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High-Resolution 3D Magnetic Resonance
Fingerprinting With a Graph
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Feng Cheng , Yilin Liu , Yong Chen, and Pew-Thian Yap , Senior Member, IEEE

Abstract— Magnetic resonance fingerprinting (MRF) is a
novel quantitative imaging framework for rapid and simulta-
neous quantification of multiple tissue properties. 3D MRF
allows higher through-plane resolution, but the acquisition
process is slow when whole-brain coverage is needed.
Existing methods for acceleration mainly rely on GRAPPA
for k-space interpolation in the partition-encoding direction,
limiting the acceleration factor to 2 or 3. In this work,
we replace GRAPPA with a deep learning approach for
accurate tissue quantification with greater acceleration.
Specifically, a graph convolution network (GCN) is devel-
oped to cater to the non-Cartesian spiral sampling trajec-
tories typical in MRF acquisition. The GCN maintains high
quantification accuracy with up to 6-fold acceleration and
allows 1 mm isotropic resolution whole-brain 3D MRF data
to be acquired in 3 min and submillimeter 3D MRF (0.8 mm)
in 5 min, greatly improving the feasibility of MRF in clinical
settings.

Index Terms— 3D magnetic resonance fingerprinting
(MRF), graph convolution, GRAPPA, k-space interpolation.

I. INTRODUCTION

QUANTITATIVE magnetic resonance imaging (MRI),
such as T1 and T2 mapping, allows more definitive

and objective tissue characterization for diagnosis, monitoring,
and therapy assessment [1]. However, current quantitative
MRI methods [2], [3] are slow and quantify only one tissue
property per scan. Multiple MR imaging techniques have been
recently developed to simultaneously quantify multiple tissue
properties with high scan efficiency [4], [5]. Among them,
magnetic resonance fingerprinting (MRF) is a relatively new
quantitative imaging method that utilizes a highly accelerated
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data acquisition scheme for efficient simultaneous quantifi-
cation of multiple tissue properties [6]. MRF characterizes
each tissue type with a unique signal time course, called
fingerprint, generated using pseudo-randomized imaging para-
meters. Multiple tissue properties are inferred simultaneously
via template matching of an acquired signal time course
with a dictionary of fingerprints corresponding to a wide
range of tissue parameters. MRF has been extensively applied
to various applications in brain, abdomen, heart, and breast
imaging [7], [8], [9].

For applications where contiguous volumetric coverage is
crucial, several studies [8], [10] have extended MRF acqui-
sition from 2D to 3D using stack-of-spirals for improving
coverage, signal-to-noise ratio, and spatial resolution. How-
ever, the acquisition time of 3D MRF for high-resolution
whole-brain coverage is prohibitively long for clinical set-
tings. Liao et al. [11] employ a hybrid GRAPPA and sliding
window approach for acceleration along the partition-encoding
direction in k-space. Chen et al. [12] combine non-Cartesian
parallel imaging with deep learning, achieving 2-fold k-space
and 4-fold temporal acceleration, allowing 1 mm isotropic
resolution and whole-brain coverage 3D MRF data to be
acquired in 7 min. Further acceleration is desirable for clinical
applications to alleviate patient discomfort, improve scan effi-
ciency and throughput, and reduce motion artifacts. Moreover,
non-Cartesian GRAPPA reconstruction in k-space is time-
consuming, prohibiting real-time display of tissue parameter
maps.

Recent studies have shown that deep learning (DL) can
mitigate aliasing artifacts resulting from undersampling in
parallel imaging. Lee et al. [13] proposed a deep residual
learning method to accelerate MRI in the image space using
magnitude and phase images. Eo et al. [14] proposed KIKI-net
to accelerate MRI using information in both k-space and
image space. Akcakaya et al. [15] proposed a deep learning
method, called RAKI, for parallel imaging in k-space. Similar
to GRAPPA, RAKI is trained on calibration data acquired at
the k-space center and applied to infer missing k-space lines.
However, most of these DL methods are designed for Cartesian
MRI, while many applications such as MRF are reliant on
non-Cartesian sampling.

