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Patient-Adaptive Population-Based Modeling of
Arterial Input Functions

Zhaoyan Xiu, Mark Muzi , Jian Huang , and Eric Wolsztynski

Abstract— Kinetic modeling of dynamic PET data
requires knowledge of tracer concentration in blood plasma,
described by the arterial input function (AIF). Arterial blood
sampling is the gold standard for AIF measurement, but is
invasive and labour intensive. A number of methods have
been proposed to accurately estimate the AIF directly from
blood sampling and/or imaging data. Here we consider fit-
ting a patient-adaptive mixture of historical population time
course profiles to estimate individual AIFs. Travel time of a
tracer atom from the injection site to the right ventricle of the
heart is modeled as a realization from a Gamma distribution,
and the time this atom spends in circulation before being
sampled is represented by a subject-specific linear mixture
of population profiles. These functions are estimated from
independent population data. Individual AIFs are obtained
by projection onto this basis of population profile com-
ponents. The model incorporates knowledge of injection
duration into the fit, allowing for varying injection protocols.
Analyses of arterial sampling data from 18F-FDG, 15O-H2O
and 18F-FLT clinical studies show that the proposed model
can outperform reference techniques. The statistically sig-
nificant gain achieved by using population data to train the
basis components, instead of fitting these from the single
individual sampling data, is measured on the FDG cohort.
Kinetic analyses of simulated data demonstrate the reliabil-
ity and potentialbenefit of this approach in estimating physi-
ological parameters. These results are further supported by
numerical simulations that demonstrate convergence and
stability of the proposed technique under varying training
population sizes and noise levels.

Index Terms— Arterial input function estimation,
kinetic modeling, medical imaging, parametric imaging,
PET imaging.
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I. INTRODUCTION

A. Motivation

POSITRON Emission Tomography (PET) is widely used
in the staging and evaluation of many diseases, and

particularly in cancer. From the time of radiotracer injection,
a PET scan provides 3D time course imaging of uptake of this
radioactive agent in the body. Given the time course of radioac-
tivity concentration in arterial plasma, called the Arterial Input
Function (AIF), kinetic modeling of the dynamic imaging
data can be used to measure physiologic parameters, such as
blood flow and glucose metabolic rate [1], [2], [3], [4]. There
exist techniques for estimating physiological parameters that
do not require the AIF, such as reference region approaches for
receptor-radioligand studies [5]. To be valid, these techniques
require the existence of a measurable, reliable reference region
that is devoid of the target receptor, and for comparisons
to be appropriate, the reference region properties must be
independent of treatment effects and groups [5]. A region
meeting these criteria has not yet been identified, or might not
exist, for many radioligands. AIF estimation therefore consti-
tutes a realistic, intermediate objective for many applications
of dynamic data analysis for the determination of metabolic
processes.

Determination of the AIF is a challenging task. The gold
standard and most accurate approach is to use direct arter-
ial blood sampling, but this requires multiple arterial blood
samples over the whole scanning period, and presents several
drawbacks including patient discomfort, additional costs, and
potential risk due to its invasive nature. A number of less
invasive methods have been considered that rely on one of a
few strategies for arterial signal characterisation, as follows.

B. Modeling of Arterial Input Data

Image-derived input functions (IDIF) [6], [7], [8], [9], [10],
[11], [12], [13] are obtained by fitting an AIF model to arterial
blood pool tracer activity extracted from PET image data,
rather than obtained from arterial sampling. Such data are usu-
ally extracted from a region of interest (ROI) within a dynamic
PET image that captures either a large blood vessel or the
left cardiac ventricle, and therefore tend to be noisy. Usually,
the average or the highest signals in the ROI are extracted
to obtain a time course to characterize the concentration of
tracer in arterial blood. IDIF approaches may also require at
least one physical blood sample to scale the image-derived AIF
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curve, and may include tracer uptake information both before
and after tracer metabolism. Alternatively, PET signals from
multiple regions (not necessarily arterial blood pools) may be
leveraged to recover AIF and thereby kinetic parameters, via
simultaneous estimation of the input function [14].

Population-based input functions (PBIF) [15], [16], [17],
[18], [19], [20] are obtained by estimating a patient’s AIF by
scaling an overall population arterial input pattern (obtained
from historical information on the patient’s population or by
averaging fits from the overall cohort) based on individual sub-
ject information (depending on availability, historical cohorts
have 10-30 blood samples through 60-90 minutes of data, and
have a combination of patient weight, body surface area, lean
body mass or cerebellar FDG activity) [21], [22]. The choice
of time points at which this information is extracted is a likely
contributor to variability in estimation of the signal scale. With
this approach, the individual is assumed to have the same
tracer injection protocol and physiological characteristics as
the population, which is not always realistic.

Various mathematical constructions such as Feng’s
model [23], tri-exponential models [24] and convoluted
models [25] have been developed to provide a continuous
and noise-free description of the AIF obtained from either
clinically sampled (as in typical PBIF strategies) or image-
derived (as in typical IDIF strategies) signals, as shown
with step 3A of the flowchart in Fig. 1. The tri-exponential
construction and its convolved alternative rely on a linear
mixture of exponential density functions fit to sample arterial
data. The tri-exponential model (TE) fits the AIF shape in
two parts: a first linearly increasing piece from the time the
AIF starts rising at to its peak, and a second piece modeling
the AIF from its peak to the end of study using a linear
combination of the three exponential curve. In comparison
to Feng’s model, the TE model provides more flexibility to
describe the AIF. However, neither model accounts for the
length of the tracer injection and could lead to poor fit to the
initial part of the AIF curve. An adaptation of the TE model
was proposed [25] that includes the information of injection
duration by convolving the injection profile and linear
combination of three exponential curves. This convolved
tri-exponential (CTE) model addresses some of the issues of
the original TE model, but relies on a boxcar function of fixed
duration to describe the injection profile, which used on its
own may not represent the pattern of tracer arrival into plasma
realistically. This particular limitation has been addressed in
some works [26], [27], [28], [29], by using a convolution of a
double Butterworth function with the TE function [28], or of
a square wave with a Gamma function [29]. Final individual
AIF estimates are obtained by scaling the estimated AIF
pattern to the individual physiological level using either
image-derived blood level estimates from a reference region
(after partial volume correction) or blood sampling data.
(Some alternative scaling methods exist that use routine
patient information instead; this is discussed further below.)

