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Abstract— Magnetic resonance imaging of whole fetal
body and placenta is limited by different sources of motion
affecting the womb. Usual scanning techniques employ
single-shot multi-slice sequences where anatomical infor-
mation in different slices may be subject to different
deformations, contrast variations or artifacts. Volumetric
reconstruction formulations have been proposed to correct
for these factors, but they must accommodate a non-
homogeneous and non-isotropic sampling, so regulariza-
tion becomes necessary. Thus, in this paper we propose a
deep generative prior for robust volumetric reconstructions
integrated with a diffeomorphic volume to slice registration
method. Experiments are performed to validate our con-
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tributions and compare with methods in the literature in
a cohort of 72 fetal datasets in the range of 20-36 weeks
gestational age. Quantitative as well as radiological assess-
ment suggest improved image quality and more accurate
prediction of gestational age at scan is obtained when com-
paring to state of the art reconstruction methods. In addi-
tion, gestational age prediction results from our volumetric
reconstructions are competitive with existing brain-based
approaches, with boosted accuracy when integrating infor-
mation of organs other than the brain. Namely, a mean
absolute error of 0.618 weeks (R2 = 0.958) is achieved when
combining fetal brain and trunk information.

Index Terms— Fetal magnetic resonance imaging, slice to
volume reconstruction, generative image priors, diffeomor-
phic image registration, gestational age prediction.

I. INTRODUCTION

MAGNETIC Resonance Imaging (MRI) is indicated
when both Central Nervous System (CNS) and non

CNS fetal anomalies are suspected on ultrasound [1], [2].
When compared to ultrasound, MRI is a unique instrumental
technique for studying fetal development due to enlarged Field
Of View (FOV), superior soft tissue contrast, and lack of
shadowing. Basic examination protocols involve collecting
T2-weighted slices along the main axes of the fetal organs.
In the case of brain imaging, aspirations for more quantita-
tive imaging motivated the development of Slice to Volume
(SV) reconstruction techniques aiming to obtain a volumetric
representation of the fetal brain from the set of acquired
slices [3], [4]. If SV reconstruction is available, acquisitions
may be redesigned for collecting the most diverse and efficient
set of orientations considering both scanning limitations and
reconstruction properties. Free reformatting of the imaging
plane may be even more important for non-brain applications,
where, due to motion, limited resolution, Signal to Noise
Ratio (SNR), and scanning time, obtaining the principal axes
of various target organs while planning the scans may be
difficult or infeasible. However, 3D reconstruction of the
whole uterus faces an increased complexity due to different
non-rigid sources of motion, consequently rendering rigid
motion models [3], [4], [5], [6], [7], [8] ill suited.

Despite non-rigid motion transformation models for SV
registration problems have been proposed some time ago [9],
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the predominance of fetal brain applications has delayed their
incorporation to whole body fetal image reconstruction algo-
rithms. After some preliminary works applying rigid correction
models outside the brain, [10] proposed a method using patch-
based rigid registration to approximate non-rigid deformations.
Although this approach may benefit from a flexible motion
model, continuity, smoothness and invertibility of motion
cannot be guaranteed as no mechanism is provided for assem-
bling per-patch estimates. Improved performance was shown
in [11] when using deformable registration based on free-form
deformations on a hierarchical B-Spline grid, reconstruction
based on super-resolved weighted Gaussian interpolation, bias
correction, and global and local outlier rejection based on
normalized cross correlation and structural similarity indexes
respectively. In this case, a continuous and smooth motion
model is proposed but invertibility is not guaranteed, which
could compromise the physical plausibility of the estimated
motion fields. In addition, the regularization scheme is based
on an edge-preserving term relying on a piecewise constant
image assumption, which is prone to spurious boundaries or
non-natural image texture due to noise amplification effect
or when this assumption is violated. As reported in [9],
other explored alternatives for deformable motion models in
SV registration include usage of thin plate splines and finite
element meshes.

On the other hand, application of Deep Learning (DL)
methodologies in the orbit of fetal SV reconstruction includes
methods for rigid alignment of slices to brain templates
[5], [6], rigid motion tracking [8], automatic localization of
the fetal brain [7], or image quality assessment [12]. Distinctly,
in this work we focus on the integration of DL architectures
within the reconstruction formulation. Most efforts on DL
for inverse problems have focused on learning a mapping
between an approximate inverse of a fully characterized mea-
surement operator and a Ground Truth (GT) reconstruction,
which is used at test time to mitigate spurious residuals
in the reconstruction, typically by unrolled schemes [13].
However, generation of GT reconstructions is problematic
in our application as it would involve the acquisition of
oversampled datasets in a sensible population. In addition,
as the measurements are affected by motion, learning may
be biased by the reconstruction method employed to build the
training data.