Deep learning methods have recently been developed for
multiple aspects of MRF, including dictionary generation [16],
acquisition acceleration [12], [17], reconstruction [18], [19],
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and others [20], [21], [22]. In this paper, we introduce a
graph convolutional network (GCN), which caters to the
non-Cartesian nature of the sampling trajectory typical in
3D MRF, for replacing spiral GRAPPA for higher accel-
eration along the partition-encoding direction with the goal
of significantly shortening acquisition time. Combined with
deep learning based tissue quantification [12], our approach
allows 3D whole-brain MRF data to be acquired at 1 mm
isotropic resolution for simultaneous T1 and T2 mapping
in less than 4 min. Performance evaluation under multiple
acceleration factors demonstrates that our approach maintains
high quantification accuracy even with an acceleration factor
of 4. Extending the conference version of this work [23],

• We increased the acceleration factor to 6, further reducing
the acquisition time to ∼3 min for whole-brain coverage
at 1 mm isotropic resolution.

• We extended our method for 0.8 mm isotropic resolution
with an acquisition time of ∼5 min.

• We evaluated our method on prospectively undersampled
data with whole-brain coverage at 0.8 mm resolution.

• We performed extensive comparison of the our GCN with
GRAPPA and a Cartesian CNN.

II. MATERIALS AND METHODS

A. Data Acquisition

Two sets of 3D MRF data were acquired at two different
spatial resolutions (1 × 1×1 mm3 and 0.8 × 0.8×0.8 mm3)
using a Siemens 3T scanner with a 32-channel receive coil.
Written consent was obtained from each subject before the
MRI experiment. The pulse sequence was based on a stack-
of-spirals trajectory and steady-state free precession (SSFP)
readout [8]. Similar to 2D MRF, pseudorandomized flip angles
and a highly-undersampled spiral readout was employed. For
each MRF time frame (a 3D volume highly-undersampled
in k-space), the same spiral arm was acquired across all the
partitions (in-plane acceleration factor: 48) and golden-angle
spirals were applied across MRF time frames [8]. Multi-
ple inversion-recovery (inversion time: 20 – 400 ms) and
T2-preparation (effective echo time: 50 or 90 ms) modules
were employed to improve sensitivity to both T1 and T2
values [24].

Acquisition was carried out sequentially along the
partition-encoding direction with the same acquisition pattern
(flip angles, spiral sampling, etc.) for each partition. A constant
wait time of 2 s was included at the end of the acquisition of
each partition for longitudinal recovery. Each partition was
acquired across a total of 768 MRF time frames, a TR each,
in 16 segments with 48 TRs per segment. A variable wait
time between 190 ms and 440 ms was applied at the end
of each segment for variable longitudinal recovery [8]. The
acquisition time per partition was 15 s for 1 mm isotropic
resolution (5.9 ms per spiral readout) and 18 s for 0.8 mm
resolution (8.8 ms per spiral readout).

Imaging parameters specific to 1 mm acquisition include
matrix size: 256 × 256; field of view (FOV): 25 × 25 cm2;
TR: 9.2 ms; TE: 1.3 ms; and flip angles: 5–12 degrees. 3D
MRF data were fully acquired along the partition-encoding

direction and retrospective data undersampling was utilized
to generate data for various acceleration factors. A total of
144 sagittal partitions were acquired with 6/8 partial Fourier
sampling. The total acquisition time for one full 3D MRF scan
was about 30 min. For each subject, 12 auto-calibration signal
(ACS) slices at the center k-space were acquired for network
training and conventional GRAPPA reconstruction. Data was
acquired from 6 subjects (male/female: 3/3; age: 34 ± 10).

Imaging parameters specific to 0.8 mm acquisition include
matrix size: 320 × 320; FOV: 25 × 25 cm2; TR: 12.6 ms; TE:
1.3 ms; and flip angles: 5–12 degrees. A total of 176 sagit-
tal partitions were acquired with 2× interleaved k-space
undersampling along the partition-encoding direction (partial
Fourier: 6/8; ACS slices: 16; total acquisition time per subject:
∼20 min). Data was acquired from 5 subjects (male/female:
3/2; age: 27 ± 6). The data was retrospectively undersam-
pled for numerical evaluation. An additional prospectively
undersampled scan with 0.8 mm resolution and whole-brain
coverage (14 cm sagittal) was acquired for further evaluation
of method feasibility.

We denote the acquired MRF data as X ∈ CT ×P×Q×C ,
where T = 768, P = 144 or 176, Q = 2452 or 3300, and
C = 32 denote the numbers of time frames, partitions, spiral
readout points, and coil channels, respectively, for the two
spatial resolutions.

