists of 44 pathological tissue 
images with 28,846 manually annotated nuclear boundaries. 
These 1,000×1,000 images were extracted from the separate 
whole slide images (scanned at 40×) from the TCGA 
repository, representing 9 different organs from 44 
individuals. The stromal and epithelial nuclei were manually 
labelled using Aperio ImageScope. Details of MoNuSeg are 
described in Table I. The various tissue sections greatly 
increase the richness and appearance variation of the dataset, 
which can provide a convincing assessment.  

TABLE. I  
COMPOSITION OF THE MONUSEG DATASET. 

Subset Nuclei Images Anatomical Details 

Training 21623 30 
6 breast, 6 liver, 6 kidney, 6 
prostate, 2 bladder, 2 colon, 2 
stomach 

Testing 7223 14 2 breast, 3 kidney, 2 prostate, 2 
bladder, 1 colon, 2 lung, 2 brain 

RBI. RBI includes more than 10,000 image patches extracted 
from 400 whole slide images with biopsy-proven results 
collected from the National Clinical Research Centre of 
Kidney Diseases, Jinling Hospital. All data were deidentified 
in accordance with the tenets of the Declaration of Helsinki 
[41]. Each image was resized to a unified size of 512×512. 
We randomly selected 577 images for training and 20 images 
for validation (the glomerular structures were annotated by 
experienced pathologists with 20 years of experience). Note 
that the training set and validation set were selected from 
different whole slide images. 
Training Strategies. Parameters of the encoder are initialised 
with ImageNet pre-trained weights to provide strong feature 
extraction capabilities, while that of the decoder are 
initialised using He-normal initialisation. Randomised hue 
transformation (delta=0.12), randomised saturation 
(saturation factor ranges from 0.5 to 1.5), randomised flip-
up/down, and randomised flip-left/right were implemented to 
augment the dataset before training. All of the models were 
trained on an NVIDIA RTX 3090 GPU for 200 epochs, with 
an initial learning rate of 5𝑒3J and a decay of 0.98 per epoch. 

B. Experimental Details 
Comparisons. To evaluate the effectiveness of DCGN, we 
compared it with several deep learning based and 
conventional unsupervised segmentation methods, including 
minibatch K-Means (denote as mKMeans), GMM, IIC [31], 
Double DIP [34], DCAGMM (deep clustering via adaptive 
GMM modelling) [42], DIC (deep image clustering) [43], 
Kim’s work [29], Kanezaki’s work [14] and DCGMM [37]. 
It is of note that we reproduce and modify the DCAGMM by 

Algorithm 1. Pseudo-code for training DCGN 
Input: images 	𝑋 ∈ ℝ'×)×K 
Output: trained network parameters 𝜔,  
               semantic prediction 	𝛾 
1. randomly initialize Σ,

(L), network parameters 𝜔(L) 
2. for t in iterations do 
         𝛾(-) = ∅B𝑋,𝜔(-)E ∈ ℝ'×)×*  
         update 𝜇,

(-B0), 𝛼,
(+) with 𝛾,

(-), Σ,
(-) 

         update Σ,
(-B0) with 𝛾,

(-), 𝜇,
(-B0) 

         Compute  ℒ@ through	𝜇,
(-B0), Σ,

(-B0), 𝛼,
(-B0) 

         update 𝜔  by  argmin
6
[−ℒ@B𝜔(-)E] 