Difficulties with the GT are also an issue for validation,
differences between reconstruction methods are often subtle
or difficult to summarize, and improved reconstructions may
not necessarily impact a particular clinical application. For
these reasons, we have combined generic measures of data
quality and radiological scoring with a task-based validation
strategy based on assessing the Gestational Age (GA) pre-
diction performance. This is identified as a clinically relevant
task because GA knowledge is critical for fetal development
characterization from imaging and errors or uncertainties in
GA predictions could be indicative of developmental abnor-
malities [14].

In this work we introduce the Robust Generative Diffeo-
morphic Slice to Volume Reconstruction (RGDSVR) method
which is devised for multi-slice MRI scans with data acquired

along different slice orientations and tested for a single-shot
Fast Spin Echo (FSE) T2-weighted sequence, as typically used
in fetal MRI. Our contributions include an efficient version
of the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [15] framework adapted to the computational
requirements of joint deformable registration and reconstruc-
tion problems which guarantees smooth and invertible motion
fields. In addition, we propose a robust explicit inverse for-
mulation of the reconstruction with regularization based on an
untrained generative model able to preserve both the edges
of the images and structured image statistics, the so-called
Deep Decoder (DD) [16]. Finally, we show that free ref-
ormatting of whole body fetal SV reconstructions can be
leveraged for accurate estimates of GA at scan. The source
code and exemplary data required to reproduce the main
results of the paper is made available at https://github.com/
lcorgra/RGDSVR/releases/tag/1.0.0.

II. METHODS

Common structural fetal MRI protocols are based on the
acquisition of a series of stacks of slices along different
orientations (see Fig. 1). Thus, we start from a data array y =
(yml

1ml
2ml

3l) encompassing several stacks 1 ≤ l ≤ Nl , where

ml
1ml

2ml
3 indexes a voxel in stack l, respectively along the

readout, phase encode and slice directions, and Nl denotes the
total number of stacks in the acquisition. Then, we formulate
the reconstruction problem as the recovery of a volume x from
y via

(x̂, φ̂, θ̂) = argmin
x,φ,θ

f (A�φx − y)+ g(x −�θz)+ h(φ), (1)

with f a robust loss function, g a reconstruction regularizer,
and h a motion regularizer. In this formulation, we model
the image formation by a measurement operator A, the fetal
motion by a diffeomorphic image warping operator �φ with
deformation described by the parameter vector φ, and use a
generative DD network operator �θ with learnable parameters
θ and fixed random input z for regularization.

In § II-A we describe the robust loss function f , in § II-B
the measurement operator A, in § II-C the temporal structure
of the acquisition, in § II-D the registration methodology to
obtain �φ , in § II-E the deep generative prior �θz used
as a regularizer, in § II-F the fetal MRI cohort used to
test our reconstructions, in § II-G the adopted reconstruction
implementation, and in § II-H the GA estimation procedure.

A. Robust Reconstruction

The residuals of the reconstruction are denoted by

r = A�x − y = (rml
1ml

2ml
3l) (2)

The corresponding squared residuals map is denoted by r2 =
(r2

ml
1ml

2ml
3l
). We use a smooth version of the Welsch metric due

to its strong robustness to outliers [17]:

f (r) = k2σ 2

2

∥∥∥∥1− exp

(
− Gr2

k2σ 2

)∥∥∥∥
1
, (3)
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Fig. 1. Overview of SV reconstruction and registration for whole body fetal imaging. a) Stacks of slices are acquired along different orientations,
here with axial, sagittal and coronal examples. Corresponding readout, phase encoding and slice axes and planes are color coded in green, blue
and yellow, respectively. b) Slices collection follows different interleaving configurations in time. c) Acquired data may include corrupted slices and
appear discontinuous in the slice direction due to motion. d) Volumetric reconstructions achieving a dense representation of the fetal anatomy
can be obtained by accounting for these measurement factors. e) For this sake, the algorithm alternates between robust motion compensated SV
reconstruction, multi-scale registration of reconstructed volume to acquired slices for motion refinement, projection of the reconstruction solution to
a natural image generative representation, and regularization of the reconstruction using this projection.

with G an in-plane Gaussian smoothing operator to weight
the contribution of the observation in a voxel according to the
residuals in its neighborhood, σ a robust estimation of scale,
σ 2 = 2.1981 median(Gr2) [17], and k a tuning constant.