B. Approach

Our method, summarized in Fig. 1, involves (i) deep learn-
ing k-space data interpolation along the partition-encoding
direction, (ii) k-space to image space transformation via
non-uniform fast Fourier transform (NUFFT), and (iii) deep
learning T1 and T2 quantification [17]. We will first review
spiral GRAPPA and a Cartesian CNN, and then flesh out our
method.

1) Spiral GRAPPA: The non-Cartesian spiral GRAPPA was
first proposed by Seiberlich et al. [25] for cardiac imaging.
It was extended by Chen et al. [12] to accelerate 3D MRF
along the partition-encoding direction. As shown in Fig. 2,
each point on the spiral arm in a missing partition is predicted
with a 2 × 3 GRAPPA kernel determined based on ACS data
acquired in central partitions. For the c-th coil channel, the
i -th k-space point of the m-th partition is estimated as

Sc(m, i) =
Ncoil∑
c′=1

∑
m′∈{0,R}

i+v∑
i ′=i−v

g(m′, i ′|m, i, c) Sc′ (m′, i ′),

(1)

where m = 1, . . . , R − 1, R is the acceleration rate, 0 and R
are the indices of two acquired partitions, and g(m′, i ′|m, i, c)
is the GRAPPA kernel. The GRAPPA kernel is of size 2 ×
(2v + 1) and is used to convolve over 2 partitions, each with
2v + 1 points. Unlike in Cartesian MRI, points on a spiral
arm are not spaced equally. Therefore, the GRAPPA kernel
for each spiral point neighborhood varies with location.

Spiral GRAPPA can be written in matrix form as

H = SW (2)
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Fig. 1. Our method involves (i) deep learning reconstruction of k-space data, (ii) k-space to image space transformation via non-uniform fast Fourier
transform (NUFFT), and (iii) deep learning T1 and T2 quantification [17].

Fig. 2. Interpolation of spiral k-space data. Left: Kernels are learned
from the central ACS partitions and applied to other partitions at the same
location in the spiral-readout direction. Cartesian CNN treats the spiral
points as equally spaced. The GCN explicitly considers the non-uniform
locations of the spiral points while learning network weights.

in which S ∈ C1×(Q×C×2) is the nearest two acquired spirals,
H ∈ C1×(Q×C×(R−1)) is the prediction of the missing spirals
and W ∈ C(Q×C×2)×(Q×C×(R−1)) denotes the kernel weights
that are estimated via least squares. Each column of W is a
GRAPPA kernel g(·) padded with zeros.

Despite reasonably effective for 3D MRF [12], spiral
GRAPPA has the following limitations:

• GRAPPA kernels are linear in nature as indicated by (2),
and thus may limit approximation ability.

• Calibration data per kernel is much fewer than in Carte-
sian MRI, potentially leading to overfitting.

• The kernels (columns of W in (2)) are learned indepen-
dently without harnessing their interrelationships.

2) Cartesian CNN: By assuming equally-spaced spiral
points and “straightening” the spirals, a Cartesian CNN can be
applied for k-space interpolation in MRF. Unlike GRAPPA,
the Cartesian CNN estimates the missing spiral points via

non-linear activation functions with kernels shared by all spiral
neighborhoods. This is realized via multiple convolutional
layers:

H (l+1) = σ(conv(H (l); W (l))), (3)

where H (l+1) ∈ CQ×Cl+1 is the output of the l-th layer, W (l) ∈
C(2v+1)×Cl×Cl+1 is a learnable kernel shared by all readout
points, and σ(·) is the ReLU non-linear activation function.
Input H (0) consists of two acquired spirals concatenated across
coil channels. After N layers, H (N) denotes the prediction of
a missing spiral. The kernels of the CNN are expected to be
significantly more expressive than GRAPPA.

As shown in Fig. 3, the network consists of Nblock blocks,
each formed with one 1D convolution layer with kernel
size 3 followed by two 1D convolution layers with kernel
size 1. Residual connections [26] are added in each block to
ease network training. All the convolutional layers are ReLU
activated, except the last layer. Within each block, the first con-
volution layer with kernel size 3 aggregates information from
neighbors similar to GRAPPA, except that neighboring points
are assumed equally spaced. The two subsequent convolutions
with kernel size 1 map the data to a high-dimensional space
to learn inter-point relationships. Essentially, the Cartesian
CNN reformats the spirals as straight lines and disregards the
non-uniformity of the spiral points. Non-linear reconstruction
is learned using all the points on the spirals.