An alternative, compartment model based technique was
developed by our group to estimate the AIF from a whole-body
tracer circulation model (BCM) [29], [30]. In this repre-
sentation, the fate of each tracer atom is represented by

an eight-state Markov chain process discrete by heart beats,
where each state represents one important location in the
blood circulation system. To use the BCM, theoretically, time
course of the tracer concentration from one of the eight states
is required. Since the left ventricle is one of those states
represented in the stochastic process, the AIF signal can be
approximated by the tracer concentration in the left ventricle
observed from PET imaging over time. Otherwise clinically
sampled arterial data can be used for evaluation of one of these
Markov states. Although high dimensionality of the parameters
involved in the model constitutes a computational challenge,
this physiologically meaningful representation can yield an
accurate AIF estimation.

C. Contribution

Here we consider a modified PBIF-type approach by adjust-
ing a population AIF profile to individual characteristics
extracted from either arterial sampling or image-derived
data, to achieve reliable patient-adaptive AIF estimation
throughout the whole time course. In a sense the proposed
population-based projection model (PBPM) combines pop-
ulation profiling (as in a PBIF approach) with individual
arterial input data modeling (as in an IDIF approach). As such,
it differs from both these strategies, in a number of ways.
Unlike IDIF strategies, the PBPM leverages population infor-
mation, and does not depend on the availability of imaging
data (although it can also be applied using such data). Unlike
PBIF strategies, it does not average population components
into a single individual template pattern, but instead produces
a different pattern for each individual, by fitting a linear
mixture of population profile components to subject-specific
arterial sampling data. Fig. 1 describes the overall process and
illustrates how it differs from typical PBIF and IDIF processes.
To produce individual fits, the PBPM mixture components are
fitted to population data, and a combination of these fits is
adapted to each subject, unlike with TE-type methods. This
approach could also be adapted for use in step 3B in the
flowchart, but no such report was found in the literature. The
proposed PBPM allows the use of functions other than expo-
nentials, should a particular tracer require it, and can operate
with a different number of components depending on the PET
tracer used. This number can be automatically selected; two or
three such population components are typically sufficient for
individual AIF estimation. The proposed PBPM also provides
more flexibility with respect to temporal characteristics of the
data. It allows for injection duration to be included in the
modeling, which makes it applicable to PET studies with
different injection durations. Unlike TE-type constructions,
it also does not require specification of two key time points
(signal start and peak time), and can adapt to different peak
times thanks to its parametrization. A model fitting proce-
dure for the PBPM is also proposed hereafter. A penalized
positive constrained least squares method is developed and
implemented in R [31] for estimation of individual mixing
weights. Statistical regularization is built in to adapt relative
weight placed on the individual and population information
according to the noise level in a given dataset, to facilitate
patient-adaptive fitting of cohort characteristics.
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Fig. 1. Flowchart of typical PBIF and IDIF strategies, along with the proposed PBPM methodology. Red and green blocks indicate use of individual
subject and population data respectively. Step 3 of each method is an AIF model fitting step. Blood sampling for step 6A is not used in some IDIF
approaches (hence the dashed line); when used, fewer points are typically required compared to blood sampling used in step 6B. Using individual
image-derived data (1A) at step 3B(ii) of the PBPM approach (instead of arterial sampling data) would require an extra step in order to scale the
output to a physiological level, as in step 5 of an IDIF method.

This paper focuses on describing aspects related to the
PBPM (step 3B in the flowchart), and benchmarking this
model against reference methods typically used in step 3A of
PBIF and IDIF frameworks. Section II develops the proposed
model, and provides details on the methodological devel-
opments for fitting the model to clinically sampled arterial
data, including regularization and cross-validation for selection
of the number of components. Section III illustrates model
selection and evaluation, convergence of the procedure and
other aspects related to its construction, using both simulated
and clinical data comprising of three separate arterial sampling
datasets of respectively FDG-, H2O-, and FLT-PET imaging
studies. Results from these numerical analyses include vali-
dation of an open source implementation of the software in
R [31] that we made available [32]. Section IV presents a
comparative analysis against another three methods of ref-
erence, namely the TE, CTE and BCM models. Results on
clinical data demonstrate the gain derived by training the
proposed AIF representation on population data, as well as
its impact on kinetic analysis is evaluated via resampling of
uptake templates in one- and two-tissue compartment models.

II. METHODS

This section presents the modeling strategy used for
patient-specific AIF representation based on PET tracer con-
centration profiling, including aspects of model fitting and
calibration.

A. AIF Model Specifications

Let the travel time T of a specific atom at a specific arterial
sampling site be modeled as the sum of the time (Tir ) for
the atom to initially progress from the injection site to the
right ventricle (RV) of the heart, and the time (Tc) it spends
in circulation, before being sampled at the site:

T = Tir + Tc

Tir is modeled as a realization from a Gamma distribution
(G) with shape and rate parameters α and β, respectively. The
circulation time is modeled as a shifted excess circulation time
(ξ ) with the value of the shift (�) being specific to the location
of sampled blood-site within the circulatory system

Tc = � + ξ
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If the probability density ( f ) of ξ is known, it is possible
to combine this distribution with the injected dose profile in
the right ventricle to evaluate the tracer concentration at any
particular time. Under the conventional assumptions of time
invariance and linearity of tracer kinetics, a bolus injection
at time t = 0 will produce a temporal concentration of
tracer atoms in the RV proportional to the distribution G.
A more complex temporal injection profile, e.g. specified by
an indicator function I (·), would yield an RV concentration
profile CRV characterized by an accumulation over the whole
injection time, such that

CRV (t) = G ⊗ I (t) =
∫ t

0
G(t − s)I (s)ds

The evolution of this profile to the concentration profile at the
blood site of interest, CP , is governed by the circulation time
distribution. This is given by a shifted convolution with the
excess circulation travel time density

CP (t) = f ⊗ CRV (· − �)(t) =
∫ t

0
f (t − s)G ⊗ I (s − �)ds

We approximate the distribution f of excess circulation travel
time ξ by a linear mixture of J components to obtain an
estimate

f̂ (ξ) = π1e1(ξ) + π2e2(ξ) + · · · + πJ eJ (ξ)

where the π1, π2,. . . , πJ are mixing fractions of the compo-
nent densities e1, e2,. . . , eJ , with constraint π j > 0,∀ j =
1, . . . , J . With this representation, an estimate of the concen-
tration profile becomes

Ĉ J
P(t) =

J∑
j=1

π j

∫ t

0
e j (t − s)G ⊗ I (s − �)ds (1)

In this expression, the convolution (⊗) of the square wave I ()
with the Gamma distribution G describes a population injec-
tion profile, adjusted to individual subjects by a patient-specific
delay �. In this approach the population component densities
e1, e2,. . . , eJ are assumed to be standard exponentials with
characteristic rates φ1 > φ2 > · · · > φJ > 0. While many
other possibilities could be considered (e.g. Gamma, Weibull,
etc.), a mixture of exponential distributions makes for a simple
and flexible model. We presume the mixing components are
representative of the entire circulatory system, and functional
components e1, e2,. . . , eJ and G are held fixed across subjects
in the population of study.