* The Cancer Genome Atlas (TCGA), [Online]. Available at: http://cancergenome.nih.gov/ (Accessed in August. 2021) 
†  The MoNuSeg public dataset [Online]. Available at https://monuseg.grand-challenge.org/Data/ (Accessed in July 2021) 
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adopting its distance-based constraints in the original 
DCGMM (it was initially designed for image classification). 
Open-source implementations of the comparison methods 
used in this study can be obtained on Github. The network 
structure of the DCGMM was modified to match our DCGN 
for a fair comparison. In addition to unsupervised methods, 
we also implemented a fully supervised U-Net on cell 
segmentation task for better comparison. The implemented 
U-Net was modified by adding batch normalization layers 
and dropout layers compared to the original vanilla U-Net 
[44].  
Cell Segmentation on MoNuSeg. For many existing 
unsupervised learning approaches, the performance of 
segmentation suffers from random initialisation. In this study, 

repeated experiments were conducted to explore the stability 
and reproducibility of the performance of all comparison 
algorithms. All these approaches were trained for 150 epochs 
each time and repeated 10 times without changing any 
parameters or training samples. The upper bound 
performance is defined as the best results among 10 repeated 
experiments. Although cell segmentation is a binary task, all 
the compared studies were assessed using different numbers 
of classes (k=2 or 3) to show their upper-bound performance. 
In addition, a fully supervised U-Net is trained as the baseline 
of supervised learning. 
Glomeruli Decomposition on RBI. In addition to assessing 
the effectiveness of the binary segmentation, a glomeruli 
decomposition task is carried out. The glomerular structures 

 
Fig. 3. Box plot of the Dice score during repeated experimental studies, where * denotes the model with redundant class (the number of 
pre-defined classes k=3 for cell segmentation), ‡ indicates highly significant differences results (Wilcoxon signed-rank test with P<0.001) 
compared with DCGN, the black dots refer to outliers and white triangles indicate mean values, the small orange dots refer to samples. 

TABLE. II  
PERFORMANCE OF THE CELL SEGMENTATION (MONUSEG DATASET). 

Methods Precision Recall Dice AJI 
mKMeans*  0.657±0.175(0.679) ٭   0.792±0.174(0.773) ‡ 0.678±0.094(0.682) ‡ 0.305±0.140(0.338) ‡ 
GMM* 0.631±0.150(0.664) ‡ 0.822±0.109(0.819) 0.695±0.085(0.717) ‡ 0.290±0.151(0.319) ‡ 
IIC* 0.467±0.092(0.516) ‡ 0.725±0.121(0.796) ‡ 0.560±0.087(0.618) ‡ 0.056±0.030(0.072) ‡ 
Kim et al.* 0.575±0.249(0.698) ‡ 0.824±0.189(0.772) 0.606±0.171(0.694) ‡ 0.220±0.176(0.323) ‡ 
Double DIP 0.221±0.051(0.221) ‡ 0.820±0.109(0.851) 0.344±0.067(0.350) ‡ 0.013±0.006(0.013) ‡ 
Kanezaki et al.* 0.629±0.195(0.725) ‡ 0.822±0.162(0.783) 0.669±0.119(0.727) ‡ 0.260±0.166(0.351) ‡ 
DCGMM* 0.693±0.135(0.698) ٭   0.786±0.171(0.801) ‡ 0.707±0.064(0.719) ‡ 0.314±0.124(0.345) ‡ 
DIC* 0.511±0.249(0.595) ‡ 0.848±0.170(0.832) ٭   0.571±0.165(0.644) ‡ 0.147±0.169(0.193) ‡ 
DCAGMM 0.619±0.137(0.691) ‡ 0.767±0.131(0.763) ‡ 0.664±0.079(0.706) ‡ 0.300±0.126(0.365) ‡ 
DCGN  0.685±0.113(0.716) 0.834±0.115(0.808) 0.737±0.043(0.743) 0.352±0.113(0.379) 
U-Net† 0.695±0.095(0.740) 0.849±0.083(0.848) 0.755±0.045(0.782) 0.370±0.093(0.436) ٭   