3) Graph Convolutional Network (GCN): To explicitly
account for the non-uniform distribution of the spiral
points, we represent each spiral trajectory as a graph and
employ graph convolutions throughout the network in Fig. 3,
as inspired by [27]. Unlike GRAPPA, the GCN employs
kernels that are adaptive to different point neighborhoods
(Fig. 2). In contrast to the Cartesian CNN, the GCN takes
into account not only the features of the neighboring points
but also their positions relative to the missing point, inher-
ently catering to varying point-neighborhood configurations.
We will demonstrate with empirical results that the number
of network parameters of the Cartesian CNN needs to be
increased significantly to achieve performance similar to the
GCN. To ensure fair comparison, the GCN is designed to have
a network architecture similar to the Cartesian CNN, with only
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Fig. 3. The Cartesian CNN (kernel size 3) and the graph convolutional network (GCN). In this example, the acceleration factor is R = 3.

the convolutional layers replaced by graph convolutional layers
(Fig. 3).

The relationships between k-space points of a partition are
encoded in an adjacency matrix A of a graph G = (V, E),
with vertices V representing the k-space points and edges E
representing the relationships between the points in k-space.
The adjacency matrix A is defined as

Ai, j = exp

(
−|vi − v j |2

d̄2

)
, (4)

where vi and v j are the 2D coordinates of a pair of k-space
points, and d̄ is the mean distance of all pairs of points
on a spiral arm. Only K nearest neighbors for each vertex,
including the vertex itself, is retained by keeping the K largest
values in each row of A and setting the others to 0. Graph
convolution is performed with kernel size K as [27]

H (l+1) = σ(D̂−1/2 ÂD̂1/2 H (l)W (l)), (5)

where Â = A + I and D is a diagonal degree matrix with
D̂ii = ∑

j Ai j , W (l) is a matrix of kernel weights, H (l) is the
matrix of activations in the l-th layer, and σ(·) = max(0, ·) is
the ReLU activation function.

4) Implementation: For both 3D MRF datasets, one subject
was used for testing and the rest were used for training. The
GCN was trained using 12 (for 1 mm resolution) or 16 (for
0.8 mm resolution) ACS central partitions with a stride of 1.
During inference, the GCN was applied to predict all skipped
partitions. Each training sample consists of two adjacent
acquired partitions as input (C2×Q×C ) and R − 1 skipped
partitions as target (C(R−1)×Q×C). The real and imaginary
parts were stacked across coil channels. The three convolu-
tional layers in each block had 512, 1024, and 1024 filters.
The mean squared error between the GCN output and the
sampled k-space points in the ACS data was employed as the
loss function. Optimization was performed using ADAM with
an initial learning rate 5 × 10−4, decayed by a factor of 99%
at the end of each epoch. The batch size was 1. NUFFT was
applied to reconstruct the 3D MRF data from k-space. Similar
to [17], a spatially-constrained U-Net was applied, in place
of standard template matching, to predict T1 and T2 values
(Fig. 1). The network takes as input the reconstructed MRF
time frames (CT ×M×M ) and outputs the tissue property maps
(RM×M for each map).

III. EXPERIMENTS

Evaluation was performed for the 1 mm MRF dataset
for multiple acceleration factors (R = 2, 3, 4, 5, 6) in the
partition-encoding direction. Taking into account the 12 ACS
partitions, the effective acceleration factors were 1.8, 2.6, 3.2,
3.8 and 4.2, respectively. Evaluation for the 0.8 mm dataset
was focused on acceleration factor 4. Further evaluation was
performed with the prospective scan described in Section II-A.
For both datasets, we used only the first 192 of the 768 time
frames for an acceleration of factor 4 in the temporal dimen-
sion, similar to [12]. Considering the 2 s wait time between
partitions, the effective acceleration factor was ∼3 for both
resolutions. The ground-truth T1 and T2 maps for the 1 mm
dataset were generated using all time frames, fully-sampled in
the partition-encoding direction. For the 0.8 mm dataset, the
ground-truth maps were obtained using GRAPPA followed by
template matching [12].

A. Comparison With State-of-the-Art (SOTA) Methods

We compared the Cartesian CNN and the GCN with two
SOTA methods—Spiral GRAPPA [12] and RAKI [15]—in
terms of k-space reconstruction and tissue property quantifi-
cation. RAKI is constructed with 3 convolutional layers and
operates on straight lines reformatted from the spirals.