We can solve for x using Iteratively ReWeighted Least
Squares (IRWLS) [17], [18]. Defining the encoding operator as
E = A�, the update at iteration i+1, which can be computed
via conjugate gradient, is

x̂(i+1) = (ET W(i)E)−1ET W(i)y, (4)

with W(i) a diagonal matrix of weights. The diagonal entries
for the weights, w(i), are obtained from the squared residuals

and the updated scale at iteration i , r2
(i) and σ 2

(i) as [17], [18]:

w(i) = G exp

(
− Gr2

(i)

k2σ 2
(i)

)
. (5)

To improve IRWLS convergence we use homotopy continua-
tion [19]. The computed weights are modified for reconstruc-
tion according to:

W(i) = diag(w(i))
τ(i) ,

τ(0) = 0, τ(i+1) = min((τ(i) + 1)/Ni , 1), (6)

so an Ordinary Least Squares (OLS) problem is solved in
the first iteration (τ = 0, W = I, the identity matrix) and
the target formulation is gradually reached after Ni iterations
(τ = 1). In Fig. 2 we show an example including a sampled
slice, residuals at first and last iterations of the reconstruction
and corresponding weights.

B. Measurement Operator

The measurement operator A, is defined for each stack l
as Al = DlTl , where Tl is a rigid transformation accounting
for the orientation of the stack l and Dl is the slice sampling
operator. We model blurring and discretization in Dl using a
Gaussian slice profile and according to the slice thickness and
slice separation of stack l [20]. Modeling and estimation of
image inhomogeneities had a small impact in the tested data,
so it is left out of this manuscript. However, inhomogeneities
may become significant at higher field strengths.

C. Temporal Structure of the Scan

Multi-slice scans are typically collected in a non-sequential
manner where consecutively acquired slices are located distant
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Fig. 2. a) Measured data y, residuals r at b) first and c) last iterations of the reconstruction, and weights w at d) first and e) last iterations of
the reconstruction. The green ellipse encloses an area around the the placenta and amniotic sac boundary with high residuals when starting the
reconstruction –see b)–. These become smaller at last iteration –see c)– due to corrected motion, which increases the reliability of the data in that
area, as shown by the corresponding weights. The blue ellipse encloses an area where flow artifacts cause a relative enhancement of the amniotic
fluid so, driven by anomalously high residuals, weights are kept low in the last iteration –see e)–.

Fig. 3. Slice acquisition order for an exemplary stack highlighting
a) interleave and b) package structure. Arbitrary units (arb. unit) in time
refer to the moments the slices are acquired.

to each other. An example of the particular slice order used
in a given stack of the acquisition is shown in Fig. 3a.
We define an interleave as a series of slices acquired within a
single FOV sweep, so in this example we have 20 interleaves.
As illustrated in Fig. 3b, we can also group our slices into so-
called packages, constructed by considering the gap between
the first slices in two consecutive sweeps, with 4 packages per
stack in our sequence.

For motion estimation we define an operator P( j )
s ,

1 ≤ s ≤ N j
s , to extract the slices associated to the

motion state s. Motion states are constructed to correspond
to a given stack, package or interleave depending on the
multi-scale motion estimation level j ∈ {STACK, PACKAGE,
INTERLEAVE} at which we are operating, with N j

s the
number of states at level j . We start by estimating a defor-
mation per stack. Then, we propagate these estimates as
starting transformations for estimations at the package level.
Finally, we propagate the latter to estimate a deformation
per-interleave, which serves to accommodate different slice
deformations because subsequent slices are acquired with a
substantial gap.