Ambiguity may arise in the estimation of the linear coeffi-
cients π̂1 and π̂2, in cases where the corresponding distribu-
tion ranges overlap. To remove this ambiguity, a constraint
π1 > π2 can be imposed when estimating these linear
parameters. This constraint ensures that at early time points,
the first component contributes mostly to the peak of AIF
representation. A similar constraint may be applied to further
mixing coefficients, although in our experience on the data
of Section IV, it was not necessary as there was no practical
ambiguity between π2 and π3 in a three-component mixture
applied to dynamic FDG-PET data.

B. Model Fitting

Suppose blood time course data from a training population
of n subjects

{(tik, zik , wik ), i = 1, 2, . . . , mk, k = 1, 2, . . . , n}
are available, where zik is the concentration of the i th measure-
ment of the kth subject, measured at time tik with measurement
reliability wik and mk is the number of time points used in
clinical sampling for the kth subject. Each time course zik is
modeled for i = 1, 2, . . . , mk , k = 1, 2, . . . , n as

zik = ĈP (tik |�k, πk, θ) + w
−1/2
ik εik ,

where ĈP (t|�k, πk, θ) is defined in the previous subsec-
tion with the subject-dependent linear parameter vector
πk = c(π1k, π2k, . . . , πJ k), and subject-independent non-
linear parameter vector θ = c(α, β, φ1, . . . , φJ ). The εik ’s
are assumed to be i.i.d realizations of Gaussian random
variables modeling additive noise. We propose to estimate θ
by minimizing the objective function defined by

l(θ) =
n∑

k=1

min
�k ,πk

mk∑
i=1

wik(zik − ĈP (tik |�k, πk, θ))2

An algorithm for this optimization is implemented in R [31].
Minimization of l(θ) requires two-step estimation of πk and
�k , which is described in the following two subsections,
respectively.

1) Estimation of πk Given �k and θ : The linear mixture is
fitted by minimizing, for k = 1, . . . , n, criterion

l1(πk |�k, θ) =
mk∑
i=1

wik (zik − ĈP(tik |�k, πk, θ))2

=
mk∑
i=1

wik

⎛
⎝zik −

J∑
j=1

π j k Ai jk

⎞
⎠

2

with respect to πk given �k and θ , where the j th component
of the linear mixture for the kth patient, hereafter denoted by
Aijk for convenience, can be calculated as

Aijk = A j (tik |�k, θ) =
∫ tik

0
e j (tik − s)G ⊗ I (s − �k)ds

for i = 1, . . . , mk, j = 1, . . . , J , where the mixing parameters
{π j k}J

j=1 are constrained positive. An R implementation of
the Goldfarb-Idnami method [33] is employed to solve this
positivity-constrained least-squares problem. We denote the
resulting minimizer of l1(πk |�k, θ) as π̂k = π̂(�k, θ).

2) Estimation of Delay �k Given θ : Inserting π̂k(�k, θ) in the
objective function l1, we have the reduced objective function

l2(�k |θ) = l1(π̂k(�k, θ)|θ)

Given population characteristics θ , a grid search may be
carried out to minimize l2(�k |θ) with respect to �k . The
measured data may not be coincident with the timing of the
injection, and a parameter �k , positive or negative, is intro-
duced to account for this. In this study, 21 evenly distributed
grid points in the range of [−60 s, +60 s] were used. The
resulting minimizer of l2 is denoted as �̂k .
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3) Estimation of Population Parameter θ : Finally, the
population-specific parameters θ = (α, β, φ1, . . . , φJ ) are
estimated by minimizing

l(θ) =
n∑

k=1

mk∑
i=1

wik(zik − ĈP (tik |�̂k, π̂k, θ))2

Initial values for θ0 = (α0, β0, φ0
1 , . . . , φ0

J ) may be selected
based on experience from previous experiments and some
physiologic reasoning about the average travel time of each
type of tracer in the blood circulation system. Lower and
upper bounds θ L = (αL , βL , φL

1 , . . . , φL
J ) and θ H =

(αH , β H , φH
1 , . . . , φH

J ), respectively, can be set based on
experience from the population of patients receiving the same
tracer injection, and physiologic reasoning. Since the scales
of the parameters differ considerably, and also to avoid the
complexity of constrained minimization, the following para-
meter transformation may be performed. Let p = θ−θ L

θ H −θ L be
transformed via a logit transform into

ς = log
p

1 − p

Inversely,

θ = θ L + (θ H − θ L)
eς

1 + eς

Thus, the constrained minimization with respect to θ can be
performed as unconstrained minimization of l(ς) with respect
to ς . A Gauss-Newton type method was implemented in R to
optimize l(ς).

4) Fitting Individual Curves: The population parameter esti-
mates θ̂ = arg minθ l(θ) defined in Step (II-B.3) can be used
instead of being re-evaluated when fitting time activity curves
for “new” patients (i.e. patients outside of the training popula-
tion of n studies used to obtain θ̂ ), thus reducing the number
of parameters required to obtain an individual fit. In such
cases, simultaneous estimation of πk and �k can be achieved
by grid search over G values {�̂1

k, . . . , �̂
G
k }, corresponding

estimates {π̂1
k , . . . , π̂G

k } being obtained instantaneously via
linear regression.

5) Model Regularization: In cases of low signal-to-noise
ratio,1 regularization of the patient-specific mixing weights π
can be applied to control variability of these estimates. Once
the number and parameters of the population components have
been determined, a penalized nonlinear least squares approach
using the historical linear parameters as a Bayesian penalty for
individual fit [34] is used for this approach. Regularization on
π = πk parameters for the kth patient is achieved using the
following individual objective function:

fλ(π |�, θ) = W (zT − πT A�
T )2

+ λ(πT − π0
T )�−1(πT − π0

T )T

= −[(A�
T (

√
W z))T + λπ0

T �−1]π
+ πT (A�

T W A� + λ�−1)π (2)

where z = {zik}mk
i=1, A� = [Aijk ]i, j is a matrix of dimension

mk × J , and W = Wk are defined in Section II-B.1. All com-
ponents in the vectorized mixing weights π are constrained

1e.g. if using small and/or noisy PET imaging data for AIF estimation

to be nonnegative, and π0 and � respectively denote the
mean and covariance matrix of linear parameters obtained
from population-based estimation. regularization parameter
λ controls the trade-off between individual and population
data contributions, larger values of λ constraining individual
estimates to be closer to the population profile π0, which
suits higher-noise scenarios. The optimization is a quadratic
problem for which we used the Goldfarb-Idnami method [33].