1) k-Space Reconstruction: Similar to [15], k-space recon-
struction accuracy was evaluated using the normalized mean
square error (NMSE). The results for 3D MRF with 1 mm
resolution and three different acceleration factors (2, 3, and 4)
are summarized in Table I, giving the following conclusions:

• The one-block GCN-1B (Nblock = 1) outperforms the
SOTA methods.

• The three-block GCN-3B (Nblock = 3) yields the lowest
NMSE.

• Compared with the Cartesian CNN, the GCN-3B per-
forms better and faster with less number of parameters.

• The deep learning methods are over an order of magni-
tude faster than GRAPPA.

Results for ablation studies comparing the GCN-1B and the
GCN-3B are reported in Section III-B.2.

2) Tissue Property Quantification: Following [28], [29], per-
formance in tissue property quantification was evaluated using
Relative-L1, PSNR, SSIM, and absolute errors in milliseconds.
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Fig. 4. Representative T1 and T2 maps for R = 4 with the corresponding T1/T2 numerical results shown at the bottom (1mm resolution).

TABLE I
PERFORMANCE IN K-SPACE RECONSTRUCTION

As shown in Table II, both the Cartesian CNN and the
GCN ourperform spiral GRAPPA and RAKI for all metrics
and R = 2, 3, 4. The GCN performs comparably with the
Cartesian CNN, but faster with 40% less parameters (see
Table I). Figure 4 shows representative tissue maps for R = 4.
Compared with the SOTA methods, the T1 and T2 maps
obtained with the GCN exhibit less artifacts with smaller
errors, better contrasts, and clearer structural details. The errors
vary across tissue types. For example, for the GCN results

obtained with R = 4, the T1 R-L1 errors for WM, GM,
and CSF are 0.051, 0.090, and 0.135, respectively, whereas
the T2 R-L1 errors for WM, GM, and CSF are 0.062, 0.092,
and 0.214, respectively. Figure 5 shows the T1 and T2 maps
in three different views for R = 4. With the GCN, the
acquisition time for whole brain coverage is reduced to 5 min
with R = 3 and 4 min with R = 4.

Figure 6 shows representative T1 and T2 maps obtained
using the Cartesian CNN and the GCN with three different
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Fig. 5. Whole-brain T1 and T2 maps generated using the GCN with R = 4 in axial, coronal, and sagittal views. The acquisition time for 144 sagittal
slices is less than 4min (1mm resolution).

Fig. 6. Comparison of T1 and T2 maps between the Cartesian CNN and the GCN (1mm resolution).

acceleration factors (2, 3, and 4). Although they show similar
performance, apparent artifacts in the form of dark holes can
be observed for GRAPPA, RAKI, and the Cartesian CNN
(Figure 7). Cartesian deep learning methods, i.e., RAKI and
the Cartesian CNN, yield in overall better quantification results
than GRAPPA, but are more susceptible to artifacts. The GCN
is the most effective and yields the best quantification results
without apparent artifacts.

B. Ablation Study
We performed ablation studies to investigate factors that

influence the performance of the GCN, using the 1 mm
dataset.

1) Kernel Size: The kernel size K of the GCN controls the
receptive field and determines the number of points each point
can draw information from. The best performance is given by
K = 5 (Table III).
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Fig. 7. T1 and T2 maps in sagittal, coronal, and axial views generated by various methods for R = 4 (1 mm resolution). Apparent artifacts are
marked by green arrows.

2) Number of Blocks: Table IV shows that Nblock = 3 or
Nblock = 5 gives the best performance. Insufficient blocks will
limit network capacity. Too many blocks will cause overfitting
to limited samples.

C. Higher Acceleration

We further explored higher acceleration of factor 6 along
the partition-encoding direction. Figure 8 shows representative
T1 and T2 maps reconstructed with the GCN from retrospec-
tively undersampled data. Similar to previous observations,
no artifacts are observable even at high acceleration of factor
6. A total of 24× acceleration is achieved when combined with

4× acceleration along the temporal dimension, reducing the
total scan time to approximately 3 min for 1 mm 3D MRF with
whole-brain coverage. Relative-L1, PSNR, and SSIM values
for R = 6 are summarized in Table V. The GCN performs
similar to or better than the Cartesian CNN at 6× acceleration.