D. Diffeomorphic Registration

In the LDDMM framework [15] a transformation between
two images ϕ1 is given as the end point of the flow of a vector
field vt (ϕt ) = ϕ′t , where ϕ0 = id with id the identity function.
The diffeomorphic registration between the source and target
volumes I0 and I1 is posed as the variational minimization of:

E(v) = 1

σ 2
I

‖I0(ϕ
−1
1 )− I1‖2L2

+
∫ 1

0
‖vt‖2V dt, (7)

where σI represents the image noise variance and norms are
taken in the spaces of square integrable functions L2 and
velocity fields V . Then, by enforcing a certain smoothness on
V , ϕt is guaranteed to lie in the space of diffeomorphisms.
In practice, smoothness is promoted by an operator L =
(−β�+ id)γ with � the Laplacian and β and γ controlling
the level and properties of smoothness respectively.

Ensuring smooth and invertible mappings by the LDDMM
framework may confront numerical difficulties [21]. For effi-
ciency, we adopt single-step temporal integration and track the
invertibility based on the sufficient Lipschitz condition [22]:

q(p) = max
p′
‖(ϕ(p)− ϕ(p′))− (p − p′)‖22

‖p − p′‖22
< a, (8)

with p, p′ a pair of coordinates and Lipschitz constant a < 1.
A risk of local non-invertibility (with maximum for p′ taken
in a discretized neighborhood of p) is used in each step to
modulate the registration gradient descent step size by max
(a −maxp(q(p)), 0).

Hence, in our joint SV reconstruction and diffeomorphic
registration formulation, we face a series of volume to
slice [11] registration subproblems from source reconstructions
to target measurements:

φ̂
( j )
s = argmin

φ
( j)
s

1

σ 2
I

‖P( j )
s (A �φ

( j)
s x − y)‖22 + (Lφ

( j )
s )T φ

( j )
s .

(9)

�φ
( j)
s is the image warping operator, implemented by linear

interpolation according to the diffeomorphism induced by φ
( j )
s ,

which parametrizes a band-limited field [23]. L represents the
discrete version of the smoothness operator L. (9) corresponds
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Fig. 4. DD architecture used for reconstruction regularization. Considering a network with D scales, scaling ratio U and channel compression ratio
per-scale C, the input is a random array of size �N/UD−1� ×CDK, with N = (N1,N2,N3) the grid dimensions of the output volume, K the number of
channels at the finest scale, and �·� the ceiling function. The coarsest scale comprises simply a linear layer. The remaining scales are connected by
sinc upsampling layers and formed by blocks of batch normalization, activation and linear layers. At the finest scale, we use two such blocks followed
by sigmoid activation. Linear layers at scale � ≤ d < D map Cd+1K input to CdK output features but for the additional layer at full resolution that
performs the final K→ 1 mapping.

to the optimization with respect to the motion parameters
of (1) with τ = 0 in (6) and regularization

h(φ( j )) = σ 2
I

∑
s

(Lφ
( j )
s )T φ

( j )
s . (10)

Although the robust cost function presented in § II-A could
also be used for motion estimation, we have observed that
OLS are effective in escaping local optima of the motion para-
meters. The Hilbert gradient in the space of diffeomorphisms
V [15] is obtained by:

(∇
φ

( j)
s

E)V = L−1

(
2

σ 2
I

(∇�φ
( j)
s x) · (AT P( j )

s r)

)
+ 2φ

( j )
s . (11)

E. DD Regularization

The DD [16] is a deep architecture designed for the efficient
representation of natural images without using training data.
The network is based on the concatenation of upsampling,
convolution, activation and batch normalization layers where
1 × 1 convolutions (i.e., linear layers) are shown to be the
most cost-effective. Its parameters are optimized by fitting to
a particular cost function using fixed random inputs z, and it
has shown competitive results when compared to supervised
methods in applications such as image compression, denoising,
inpainting, and reconstruction [24].

The proposed DD architecture is depicted in Fig. 4. We have
performed a series of modifications to the original network.
First, swish units are used instead of rectified linear units,
according to the results in [25]. Second, batch normalization
is applied before rather than after activation, following the
recommendations in [26]. Third, we use sinc rather than
bilinear upsampling to better preserve fine detailed structures.
Of independent interest, these changes have been tested for the
2D image compression experiment in [16] showing notice-
able improvements for a wide range of compression rates.
Finally, we parametrize our architecture using the number of
scales D, the scaling ratio U , the channel compression ratio
per-scale C (defined as the ratio of input and output features
of the linear layers), and the number of output channels
of the first linear layer at full resolution K . Similar to [16],

we empirically fix D = 5 and U = 2, and K is determined
by prescribing a given minimum compression rate S for the
network. However, we use C = 3 instead of C = 1, as this
provides a thinner network at the finest scale, which reduces
peak memory consumption, a limiting factor in 3D. Namely,
this modification allows the 3D problem to be fitted in the
memory of our GPU card with minimum loss of detail.