Parameter λ is set by minimizing the generalized cross-
validation (GCV) score which is defined as the mean squared
error adjusted by the effective degree of freedom:

GCV (λ) =
1
m

∑m
i=1(zik − ẑik (λ))2( 1

m Trace(I − A�(A�
T A� + mλI )−1 AT

�)
)2 ,

where ẑik(λ) is ĈP (tik |�k, πk, θ) based on minimization of
the objective function defined in Eqn. (2), for a given λ.

C. Model Selection

Similarly to compartmental analysis of dynamic PET data,
the number of components needed in the linear mixture defined
in Eqn. (1) may depend on the tracer used in the studies.
More components may be included if the tracer molecules
can participate in metabolic activity. For example, in water
studies, tracers do not participate in any metabolic activity, and
a one-tissue compartmental model is normally used for water
dynamic studies. Models using more than one compartment are
applied to studies involving other tracers for more complicated
circulatory or metabolic systems [4].

Here a leave-one-out approach is developed for selection
of the number of components to be used in the proposed
linear mixture defined in Eqn. (1) so as to minimize model
complexity defined as

Err(J ) =
n∑

k=1

min
�k ,πk

mk∑
i=1

wik

mk
(zik − C J

P(tik ,�k, πk, θ̂k))
2, (3)

where J = 2, 3 . . . is the number of components, C J
P (·)

defines the predicted AIF based on PBPM with J components
given linear and non-linear parameters, and

θ̂k = arg min
θk

n∑
j �=k

min
�k ,πk

mk∑
i=1

wi,k

mk

(
zi,k − C J

P (ti,k ,�k, πk, θk)
)2

A cross-validated error ( ˆErr ) may not necessarily be the
minimum model complexity Err for the chosen J , but should
be reasonably small for all values Err(J ) in the range of J .

D. Scale Factor Estimation

An overarching objective of AIF estimation is to design
methods that can rely on image-derived input data instead of
invasive sampling. In this context, scaling of PBPM estimates
of the AIF obtained from image-derived arterial signals is
required to obtain final parametric imaging estimates. This
evaluation typically requires at least one blood sample point
(from either arterial or venous blood) [15], [35], [36], or an
adequately calibrated image-derived measurement from ref-
erence tissue (e.g. cerebral tissue) [22], [37], which is not
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always feasible. Routine individual subject information may
alternatively be used to this end. In [37] the authors use
FDG uptake measured in cerebellum ROI from a single scan
acquisition to normalize a PBIF estimate. In [38] the authors
show that body surface area can be used as an alternative
to blood sampling in PBIF normalization in brain 11C-TMSX
PET studies. In [39], the authors use injection dose and weight
information to scale PBIF estimates in 11C-DPA-713 PET
studies. Here we propose a regression model for the scale
factor that does not require arterial blood sampling or a large
blood-pool in the field of view. This model uses injection
dose X I D , blood volume X BV (estimated from non-invasive
patient information on body weight, height and total blood
volume [40]) and tail height of the AIF curve (π̂3, the
linear coefficient for the third component in the PBPM) as
independent variables:

log(S) = β0 + β1 X I D + β2 X BV + β3π̂3 + noise (4)

III. EVALUATION

This section introduces the three clinical datasets used for
evaluation of the proposed PBPM model. Model selection,
evaluation of the impact of training population size on model
fitting, and scaling of the final AIF estimates are covered
in these analyses. Complementary simulations based on the
sampling data also illustrate convergence of the procedure at
varying noise levels.

A. Data

The proposed model was applied to three separate datasets,
comprising blood sampling data obtained during the acqui-
sition of respectively 105 FDG-PET studies, 39 H2O-PET
studies, and 32 FLT-PET studies, all acquired at the University
of Washington [9], [29], [41], [42], [43], [44]. The data were
from both healthy subjects and patients with cancer conditions.
All FLT patients had cancer (brain, breast, lung, sarcoma).
Of the 105 FDG blood curves used in the analysis, 12 were
from normal human subjects with the rest from patients with
cancer, including brain, lung, liver and colon cancer patients.
Eighteen of the 39 water curves came from normal subjects.
Durations of FDG injections were either 1 or 2 minutes (58 and
33 cases respectively), bolus injection for H2O was assumed
to be 5 seconds, and duration of FLT injection was 1 minute.
The datasets are summarised in Table I. The data included
sample AIFs of the subjects along with gender, weight, height
and injection dose. Median sampling durations and numbers
of sampling time points per tracer are also summarised in that
table. The most common sampling frame for FDG was as
follows (min): 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 7,
10, 13, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90. For H2O,
it was 0, 0.067, 0.13, 0.20, 0.27, 0.33, 0.40, 0.47, 0.53, 0.60,
0.67, 0.73, 0.80, 0.87, 0.93, 1.08, 1.27, 1.42, 1.58, 1.75, 1.92,
2.25, 2.58, 2.92, 3.25, 3.58, 3.92, 4.25, 4.58, 4.92. For FLT,
it was 0, 0.25, 0.5, 0.75, 1.00, 1.25, 1.5, 1.75, 2, 2.5, 3, 4, 5,
6, 7, 8, 10, 15, 20, 30, 40, 50, 60, 90, 110. All water studies
were manual bolus injections. Only the initial 7 FDG studies
were manual injections over 1 min. The other FDG studies had
either a 1 min or 2 min programmed infusion using a syringe

TABLE I
TOP SECTION: PATIENT INFORMATION IN MEAN (SD) OF 105 FDG,

39 H2O AND 32 FLT STUDIES (ONLY 101 WEIGHT AND HEIGHT FOR

FDG STUDIES). BOTTOM SECTION: MEDIAN SAMPLING DURATIONS

AND MEDIAN NUMBERS OF TIME POINTS IN THE

SAMPLING FRAMES PER TRACER

Fig. 2. Normalised kinetic PET time activity curves acquired at the
University of Washington [9], [29], [41], [43], [44]: (A) 78 FDG-PET curves
with 1-minute injection duration, (B) 27 FDG-PET curves with 2-minute
injection duration; (C) 39 H2O-PET curves with bolus injection; (D) 32
FLT-PET curves with 1-minute injection.

pump. All FLT injections were a 1 min injection from an
infusion pump. A saline flush was used after every injection.
Ten studies from each of these 3 sets were used for PBPM
fitting of the population components θ . The rest of the data
were used to obtain individual fits from each of the models
used in the following comparative analyses. The normalized
AIFs are presented in Fig. 2. Each curve typically includes
three parts: a plateau of 0 concentration at the begin, followed
by a rapid increase after injection, and an exponential decay.
No imaging data were used in the following analyses.