* denotes redundant class (k=3) and † refers to a fully supervised learning baseline using modified U-Net. The bold values refer to the best average 
performance among unsupervised methods (without considering supervised U-Net). ٭(‡) indicates significant differences (highly significant 
differences) results compared with DCGN, with Wilcoxon signed-rank test P<0.05 (P<0.001). The results are shown as “mean± standard deviation 
(upper-bound results)”. 
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were divided into three parts (k=3), including (1) mesangial 
matrix and basement membrane, (2) intra-glomerular cells 
(mesangial, endothelial and podocytes) and macula densa, 
and (3) other regions such as glomerular capillaries, 
bowman’s space, exudate, etc. It is of note that Double DIP 
was not assessed since it was designed for binary 
segmentation only. 
 Degeneration Assessment. To explore the degenerative 
issues, we analysed 140 predictions on the MoNuSeg 

datasets and 100 predictions on the RBI datasets, based on 
the following criteria: 
(1) All these predictions are acquired from repeated 
experiments (10 times for MoNuSeg and 5 times for RBI). 
(2) Collapse is assessed on both MoNuSeg and RBI datasets, 
which is defined as a certain class dominating the major 
region (here we set 97% as the threshold) of an image. 
(4) Redundant class is assessed on the MoNuSeg dataset, 
which is identified when the segmentation performance can 
be improved by adding an extra class without semantic 
meanings. 
(5) Empty class is assessed on the RBI dataset and refers to 
missing a certain class or with an extremely low ratio (here 
we set <1%) in the prediction.  
(6) Instability is assessed on both MoNuSeg and RBI 
datasets and is considered when the standard deviation of the 
average performance among repeated experiments is larger 
than 8%. 
Evaluation Metrics. In addition to the commonly used Dice 
coefficient score, pixel-wise precision and recall were also 
reported. To statistically evaluate the performance, Wilcoxon 
signed-rank test was adopted between the evaluation results 
derived using DCGN and other comparison methods, with 
P<0.05 (or P<0.001) indicating significant (or highly 
significant) differences between the two paired methods. The 
Aggregated Jaccard Index (AJI) was applied to the MoNuSeg 
dataset to verify the instance-level segmentation 
performance, that is 

AJI =F
𝐺+⋂𝑃+

𝐺+ ⋃𝑃+ + 𝜀
,

C

+/0

(12) 

where i indicates the number of cells,	 𝜀 	is the smooth 
parameter, 𝐺+ and 𝑃+ refer to the ground truth and prediction 
of the i-th cell. In glomeruli segmentation, we applied 
normalised mutual information (NMI) to assess the mutual 
dependence between two samples, which is given by 

NMI(𝑌, 𝐶) =
2𝐼(𝑌; 𝐶)

[𝐻(𝑌) + 𝐻(𝐶)] ,
(13) 

where Y refers to the ground truth labels and C denotes the 
prediction, and I is the mutual information of Y and C, H(.) is 
the entropy. It is of note that all the ground truth labels were 
only used during the evaluation that had not been revealed in 
the training process.  

C. Experimental Results 

Unsupervised Cell Segmentation on MoNuSeg. The 
performance of repeated experiments is presented in Table II, 
shown as mean ± standard deviation (with the upper-bound 
results of each method shown in brackets). It shows that some 
unsupervised approaches initially developed for natural 
images could not perform well on pathological images, 
indicating a significantly lower average Dice (relatively 3-
39% lower) compared to the proposed DCGN (Fig. 3 and 
Table II). For instance, double DIP [34] failed to perform cell 
segmentation with only a 0.344 average Dice score. 
Interestingly, conventional GMM (k=3) achieved good 
performance with a 0.695 average Dice score, which is 
similar compared to that of the DCGMM (0.707).  