The DD output is used as the expected value of the recon-
struction for the following generalized Tikhonov regularizer:

g(x −�θz) = λ‖x −�θz‖22. (12)

For a series of fixed parameters of the network at reconstruc-
tion iteration i , θ̂ (i), we can compute the DD output

x̃(i) = �θ̂ (i) z (13)

mapped to match the dynamic range of the reconstruction at
previous iteration, and solve the reconstruction problem

x̂(i+1) = argmin
x

f (A�x − y)+ λ‖x − x̃(i)‖22 (14)

by extending the solution in (4) with the Tikhonov term. Then,
the parameters of the network can be refined according to:

θ̂ (i+1) = argmin
θ

‖�θ z− x̂(i+1)‖22. (15)

This scheme penalizes the deviation of the reconstruction from
the space of natural or structured images (like medical images)
because the DD fits structured images faster than noise (the so-
called implicit bias of the architecture) [27], and corresponds
to a relaxed version of the formulation in [16] and [24]. The
Tikhonov regularizer in (12) is consistent with the fitting cost
in (15) and, when compared with more complicated regulariz-
ers, does not introduce significant computational overload to
the reconstruction.

F. Materials

We have tested our reconstruction algorithm in a cohort of
72 fetal cases consented as participants in the iFIND project
(ISRCTN16542843) [28] with GA distribution ranging from
20+ 2 to 36+ 0 weeks shown in Fig. 5a. The cohort includes
controls, fetuses with suspected abnormalities, and cases with
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Fig. 5. Cohort characteristics. a) GA and b) abnormalities distribution.

incidental findings. In Fig. 5b we show the distribution of
abnormalities, including controls or cases without any detected
anomaly; with renal, urinary or genital abnormalities; with gas-
trointestinal abnormalities including abdominal wall defects;
with chest abnormalities including respiratory, cardiac and
thoracic; and with multiple abnormalities including skeletal
and CNS anomalies.

Images were acquired on a PHILIPS INGENIA 1.5 T with
a 24-channel receive coil using a single-shot FSE sequence.
For each subject Nl = 5 stacks were acquired, including axial
(one repeat), sagittal (two repeats) and coronal (two repeats)
orientations. Data was collected with an in-plane resolution of
1.25 mm isotropic, 2.5 mm slice thickness and 1.25 mm slice
separation. Sensitivity encoding acceleration was set to 2 with
half scan 0.575 and echo time TE = 80 ms. Number of slices
was variable for adequate coverage of the targeted FOV in the
range [100, 160] with number of packages and interleaves in
the order of those in Fig. 3a. Total acquisition time was on
average TA = 11′20′′.

G. Implementation Details

We start by performing an OLS reconstruction of the
acquired stacks on a 2.5 mm grid. A Region Of Interest
(ROI) containing the whole uterus is drawn on the resulting
volumes by the 3D implicit model tool [29] in the SEG3D
software [30]. This is used to define the FOV of the reconstruc-
tion and has no effect on the quality of the final result. Then,
the pipeline proceeds as described in Algorithm 1. At each
motion estimation scale j the IRWLS is reset (τ = 0) and the
method alternates the estimation of the reconstructed image x,
DD parameters θ , prior x̃, motion φ, and weights w and W.
This is repeated till reaching the target formulation (τ = 1)
and convergence of motion estimates as dictated by maximum
update below a threshold δφ .

The algorithm confronts different subproblems for which
a series of parameters need to be selected. First, for robust

Algorithm 1 Motion Compensated Robust Reconstruction
With Deep Generative Regularization
1: Inputs: y, A, P, L, G; Outputs: x, φ, θ , x̃, w
2: φ← 0, x← 0, x̃← 0, θ ← random, z← random
3: for j ∈ {STACK,PACKAGE,INTERLEAVE} do
4: τ = 0, W← I
5: while 1 do
6: x

(14)←−− W, x̃, A, φ( j ), x, y (reconstruction)

7: θ
(15)←−− z, θ , x (DD fitting)

8: x̃
(13)←−− z, θ (DD inference)