B. Model Selection

The clinical datasets were used to estimate the
population-based parameters in the proposed PBPM model
for varying numbers of components. Figure 3 depicts the
cross-validated error ˆErr defined from Err(J ), for the FDG-
and H2O-PET cohorts respectively, after carrying out the
model selection procedure described in Section II-C. For the
FDG set an elbow was clearly identified at 3 components,
indicating a 3-component mixture to be optimal in the
sense of loss Err(J ). Three exponentials with different
rates convolved with a Gamma distribution were thus
estimated from the population data to approximate the travel
time distribution of the FDG and FLT tracers, yielding
a reasonable representation in PBPM (which aligns with
the traditional two-tissue compartment modeling of FDG
molecules in the blood circulation system). For the H2O set,
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Fig. 3. Left: model selection for FDG (top for one-minute injections; centre for two-minute injections) and H2O (bottom) studies on the basis of the
leave-one-out cross-validated error defined in Section III.C. Right: corresponding basis component fits.

there was no clear elbow and a 2-component mixture seemed
the optimal choice according to this selection method. Since,
unlike FDG, H2O is not involved in the metabolic process,
it seems reasonable that the number of components used to
describe H2O AIF might be one less than FDG. Note that
this model selection rule is only indicative, and using an
over-specified mixture (i.e. using more components) may also
mechanically impact the bias-variance tradeoff achieved by
the model.

C. Model Fitting

Model fitting was analysed on both clinical data
(Section III-C.1) and simulated data created using the clinical
data as templates (Section III-C.2), to illustrate the procedure
and demonstrate its convergence and reliability at varying
noise levels.

1) Model Fitting: Figure 4 shows examples of AIF fits
obtained from PBPM for FDG-, H2O-, and FLT-PET clinical
studies based on the above model selection. These examples
of individual PBPM fits illustrate how the third component in
the FDG and FLT PBPM fits, and the second component in
the H2O PBPM fit, could adequately represent the sample AIF
tail patterns.

2) Model Validation and Assessment: A set of complemen-
tary simulation-based analyses were conducted to validate the

model and its implementation. A first analysis was carried
out on AIF templates generated by adding random noise to
the PBPM model curve, to validate the implementation and
evaluate model performance at varying noise levels. Details on
the simulation settings used for these analyses are provided in
Appendix A. Figure 5 presents one example simulated curve
and its fit for each noise level.

Figure 6 presents the performance of PBPM on 400 sim-
ulated AIFs where medium noise level is as above when the
noise pattern is set to be similar to the residuals obtained from
fitting the PBPM model to the directly sampled AIFs. The
RMSE distributions showed overall improvement in model fit
as noise level decreases, as expected. The parameter estimation
error distributions in Fig. 6 showed an increase in estimation
efficiency as noise level decreases. The figure also illustrates
that model performance using nonlinear parameters estimates
for θ = (α, β, φ1, φ2, φ3) was comparable to that obtained
when using the true population parameter values. These results
demonstrate that the PBPM approach is consistent and accu-
rate, and validate its implementation [32].

D. Sensitivity to Training Population Size

As for the training population size required to fit the mixture
components, behaviour of the PBPM model may vary with
the PET tracer used. An experiment on the FDG cohort was
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Fig. 4. Examples of individual PBPM fits to FDG (left), H2O (middle) and FLT (right) arterial data, where the population-fitting components fj shown
in each plot, defined as the convolutions between the exponential components ej with the population Gamma profile G in Eqn. (1), are scaled by
individual mixing weights πj (with j = 1, 2, 3 for FDG and FLT data and j = 1, 2 for H2O data).

Fig. 5. Example of PBPM fit on a simulated curve for each noise level.

carried out, using random subsets ranging from n = 5 to n =
60 studies taken from the overall set as training population
studies, and monitoring cross-validated model fit errors. The
results from this analysis, shown in Fig. 7, indicated that
model fitting was relatively insensitive to this parameter, with
comparable error distributions obtained when using population
parameter estimated across the range of population sizes.

E. Scale Factor Estimation

Results on 91 FDG AIF studies from the scale factor
estimation procedure described in Section II-D are depicted

in Fig. 8 (4 patients were removed from the set of 95 curves
used in other analyses, due to missing information). They
show significant alignment between estimated scale factors
(Eqn. (4)) and actual scale factor values obtained directly
from arterial sampling data (Pearson correlation ρ = 0.83,
two-sided test with p < 1e−10 under the null hypothesis
H0 : ρ = 0).

IV. RESULTS

This section provides output of comparative analyses
between the proposed PBPM and reference approaches, using
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Fig. 6. Top-left: root mean square error (RMSE) distributions for the 400 AIF fits obtained from PBPM at each noise level. Top-right and bottom:
distributions of estimation errors πi − π̂i, i = 1, 2, 3. Blue boxplots represent the distributions of parameter estimates obtained using estimated
nonlinear parameters for θ = (α, β, φ1, φ2, φ3), whilst the orange (shadow) boxplots indicate those same distributions when the true values for the
nonlinear parameters were used.

Fig. 7. Distribution of 3-fold cross-validated AIF PBPM fit errors for varying training population sizes n.

the three clinical datasets introduced in Section III-A. The
benefit of using basis components fitted to separate population
data is also evaluated hereafter.