 
Fig. 4. Comparison of unsupervised cell segmentation results, 
where * denotes models with redundant class (k=3). Green, 
yellow, and red colours refer to the true positive, the false 
positive and the false negative predictions, respectively. The red 
and cyan boxes highlight the region of interests before and after 
zoom-in. 
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 To provide statistical assessments, Wilcoxon signed-rank 
test was performed between the evaluation results of 10 
repeated experiments. Considering the upper bound of the 
segmentation performance (shown in Table II), the proposed 
DCGN achieved the best Dice score (0.743) among 
unsupervised learning approaches, followed by Kanezaki’s 
(0.727) and DCGMM (0.719). Moreover, DCGN achieved 
the best AJI score (0.379) among all the unsupervised 
learning approaches. 
 In addition, DCGN achieved a significantly better Dice 
coefficient score and AJI score compared to other 
unsupervised segmentation approaches (P<0.001). 
Interestingly, there were no significant differences (P>0.05) 
found for Precision, Recall and Dice scores using our DCGN 
compared to the fully supervised U-Net based method (Table 
II). Although the DCGMM achieved better Precision 
compared to our DCGN (P=0.036), its Recall, Dice and AJI 
score are significantly lower than the proposed DCGN 
(P<0.001). DIC has the highest Recall, but relatively low 
Precision indicating lots of false-positive predictions. Double 
DIP achieved a high recall as well but the lowest precision 
score and therefore a very low Dice score. To better 
demonstrate the performance of the competitive approaches 

(Dice>0.65), three images were randomly selected from the 
test set to visualise the upper-bound segmentation 
performance (Fig. 4). It is of note that in Fig. 4, predictions 
of the redundant class have been removed (some methods 
achieved upper-bound performance by adding a redundant 
class (i.e., k=3)).  
Unsupervised Glomeruli Decomposition on RBI. The 
average performance of our comparison study on RBI is 
summarised in Table III, Fig. 5, assessed by NMI and Dice 
coefficient score. All comparison studies were performed 
with k=3 to segment three semantic labels (the definition of 
semantic labels is described in Section IV B).  
 As Table III shows, the proposed DCGN achieved 
significantly better results (P<0.001) compared to state-of-

TABLE. III  
PERFORMANCE OF THE GLOMERULUS SEGMENTATION 

(RBI DATASET). 
Methods  NMI Dice  
mKMeans 0.200±0.040(0.200) ‡ 0.555±0.037(0.559) ‡ 
GMM 0.328±0.051(0.328) ‡ 0.640±0.061(0.640) ‡ 
DCGMM 0.207±0.042(0.229) ‡ 0.567±0.047(0.579) ‡ 
Kanezaki 0.186±0.095(0.207) ‡ 0.502±0.109(0.537) ‡ 
IIC 0.090±0.068(0.124) ‡ 0.501±0.054(0.534) ‡ 
Kim 0.187±0.089(0.195) ‡ 0.500±0.106(0.511) ‡ 
DIC 0.192±0.117(0.234) ‡ 0.516±0.127(0.558) ‡ 
DCAGMM 0.207±0.041(0.212) ‡ 0.578±0.048(0.582) ‡ 
DCGN  0.377±0.053(0.384) 0.735±0.050(0.746) 

‡ indicates highly significant differences results (Wilcoxon 
signed-rank test P<0.001) compared with our DCGN. The bold 
values refer to the best performance among comparison 
methods. The results are shown as “mean± standard deviation 
(upper-bound results)”. 

  
Fig. 5. Comparison of unsupervised glomeruli segmentation 
results. Empty class issues are highlighted by red bounding 
boxes. The red, blue, and almond colours in the ground truth 
refer to (1) mesangial matrix and basement membrane, (2) intra-
glomerular and macula densa cells, (3) other regions such as 
glomerular capillaries, respectively. 
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the-art methods on glomeruli composition, with an average 
of 0.735 Dice score and 0.377 NMI, followed by GMM (an 
average of 0.640 Dice and 0.328 NMI) and DCAGMM (an 
average of 0.578 Dice and 0.207 NMI).  
Degeneration Assessment. The results of the degeneration 
assessment are shown in Table. IV. It is of note that Double 
DIP was not assessed due to its relatively weak performance. 
As Table. IV shows, the methods proposed by Kanezaki and 
Kim heavily suffered from all degenerative issues. Similarly, 
the empty class is prone to occur in DIC. DCGMM and 
DCAGMM occasionally encountered the empty class issue 
and GMM presented instability during repeated experiments. 
Both mKMeans and IIC witnessed instability in the 
MoNuSeg dataset.  