9: if τ = 1 and update in φ( j ) lower than δφ then
10: break
11: end if
12: φ

(9)←− P( j ), L, A, φ( j ), x, y (motion estimation)

13: w
(5)←− G, A, φ( j ), x, y (weight computation)

14: W, τ
(6)←− w, τ (weight relaxation)

15: end while
16: end for

reconstruction we use a full width half maximum of 2.5 mm
for G, appropriate to reduce the variance in data reliability
estimation and keep good localization properties, with the
simple choice k = √2 providing strong suppresion of outliers
and acceptable SNR penalty. Second, for registration we use
β = 2.5 and γ = 2.5, in agreement with values suggested
in the literature [15], [23], aSTACK = 0.45, aPACKAGE =
0.65 and aINTERLEAVE = 0.85, which have been observed
to prevent early saturation of convergence and guarantee
numerical invertibility, and σI = 0.1, chosen by visual assess-
ment of plausibility of deformations. Third, for regularization
we use S = 2, achieving a strong suppression of spurious
structures while maintaing good data fidelity, visually tuned
λ = 0.4, and run 180 epochs using the Adam optimizer with
learning rate 5 · 10−3 for refining the network parameters.
Finally, Ni = 5 iterations are enough for improved IRWLS
convergence by homotopy continuation and δφ set to half the
in-plane acquisition resolution provides full motion estimation
convergence. We refer the reader to the source code for further
details.

H. GA Prediction

We propose to estimate the GA from the reconstructions by
the following steps:

1) Obtain a set of slices by uniformly reformatting a recon-
structed ROI using Nr rotations evenly distributed in the
3D rotation group. Rotations are performed around the
ROI center after windowing the corresponding volumes
to prevent boundary artifacts, and three centered slices
are extracted along the main reoriented planes.

2) Extract a set of deep features using a given pre-
trained model. We have considered ShuffleNet [31],
ResNet-18 [32], GoogLeNet [33], ResNet-50 [32],
MobileNet-v2 [34], ResNet-101 [32], and DenseNet-
201 [35], all trained in the ImageNet database [36].
Slices extracted in previous step are spatially
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zero-padded, replicated in the channel dimension
to match the input sizes of the models, and z-score
normalized.

3) Taking the deep features as predictors, use zero-
correlation constrained linear GA regression [37].

4) At inference time, ensemble the estimates for the 3Nr

slices into a final GA prediction by taking their median.

III. EXPERIMENTS AND RESULTS

In § III-A we run synthetic experiments analyzing the
regularization and registration schemes introduced in this
paper. In § III-B we quantify the relative impact of the main
constituents of our proposal by an ablation study. In § III-C
we compare with existing approaches using quantitative image
quality metrics, resolution analysis, and radiological rating.
In § III-D we characterize the performance for variying levels
of motion. Finally, potential clinical utility is studied in § III-E
by presenting comparative results on GA estimation from the
reconstructions.

A. Synthetic Experiments

The reconstruction with minimum data corruption as
assessed by the average Normalized Cross Correlation (NCC)
of adjacent input slices [11] is used as a synthetic GT x∗. This
NCC indicator, which has been reported to agree with human
observer quality ratings, is used hereafter to rank the acquired
image quality of cases in our cohort. First, we study the DD
regularization scheme in § II-E using L-curve analysis [38].
We simulate the acquired data using a motionless forward
model and adding Gaussian noise for a SNR of 30 dB in
the acquired stacks, in gross agreement with the SNR levels
observed in real images. In Fig. 6a we show an L-curve
traced from the regularization ‖x − x̃‖22 and residual term
‖r‖22 norms for different values of the regularization parameter
λ –see (14)– when using an OLS reconstruction. Reconstruc-
tions are repeated 5 times with different noise realizations and
average results are reported. In Fig. 6b we show the curvature
of the L-curve κ and in Fig. 6c we present the reconstruction
errors with respect to the GT ‖x− x∗‖22, both as a function of
λ. We observe that the maximum curvature λ = 0.2 matches
that of minimum error. Thus, L-curve may be appropriate for
predicting the regularization parameter for SV reconstruction,
although increased computational burden is a limiting factor.
In addition, our formulation involves dynamically modifying
the system matrix and uses IRWLS instead of OLS, scenarios
where the properties of the L-curve are less documented.
Moreover, these differences may explain the discrepancies
between predicted λ and that determined visually, λ = 0.4.