A. Comparative Analysis

PBPM-derived AIF estimates were compared to alternatives
obtained from another three models described in Section I-B,

namely a whole-body blood circulation model (BCM) [29],
[30], a straightforward tri-exponential model (TE) [5], [23],
and a convolved tri-exponential model (CTE) [25]. For each
tracer, the PBPM was fitted using a random sample of 10 arte-
rial blood sampling curves for estimation of the population
parameters θ = (α, β, φ1, . . . , φJ ) (and not for any other step),
and the rest of the data for estimation of individual AIF signals,
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TABLE II
ONE-SIDED MANN-WHITNEY TEST P-VALUES FOR THE CROSS-VALIDATED BCM, TE, CTE AND PBPM MSES OF FIG. 9. THE ALTERNATIVE

HYPOTHESES HA FOR THESE TESTS ARE PROVIDED TO ASSIST IN INTERPRETING THE TEST OUTPUTS. HERE HA IS ACCEPTED AT THE 5%
SIGNIFICANCE LEVEL FOR P-VALUES LOWER THAN 0.05 (SIGNIFICANT RESULTS IN BOLD)

Fig. 8. Scatterplot of estimated scale factors defined in Eqn. (4) against
actual values obtained directly from arterial sampling data from 91 FDG
AIF studies, showing a significant association between the two samples.

i.e. of {(πk,�k), k = 1, . . . , n} (and not for any other step).
In other words, the 10 randomly selected “population curves”
were used as “historical data” in this framework. These were
only used for the purpose of fitting the PBPM, and not the
BCM, TE and CTE models. A comparative analysis between
these four models was carried out in terms of the sum of
mean squared errors obtained for each of the n scaled AIF fits
{ẑi,k = ĈP (ti,k |π̂k)}n

k=1, defined by

E =
n∑

k=1

(∑mk
i=1(zi,k − ẑi,k )

2

mk

)

This fit error was cross-validated in the comparative analysis,
using

Ê =
n∑

k=1

(∑mk−1
i=2 (zi,k − ẑ∗

i,k)
2

mk − 2

)
(5)

for comparison, where ẑ∗
i,k = η∗(ti,k |π̂∗

k ) and η∗(ti,k |π̂∗
k )

is the set of optimal parameter estimates for the data
{(t j,k, z j,k)}m

j=1, j �=i .
The boxplots of cross-validated error distributions of Fig. 9

(bottom) illustrate that PBPM is competitive for all three

tracers. For the FDG set, the PBPM model yields comparable
performance and improved accuracy over TE, and outperforms
BCM both in terms of median error and standard error. For the
H2O set, the BCM and PBPM models show greater flexibility
in fitting the AIF data compared to the tri-exponential alterna-
tives, and PBPM also yields a lower median error compared to
BCM. For the FLT set, TE and PBPM perform comparably and
both models outperform BCM and CTE in terms of variability
and median errors. Nonparametric, one-sided (Mann-Whitney)
tests under the null hypothesis of no difference in model error
distribution locations (Table II) indicated a significantly lower
PBPM error compared to TE and CTE for both the FDG and
H2O sets at the 1% significance level.

B. Gain From a Population-Based Approach

An initial numerical experiment was carried out on simu-
lated data to assess the potential gain offered by employing
a population-based strategy over a fully individual approach
to estimate the basis components when fitting the PBPM
to sampling data. The same simulation process defined by
Eqn. (11) was applied to generate 210 simulated curves from
the PBPM templates. A random set of 10 of these curves
were used as a training population to obtain estimates θ̂ of
the nonlinear parameters θ . The remaining 200 curves were
fitted once following the proposed methodology (using this
estimate θ̂ to generate PBPM fits), and independently a second
time by re-estimating the nonlinear parameters θ individually
(i.e. without using the estimate derived from the training
population). We refer to the former AIF estimate as the PBPM
fit, and the latter AIF estimate as the individual fit. Fit errors
were calculated for each of the 200 curves and cross-validated
using leave-one-out cross-validation. Figure 10 shows the
distributions of cross-validated fit errors obtained from each
of the PBPM and individual fits, at varying noise levels. The
results show a clear gain resulting from the population-based
methodology.

A second analysis was carried out on the clinical data to
confirm these findings. Figure 11 illustrates the gain obtained
by using a population-based strategy to estimate the nonlinear
parameters θ for the PBPM basis component profiles, over
a fully individual fitting process where all model parameters
(π,�, θ) would be estimated from the single patient sampling
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Fig. 9. Model performance comparison for BCM, TE, CTE and PBPM on the FDG- (A), H2O- (B) and FLT- (C) PET studies. Distributions of
cross-validated errors (Eqn. (5)) depict the relative fitting performance of the four models, and indicate that PBPM remains competitive for different
tracers.

Fig. 10. Left: distributions of PBPM and individual leave-one-out cross-validated fit errors (respectively darker and lighter coloured) at varying noise
levels. Right: distribution of percentage differences between these PBPM and individual fit errors ((Êindiv − ÊPBPM)/ÊPBPM × 100).

data. A one-sided paired Wilcoxon test, under the null hypoth-
esis that the average cross-validated PBPM error is not less
than the average cross-validated individual fit error, confirmed
the gain achieved when using estimates θ̂ obtained from a
separate training population (p < 0.0001).

C. Impact on Kinetic Modeling

AIF estimation is of interest in the context where
there is calculation of kinetic parameters. Impact of the
proposed PBPM approach on parametric imaging was
evaluated in that sense via Monte Carlo simulation of
H2O- and FDG-PET time activity curves generated from
one-tissue compartment (1C) and two-tissue compartment

(2C) models respectively [4], [45], [46], [47], [48], where

dC1(t)

dt
= K1Cp(t) − (k2 + k3)C1(t) + k4C2(t) (6)

dC2(t)

dt
= k3C1(t) − k4C2(t) (7)

(with k3 = k4 = 0 in the 1C model) describe exchanges
between arterial plasma Cp and the first and second tissue
compartments C1 and C2. Details on the modeling and imple-
mentation of this system for this analysis are provided in
Appendix B. A set of template H2O time activity curves
{zt,true}N

i=1 were created by evaluating the 1C model with
each of the N = 39 clinical arterial samples from the H2O
dataset described in Section III-A and with true parameter
values K1 = 0.2 mL · cm−3 · min−1, k2 = 0.8 min−1,
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Fig. 11. Top: comparison of cross-validated errors obtained when using
a training population strategy to estimate the nonlinear parameters θ
that determine the structure of the PBPM basis components (left), over
a fully individual approach where the parametric vector θ is estimated
directly from the same individual sampling data (right), showing a lower
error tends to be achieved from a population-based strategy (one-sided
paired Wilcoxon test p < 0.0001). Bottom: direct comparison based
on percent differences between these PBPM and individual fit errors
((Êindiv − ÊPBPM)/ÊPBPM × 100).