V. Discussion  

In this study, we have developed a novel unsupervised 
segmentation method combining deep neural networks with 
a constrained GMM. This approach has been 
comprehensively evaluated on pathological images using 
both a public MoNuSeg dataset and an in-house RBI dataset. 
We have achieved significantly better results compared to 
previously published unsupervised segmentation methods 
with clear evidence of mitigating degenerative issues that are 
currently challenging for pathological tissue image 
delineation. Besides, our proposed method has also achieved 
comparable results with some widely used semi-supervised 
and fully supervised learning methods. 
Performance Analysis. Comprehensive comparison results 
in Tables II and III and Figs. 4 and 5 have demonstrated the 
superior segmentation capability of the proposed DCGN. 
Compared to existing unsupervised segmentation methods, 
our DCGN is robust to small inter-class variations. For 
instance, as Fig. 5 (second column) shows, all the 
unsupervised methods except DCGN have regarded white 
regions as a single class while ignoring the exudation/stroma 
regions (light pink regions in the raw images).  
 Interestingly, conventional methods such as mKMeans 
and GMM have shown their effectiveness in tissue 
segmentation. In particular, GMM has obtained better 
performance than mKMeans for tissue segmentation with 
slightly worse stability. It achieved better performance than 
mKMeans in kidney tissue segmentation, with a 0.08 higher 

average Dice score and 0.12 higher NMI score, respectively. 
Methods proposed by Kanezaki et al. and Kim et al. have 
produced reasonable results on cell segmentation but have 
suffered heavily from collapse and empty class issues (large 
variances in Fig. 3 and many failed cases summarised in 
Table IV). We observed poor segmentation for these two 
methods when dealing with kidney tissue segmentation (see 
Table. III and Fig. 5). DIC have presented a high recall score 
with a low precision score in cell segmentation and poor 
results in glomeruli segmentation. Double DIP has derived 
similar coarse predictions (high recall but low precision 
scores) as DIC for cell segmentation, indicating its 
incompatibility for tissue segmentation, although the method 
could be more adaptive for natural image segmentation. The 
coarse predictions given by IIC have indicated its 
inapplicability to pathological images. Although DCGMM 
has presented comparable performance to our DCGN on cell 
segmentation, it has achieved significantly lower 
segmentation accuracy on kidney tissue segmentation and 
has issues with generating empty classes. Moreover, 
DCGMM has presented poor performance when dealing with 
samples with small inter-class variations (poor cell 
segmentation results from dark background areas as shown 
in Fig. 4 middle column). Similar to DCGMM, DCAGMM 
presented comparable results. However, its normalized 
distance constraint (which aims to increase the distance 
between Gaussian centres) makes it hard to segment classes 
with high intra-class variations. 
Comparing with Fully Supervised Segmentation Methods. 
One of the major concerns of unsupervised segmentation is 
how it performs compared with fully supervised 
segmentation algorithms. In addition to the U-Net baseline 
given in Table III, we compared the proposed DCGN with 
previously published supervised studies (Table V). It is of 
note that all comparisons were performed on the same test 
data of the MoNuSeg dataset. As Table V shows, the 
proposed DCGN has achieved a comparable average Dice 
coefficient score compared with the fully supervised U-Net 
based method (no significant differences were found in the 
Precision, Recall and Dice score). DCGN has obtained 
significantly better performance compared to other 
unsupervised segmentation methods (Tables II and III), it, 
however, has presented a lower AJI score compared to fully 
supervised and semi-supervised segmentation methods 
(Table V). This is mainly because of the adhesion of adjacent 
cells, which could be better addressed using supervised or 
semi-supervised methods. 