D. Submillimeter 3D MRF

We applied the GCN for 0.8 mm 3D MRF. Figure 9 shows
representative T1 and T2 maps obtained with 4× retrospec-
tive undersampling along the partition-encoding direction.
Figure 10 shows in three different views the T1 and T2 maps
obtained from the prospectively undersampled data, which was
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Fig. 8. T1 and T2 maps generated by the GCN for various acceleration factors (1 mm resolution).

TABLE II
PERFORMANCE IN TISSUE QUANTIFICATION. THE GCN AND THE CARTESIAN CNN ARE BOTH IMPLEMENTED WITH 3 BLOCKS

acquired in 5 min. Similar to 1 mm 3D MRF, high-quality
submillimeter quantitative maps can be reconstructed rapidly
with the GCN.

IV. DISCUSSION

In this work, we employed a GCN to accelerate high-
resolution 3D MRF along the partition-encoding direction,

achieving acceleration factors up to 6. Our method substan-
tially reduced both acquisition time and reconstruction time
for high-resolution quantitative brain MRI.

In addition to comparing with GRAPPA, a conventional
method, and RAKI, a state-of-the-art deep learning method,
we demonstrated the efficacy of the GCN over the Carte-
sian CNN. While comparable to the GCN in terms of
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TABLE III
K-SPACE INTERPOLATION ERRORS FOR DIFFERENT KERNEL SIZES,

K’S, WITH NBLOCK = 3

TABLE IV
K-SPACE INTERPOLATION ERRORS FOR DIFFERENT

NBLOCK ’S WITH K = 5

TABLE V
PERFORMANCE IN TISSUE QUANTIFICATION FOR THE GCN AND THE

CARTESIAN CNN FOR 1 MM RESOLUTION AND R = 6

reconstruction accuracy at various acceleration factors, the
Cartesian CNN requires a significantly larger number of
parameters to sufficiently capture the data characteristics of
3D MRF.

Compared with conventional GRAPPA and the Cartesian
CNN, the GCN yields improved map quality for both T1
and T2 quantification. With retrospective undersampling, some
minor imaging artifacts were noted in the reformatted axial
images (Figure 5). Similar artifacts can be found in the
ground truth maps of a few subjects and are likely due to
motion artifacts caused by long acquisition times. The focus
of our approach is not on artifact removal. When applied to
prospectively undersampled data that can be acquired rapidly
in less than 5 min, our method predicted tissue property maps
with no visible artifacts.

Our method has not been tested on pathological data.
However, as GRAPPA generalizes well to pathology and both
GRAPPA and our method learn k-space interpolation based
on the ACS data, we expect our method to be generalizable
to pathology like GRAPPA.

Although our method is focused on accelerating high-
resolution 3D MRF, it is expected to be applicable to 3D MRF
with lower spatial resolutions given the higher signal-to-noise
ratio.

Fig. 9. Tissue property maps reconstructed from prospectively under-
sampled MRF data with 0.8mm isotropic resolution and R = 4. The data
was acquired within 5min.

Fig. 10. Whole-brain T1 and T2 maps reconstructed from the 0.8mm
MRF data with 4× acceleration along the partition-encoding direction
(5min acquisition time).

To demonstrate the utility of the GCN in accelerating 3D
MRF, we opted for the most common choice of adjacency
matrix based on Gaussian-weighted Euclidean distance of
data points. There are multiple GCN variants with different
adjacency formulations. Exploration of more customized adja-
cency matrices for MRF can be investigated in the future.

Finally, the performance of our method was evaluated
based on the reconstructed T1 and T2 maps. More in-depth
evaluation can be performed based on the predicted k-space
data, for example, by studying the manifold of the predictions
compared to the Bloch model based on T1 and T2 maps [30].
This could potentially lead to the development of manifold
constraints for improved k-space reconstruction.

V. CONCLUSION

In this work, we have introduced a graph convolutional
network (GCN) to replace GRAPPA for greater acceleration
along the partition-encoding direction for high-resolution 3D
MRF. Combined with deep learning tissue quantification [17],
our method reduces the acquisition time to 3 min for 1 mm
isotropic resolution and 5 min for 0.8 mm isotropic resolution.
Additionally, the reconstruction time can be substantially
reduced by more than an order of magnitude over GRAPPA
for whole-brain 3D MRF.
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