VB = 0.05 mL · cm−3, � = 0.25 s (found relevant in other
studies [49] in modeling tissue activity around the aorta in
tumor blood flow studies). Similarly, a set of template FDG
time activity curves {zt,true}N

i=1 were obtained by evaluating
the 2C model with each of the N = 91 clinical arterial samples
from the FDG dataset of Section III-A and with true parameter
values K1 = 0.102 mL ·cm−3 ·min−1; k2 = 0.13 min−1; k3 =
0.062 min−1; k4 = 0.0068 min−1; VB = 0.04 mL ·cm−3; � =
0.2667 s (found relevant in other studies [50] for modeling of
grey matter activity in cerebral MRglu studies). This process
yielded a set of respectively 39 and 91 unique template uptake
curves. These templates were normalised to 1 so estimation
of a scale factor was not required in this experiment. Finally,
simulated uptake curves were obtained for each scenario by
adding Gaussian noise with standard deviation σ = φ

√
zt,true

with φ = 0.001 for H2O and φ = 0.04 for FDG, to
10 replicates of each of these template curves. This yielded
respectively 390 and 910 simulated time activity curves for
these two settings.

Estimates of flow (K1), rate k2, and distribution volume
VD = K1/k2 for the H2O scenario, and of flux (Ki =
K1k3/(k2+k3)), distribution volume (VD = Ki/k3), and rates

TABLE III
ONE-SIDED MANN-WHITNEY TEST P-VALUES FOR THE PERCENTAGE

ERRORS IN PARAMETER ESTIMATES OF FIG. 12. CASES WHERE THE

ALTERNATIVE HYPOTHESIS HA THAT THE PERCENTAGE ERROR OF

PBPM IS STRICTLY LOWER THAN THAT OF THE MODEL IT IS
COMPARED TO FOR THAT TEST (AFTER A SIGN ADJUSTMENT WHERE

REQUIRED) IS ACCEPTED AT THE 5% SIGNIFICANCE

LEVEL ARE INDICATED IN BOLD

K1, k2 and k3 for the FDG scenario, were compared across the
range of 1C and 2C model fits obtained using AIF estimates
from BCM, TE, CTE and PBPM for the H2O- and FDG-PET
cohorts. Note that in the FDG case here, quantity VD [51], [52]
differs from the distribution volume Vt = K1/k2(1 + k3/k4)
of total ligand uptake in tissue relative to total concentration
of ligand in plasma typically of interest for 2-TC models,
since we assume k4 = 0 [53]. For FDG, the distribution of
non-displaceable compartment relative to total concentration
of ligand in plasma Vnd = K1/k2 is also reported on. (In the
case of water, these quantities are equivalent.) Delay was held
constant for the purpose of this analysis, and the compartment
models were optimized with respect to (K1, k2, k3, VB) (with
k3 = k4 = 0 in the 1C model, and k4 = 0 in the 2C model)
via nonlinear estimation.

Figure 12 shows the distributions of percentage errors in
estimating these parameters using varying AIF estimates, and
Table III provides the p-values of corresponding one-tailed
Wilcoxon (Mann-Whitney) tests to assess bias from these
distributions, under the null hypothesis of a strictly lower
bias for the alternative model, compared to PBPM (i.e. H0 :
ErrP B P M ≥ Errother , after adjustment of error signs where
appropriate for the comparison). In complement, “mirror” tests
assessing H0 : ErrP B P M ≤ Errother indicated that PBPM
bias was significantly greater than BCM bias for estimation
of Vnd and rate k3 in the FDG setting (p < 0.005 for both).
No other such tests yielded significance. In particular, TE and
CTE did not yield significantly lower bias compared to PBPM
in any scenario.

In summary, the PBPM model is a viable option for evalua-
tion of physiological parameters in the FDG and H2O settings,
where it led to either statistically comparable or significantly
reduced bias in every scenario for all kinetic parameters, with
the only exception of BCM for estimation of Vnd and k3 in
FDG. These results illustrate its competitiveness and reliability
for kinetic analysis across different tracers, against the most
effective methods of reference.
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Fig. 12. Distributions of percentage errors in estimates of flux Ki (top left), distribution volume VD (centre left), Vnd (bottom left), K1 (centre, top),
k2 (center), and k3 (centre, bottom) parameters from 2C modeling of simulated FDG uptake data, and of flow K1 (top right), k2 (center right) and Vt
(bottom right) parameters from 1C modeling of simulated H2O uptake data, using respectively BCM, TE, CTE, PBPM AIF estimates, or the true AIF
used in simulating the template curves.

V. DISCUSSION

This paper introduced a novel population-based projection
model (PBPM) that combines strategies used in both image-
derived input function (IDIF) and population-based input
function (PBIF) approaches in order to achieve flexible and
reliable AIF estimation throughout the whole time course,
by fitting a mixture of population-informed uptake patterns
to individual patient imaging data. In this sense this method-
ology can be seen as the projection of individual patient
PET tracer kinetics characteristics onto a basis of popula-
tion uptake Using a few population-based components, the
proposed method can incorporate knowledge of the injection
duration into the model fit, thus not requiring the injection
protocol to be the same in all PET studies, unlike common
PBIF methods.

A comparative analysis was carried out that included two
reference models, namely the tri-exponential (TE) and con-
volved tri-exponential (TCE) models, and a whole-body blood
circulation model (BCM) as references for FDG-, H2O- and
FLT-PET datasets, as well as simulated datasets obtained from
resampling of the clinical information. Results demonstrated
that the proposed PBPM has overall competitive or lower
AIF estimation error and greater adaptability to different
tracers compared to the other three methods, and illustrated

its consistency at varying noise levels. Application of the
proposed approach to parametric imaging, using one- and two-
tissue compartment kinetic modeling scenarios, was also eval-
uated. In this experiment, the PBPM method overall yielded
appropriate characterisation of kinetic rates as well as flow,
flux and distribution volume, and yielded either comparable or
significantly improved bias over the other models (except for
two cases where alternate BCM yielded statistically significant
improvement over PBPM), showing improved adaptivity to
different tracers.

A natural end-goal is to apply AIF modeling to image-
derived data, either because clinical sampling is not avail-
able or to facilitate non-invasive evaluation. As part of the
technical contributions of this paper, regularization of the
model should confer robustness against increased noise levels
typically found in imaged blood-pool data. A region of interest
from PET imaging of the left ventricle could be used in this
sense, as the contrast of concentration of tracer from ventricles
and their surrounding muscle is usually distinct. Follow-on
work is planned around future access to datasets that combine
sampling and imaging data to carry out such an evaluation.
This will also yield the opportunity to evaluate the proposed
PBPM method compared to IDIF techniques used commonly
with major PET tracers.
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Where only individual venous blood samples and no reli-
able arterial blood information are available, the proposed
technique may still be considered, for example after conver-
sion of the venous signals into arterial scales. Some venous
input function (VIF) approaches were proposed that apply an
arterio-venous transform scheme to estimate AIF, for example
in 11C-labelled studies [54].