TABLE. V 
PERFORMANCE OF SUPERVISED METHODS (MONUSEG DATASET). 
Methods Avg F1 (Dice) Avg AJI 
DCGN 0.7432 0.3790 
U-Net 0.7582 0.4357 
Mask RCNN [45] * 0.7991 0.5128 
Dual U-Net [46] * 0.7913 0.5899 
Tian et al. [47] †, * 0.7638 0.4927 
Qu et al. [48] †, * 0.7566 0.5160 
CNN [49] * 0.7623 0.5083 

TABLE. IV 
DEGENERATION ASSESSMENT (MONUSEG AND RBI DATASET) 

 Collapse Empty Class Stability 
GMM 0/240 0/100 × 
Kanezaki 7/240 23/100 × 
Kim 17/240 28/100 × 
mKMeans 0/240 0/100 × 
IIC 0/240 0/100 × 
DIC 0/240 25/100 × 
DCAGMM 0/240 1/100 √ 
DCGMM 0/240 2/100 √ 
DCGN 0/240 0/100 √ 

The red blocks indicate the occurrence of degenerative issues. 
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* indicates patch based training progress, † refers to semi-supervised 
learning approaches. 
 Both semi-supervised approaches proposed by Tian et al. 
[47] and Qu et al. [48] have taken prior knowledge of cell 
central points into account, leading to competitive AJIs of 
0.4927 and 0.5160. In addition, significant improvement in 
average AJI has been observed using patch-based methods 
(denote with * in Table V) compared to the raw image-based 
learning strategy. This has indicated the importance of the 
patch learning strategy in the tissue segmentation task (here 
patch-based methods refer to extracting small patches from 
original raw images in both the training and testing process). 
Overall, it can be difficult for unsupervised segmentation 
approaches to produce precise pixel-level predictions, 
especially for dense and small objects.  
Distinguishing Samples with Small Inter-Class Variations. 
The capability of distinguishing small inter-class variation 
samples determines the accuracy of the subtle tissue 
segmentation. We have explored this capability by plotting 
the class intensity map of the top 4 methods in cell and kidney 
tissue segmentation, respectively. As Fig. 6 (a) shows, most 
unsupervised methods have not been able to clearly segment 
the background samples and require a redundant class for 
those hard samples, while DCGN can effectively distinguish 
background samples and foreground samples without adding 
a redundant class. As shown in Fig. 6 (b), mKMeans method 
presented hard boundaries due to the Euclidean distance 
measurement, while other methods have produced smoother 
boundaries. DCGN has presented the most similar class 
intensity maps compared to the ones generated from the 

ground truth, indicating the effectiveness of the proposed 
centralised function. 
Redundant Class. Experimental results have indicated that 
most unsupervised segmentation methods have suffered from 
the redundant class issue. As Fig. 3 shows, most of the 
compared methods have obtained a significant performance 
improvement for the binary segmentation task when 
changing the number of classes from 2 to 3. The reason 
behind this is that these models can be struggling to 
distinguish samples with small inter-class variations. While 
the pre-defined number of classes cannot well accommodate 
all samples, unstable performance can be observed since the 
hard samples can be assigned with different labels at different 
repeated experiments. For example, white background pixels 
may be assigned as background samples in the first round of 
training while assigned as the foreground samples in another 
round. Therefore, these unsupervised methods require a 
redundant class to accommodate these hard samples. 
However, our DCGN has the capability for accurate tissue 
segmentation without using an additional redundant class 
that is more efficient and effective.  
Stability. As shown in Fig. 3 and Table V, IIC, mKMeans, 
DCGMM and DCGN have presented good stability in 
repeated experiments. Similar to the conventional GMM that 
has suffered from instability, the performance of Kim’s and 
Kanezaki’s methods has also presented dramatic fluctuation 
with large variances. In addition, the stability of previous 
methods has been enhanced by introducing a redundant class 
to accommodate hard samples. However, even though IIC, 
mKMeans and DCGMM have presented good stability, their 
segmentation performance has been significantly lower than 
our DCGN. 
Reproducibility and Empty Class Issues. Methods that 
cannot be trained on large-scale studies are more likely to 
result in poor reproducibility. For instance, conventional 
GMM without minibatch learning can only be performed on 
a small number of images. This leads to limited information 
when developing generalised segmentation models. 
Moreover, some methods (e.g., Kim’s and Kanezaki’s 
methods) can only produce a single image during the training 
process, leading to low reproducibility of repeated 
experiments (i.e., obtaining the same semantic labels for the 
same samples).  
 The empty class problem is another issue that has hindered 
the deployment of unsupervised segmentation. For instance, 
Kim’s, Kanezaki’s and DCGMM methods have encountered 
empty class issues during the evaluation. This is caused by 
the incapability of separating hard samples (i.e., delineation 
of pixels with similar intensities but different categories). In 
contrast, the proposed DCGN can effectively avoid the 
empty class issue and achieve higher reproducibility in large-
scale training. 
Ablation Studies of Penalty Weights. The influence of the 
proposed centralised constraint is explored by setting 
different weights 𝜆  in Eq. (6). The results of 10 repeated 
experiments (for each 𝜆) are shown in Table V. 

TABLE. VI 

 
Fig. 6. Class intensity maps of the top 4 methods for (a) cell 
segmentation and (b) renal tissue segmentation. The three axes 
refer to the R, G, and B intensities, and different colours denote 
different classes. The vignette in red boxes in (a) indicate class 
intensity maps without redundant class. 
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ABLATION STUDIES OF CONSTRAINED WEIGHTS 
𝜆 Dice Avg Epochs 
0.05 0.637±0.076 (0.740)  37 
0.005 0.737±0.043 (0.743) 62 
0.0005 0.734±0.005 (0.745) 89 

“Avg Epochs” indicates the average number of epochs for convergence. 
It can be observed that the upper bound performance of 
models with different 𝜆 remains similar, with 0.740, 0.743, 
0.745 of 𝜆 =0.05, 𝜆 =0.005 and 𝜆 =0.0005, respectively. 
However, the standard deviation of the Dice score exerts 
significant differences. As Table VI shows, a large weight for 
the centralised constraint leads to faster convergence while 
also leading to an unstable training procedure (which may be 
attributed to the local optimum trapping of the module). A 
smaller weight requires more training epochs for 
convergence but has more stable training processes. 
Capacity on whole slide images. It remains unclear how 
DCGN performs on whole slide images when predictions are 
made across patches (tiles). Here we tested the cell 
segmentation module (two classes) on a renal whole slide 
image. It demonstrated that our method could achieve 
promising performance when handling renal images with 
homogenous features. However, false-positive samples could 
be observed in some vessel regions, indicating potential 
research directions (e.g., enhancing the utilization of textural 
features) to improve the module capacity.  

Limitations. The essence of unsupervised learning is to 
allocate the same label to samples of the same class. 
However, it is almost impossible to acquire precise 
segmentation predictions without any prior knowledge or 
annotation. Compared with the existing studies [50, 51] of 
pathological image segmentation, the proposed method may 
not able to produce satisfactory instance segmentation 
results (cells are prone to adhesion), which may limit its 
clinical application when a single-cell analysis is 
necessary. Most of the unsupervised learning methods are 
performed based on pixel intensities without considering 
textual features. Although combining deep neural networks 
with clustering or mixture models can enhance the utilization 
of textual features, it still relies on pixel intensity-based 
objective functions to some extent. The weak predictions can 
be observed in the segmentation of cells (first row in Fig. 7.) 
and glomerular structures (second row in Fig. 7.). This is 
mainly because of the conflict between the hypothesized 