The requirement for scale factor estimation, discussed in
Section II-D, impacts all modeling techniques, including the
proposed PBPM strategy, but it is not yet clear how. Analysing
this impact will be the scope of follow-on work.

A critical minimum number of PET studies required to use
the proposed PBPM technique with future studies remains to
be determined and could vary with the PET radiotracer used.
Numerical experiments demonstrated robustness of this model
in this aspect, with stable model fit errors for even very few
population studies.

This study has not discriminated the data in terms of healthy
and cancer subjects, nor in terms of disease types. Although we
do not anticipate significant differences in AIF profiles across
such strata, using imaged data may introduce differences in
PBPM estimates of AIF profiles. Further analyses would be
required to explore this.

VI. CONCLUSION

We proposed a statistical model of the arterial input function
of a patient that leverages arterial uptake profile information
at both the cohort and subject levels. Results from simula-
tions demonstrated numerical stability and consistency of the
approach at varying noise levels. Improvement in accuracy
of the AIF representation over reference AIF models was
assessed on three clinical cohorts, each imaged with one of
three routinely used PET tracers (namely, FDG, H2O and
FLT). The proposed model either outperformed or remained
competitive against three reference techniques, in terms of
AIF estimation RMSE, for these tracers. Experiments further
demonstrated that this representation of the AIF is viable for
kinetic analysis of physiological parameters such as flow, flux
and distribution volume from one- and two-tissue compart-
ment models. Overall the proposed model yielded statisti-
cally comparable or significantly lower bias against the three
alternate models for determination of kinetics from typical
FDG template data in almost all comparisons. The proposed
methodology can be incorporated in either population-based or
image-derived input function estimation frameworks; the latter
will be the scope of follow-on work assessing this model for
non-invasive AIF estimation.

APPENDIX

Here we provide technical details on the analyses carried out
in the main paper for model selection, simulation-based vali-
dation studies, and implementation of the one- and two-tissue
compartment models used for kinetic analysis.

A. Validation Study on Model-Derived Template

In the first analysis of Section III-C.2, three mixture com-
ponents were fit to the FDG-PET imaging cohort to obtain

estimates of the Gamma and exponential parameters with
parameters set as follows:

α̂ = 2.1784, β̂ = 7.8741,

φ̂1 = 88.3992, φ̂2 = 0.1488, φ̂3 = 0.0088.

To simulate individual AIF curves, the linear mixing para-
meters were generated randomly via an acceptance-rejection
algorithm, drawing values from a Normal distribution so that
πi ∼ N(π̄i , σ (πi )

2), i = 1, 2, and enforcing some ad hoc
constraints. A value for π3 was then set given π1 and π2 to
ensure that

∑3
i=1 πi ≥ 1, and the simulated time courses were

defined as

Ctem
p (ti ) = π1C1(ti |θ) + π2C2(ti |θ) + π3C3(ti |θ) (8)

The following steps were taken to simulate the AIF curves:
Step 1 - Generate random component curves C1(ti |θ),

C2(ti |θ) and C3(ti |θ) using the nonlinear parameter
values given above;

Step 2 - Generate 0.4 < π1 < 0.8 and 0.08 < π2 < 0.35 via
acceptance-rejection;

Step 3 - Generate π3 = 1−max{π1C1(ti |θ)+π2C2(ti |θ)}
max{C3(ti |θ)} ;

Step 4 - Test that π3 satisfies

0.17 < π3 < 0.37 (9)

0.99 < π1 + π1 + π3 < 1.15 (10)

and repeat Steps 2–4 until the above constraints are
satisfied, to ensure adequate mixing coefficient values.

In the second analysis of Section III-C.2, sets of 400
simulated curves were generated using the same process at
varying noise levels termed high, mid-high, medium, mid-low
and low

Csim
P (ti ) = Ctem

p (ti ) + ε(·, ti ) (11)

where ε(medium) ∼ N(0, .05) when ti < 1.5 min and
ε(medium) ∼ N(0, .01) when ti ≥ 1.5 min for level medium.
ε(high), ε(mid-high), ε(mid-low) and ε(low) are 3, 3

2 , 2
3 and

1
3 times of ε(medium), respectively.

B. Evaluation of Compartment Models

Here we provide details on the parametric modeling
approach used for kinetic analysis in Section IV-C. The
arterial plasma concentration of the tracer is the input for
kinetic models. Direct measurement of plasma concentration
may not always be feasible, but if the arterial whole blood
activity is known (or estimated), it may be used to infer the
plasma concentration [29], [55]. Implementation of the one-
and two-tissue compartment models given concentration in
plasma CP (t) involves computation of the concentration in
tissue CT (t), represented as the following convolution:

CT (t) = (ϕ1e−θ1t + ϕ2e−θ2t ) ⊗ CP (t)

This concentration CT (t) can be seen as the sum of con-
centrations in compartments 1 and 2, i.e. CT (t) = C1(t) +
C2(t). Exchanges between arterial plasma Cp and the first
and second tissue compartments C1 and C2 are described
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respectively as follows (with k3 = k4 = 0 in the
1C model) [4], [9], [48], [56]:

dC1(t)

dt
= K1Cp(t) − (k2 + k3)C1(t) + k4C2(t) (12)

dC2(t)

dt
= k3C1(t) − k4C2(t). (13)

The compartment-specific contributions are derived from Eqn.
(12) and Eqn. (13) respectively as follows ( [9], [56]):

C1(t) = K1

θ2 − θ1

(
(k4 − θ1)e

−θ1t + (θ2 − k4)e
−θ2t ) ⊗ CP(t)

C2(t) = K1k3

θ2 − θ1

(
e−θ1t − e−θ2t) ⊗ CP (t)

Specifically, we can use

� =
√

(k2 + k3 + k4)2 − 4k2k4

θ1 = k2 + k3 + k4 + �

2

θ2 = k2 + k3 + k4 − �

2

ϕ1 = K1
θ1 − k3 − k4

�

ϕ2 = −K1
θ2 − k3 − k4

�

to evaluate the model for given (K1, k2, k3, k4) values. For the
one-tissue compartment model, we simply have k3 = k4 = 0.
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