Gaussian and real data distributions. Although the proposed 
DCGN may not be able to produce satisfactory predictions 
when handling complex images with too many categories or 
images with many “outliers”, the DCGN has shown merits in 
upstream (general tasks such as foreground/background 
segmentation) tasks. More importantly, the proposed 
constraint can help the module to build better classification 
boundaries for classes with small inter-class variations which 
is a major technical contribution of our method; however, our 
method can alleviate the false predictions but not completely 
remove them.     
How does DCGN alleviate degenerative issues? In order to 
give readers more intuition about how our method 
addresses the degenerative issues, we designed some 
schematic illustrations using simplified examples in 2D 
space (because real 3D cluster are intricate to demonstrate 
and comprehend).  
 First, the missing class issue usually occurs when the 
module fails to address the outliers, e.g., the module takes 
the outliers as a unique class while combing certain 
categories (blue and red dots) into a single class (as shown 
in Fig.8(a)). This kind of issue is more likely to occur in 
iterative methods that rely on pseudo labels, while it is also 
occasionally witnessed in existing deep Gaussian 
networks. The proposed centralised constraint will force 
the mixture module to be closer to the centroid of the data 
samples, thus preventing the occurrence of the missing 
class issue.  

 
Fig. 8. Simplified examples to illustrate how the proposed 
centralised constraint addresses the (a) missing class and 
single class domination (collapse); (b) redundant class and 
(c) instability problems. Predictions given by methods 
without centralised constraint are noted with dotted circles 
(left column). Class centroids are shown as yellow diamonds 
(class centroid given by methods without centralised 
constraint) and yellow stars (class centroid given by the 
proposed method).  
 

 
Fig. 7. Weak predictions of cells and glomerular structures.  
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 Second, the redundant class issue is usually artificial, as 
to improve the performance of most unsupervised 
methods. Due to the discrete distribution of a certain class 
(e.g., background regions that contain stroma and white 
non-tissue areas), some methods may need an additional 
class to ‘collect’ certain samples (shown as the blue 
samples within the green dotted circles in Fig.8 (b)). The 
redundant class can be simply avoided by setting an 
appropriate number of classes, however, modules without 
centralised constraints cannot achieve good performance 
(as shown in Fig. 3).  
 Moreover, the instability (low reproducibility) occurs 
because of the random initialisation. The proposed 
centralised constraint can alleviate the randomness caused 
by initialisation since it forces the module to learn 
parameters that approximate the data centroid (the 
proposed method achieves the lowest variance of 
evaluation metrics as shown in Table II.). 
Suggested criteria and Future Directions.  Based on 
the findings of our study, we emphasize these in-depth 
evaluation criteria for unsupervised segmentation 
approaches: 1) Repeated experiments should be conducted 
to present the stability and reproducibility of the method 
and 2) The degenerative issues should be discussed in 
detail to check the robustness of the method.  
 Here we also provide some potential research directions 
for unsupervised segmentation. The proposed DCGN can 
address essential segmentation tasks in pathological images. 
However, there remains further exploration on how it 
performs on other image modalities, e.g., segmenting the 
tumour from brain magnetic resonance scans [52, 53] or 
segmenting organs from computerised tomography images 
[54]. In addition, the uncertainty estimation of the 
semantic predictions for unsupervised segmentation 
should be explored. By using those ‘confident’ 
predictions, a self-supervised paradigm may be integrated 
with unsupervised learning to achieve superior 
performance. Moreover, methods that can cope with 
images with many classes still need to be developed, since 
most unsupervised segmentation approaches can only deal 
with relatively simple semantic predictions (e.g., learning 
by imitation to address the unseen classes [55]). Last but not 
least, a robust model that can better address the "outliers" 
should be developed. 

VI. Conclusion  

Tissue segmentation is an essential step of computational 
pathology; however, most existing methods demand a large 
number of manual annotations. This study demonstrates an 
effective unsupervised tissue segmentation using the 
developed, innovative DCGN method. The proposed DCGN 
method can accurately segment tissue structures without 
using any manual annotations or prior knowledge. This could 
potentially reduce the annotation costs in computational 
pathology dramatically.  
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