Second, we study motion estimation at different levels of
motion by synthesizing random diffeomorphisms with inde-
pendent and identically distributed Gaussian entries in the
space of velocities V and windowed rigid motion (elliptic
Tukey window, taper ratio 0.5) with random rotation axes and
center of rotation in the center of the FOV. We simulate the
acquired data by applyling our forward model for different
slice subsampling rates corresponding to the whole stack

Fig. 6. L-curve analysis of DD regularization for synthetic data.
a) L-curve; b) Curvature of the L-curve; c) Reconstruction error.

Fig. 7. RMS error of motion estimation at the stack, package and
interleave levels (solid lines) as assessed from synthetic data. Baseline
RMS level of simulated motion is depicted for reference (dashed line).
a) Random diffeomorphisms; b) Rigid motion.

(no subsampling), package (4× subsampling) and interleave
(20× subsampling) levels. In Fig. 7 we show the Root
Mean Square (RMS) error for motion estimation using the
GT reconstruction to match the simulated slices, including
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Fig. 8. Comparison of different reconstruction alternatives in the case with median degradation. From top to bottom, coronal, sagittal and axial
planes in the mother’s geometry. Reconstructions a) based on the full model (x); b) without regularization (xλ=0); c) with handcrafted regularization
(xH); d) without the robust formulation (xτ=0); e) without motion correction (xσI→∞). The blue ellipse highlights local artifacts, noise or blurring
around the umbilical chord when taking off any of the main components of our formulation.

the mean values when warping to 5 stacks simulating the
orientations in our actual data and corresponding error bars.
Maximum errors were also computed with similar appearance
to RMS curves. Simulations at different deformation and
rotation levels, with averaged maximum motion excursions
and minimum Jacobian respectively around 6 mm and 0.7 for
random diffeomorphisms and 16 mm and 0.5 for rigid motion,
may span some typically observed motion ranges, as larger
levels start to introduce unrealistic deformations as assessed
from visual checks. We see that for both motion models stable
motion estimates can be obtained for motion states defined at
high slice subsampling rates, as those given by the interleave
pattern in Fig. 3a. However, the higher the subsampling,
the smaller the accuracy, which justifies the temporal multi-
scale motion estimation scheme described in II-C. Comparing
appearance of errors when diffeomorphism generation and
estimation models are matched (Fig. 7a) and when using rigid
motion for motion generation (Fig. 7b), we observe close to
linear estimation error in the former and supralinear trends in
the latter, especially at the interleave level.

B. Ablation Study

To assess the impact of the main components of the pro-
posed reconstruction scheme, we compare the reconstructions
using the full model (x) versus not using regularization –i.e.,
λ = 0 in (14)– (xλ=0); using a handcrafted regularizer g(x) =
‖Hx‖22 where H is the superposition of finite difference
penalizers of different orders (0 to 32) whose weights have
been visually tuned for trading off noise suppression and
resolution loss (xH); not using the robust formulation –i.e.,
fixing τ = 0 in (6)– (xτ=0); and not using motion correction
–i.e., σI → ∞ in (11)– (xσI→∞). The convergence criterion
has been adjusted for comparable number of iterations for
all alternatives. Table I shows results of Leave One Out
Cross-Validation (LOOCV), where we measure the agreement

TABLE I
MEAN ± STD RESULTS OF ABLATION STUDY BY

LOOCV. BEST RESULTS ARE SHADED

between the stack with minimum motion and the propagation
to the acquisition space of the reconstructions obtained by
completely excluding this stack [4]. Note this is a challenging
scenario as we are left with 4 most corrupted stacks only.
Results of Peak SNR (PSNR), in dB, NCC and Structural
SIMilarity Index (SSIM) are shown for all 72 cases in our
cohort. Results without motion correction (xσI→∞) are clearly
worse for all compared metrics and removing the robust
formulation (xλ=0) also shows an impact on performance as
assessed by all considered metrics. Differences are smaller
for different regularization choices although we observe that
the DD regularizer (x) provides improvements over the hand-
crafted regularizer (xH) or not using regularization (xλ=0).
However, improvements of the full model versus any of the
alternatives are highly significant when performing two-tailed
sign tests for all metrics used for comparison ( p < 1 · 10−7).

To aid interpretation of Table I we report in Fig. 8
visual results for the scan with median level of acquired data
corruption [11]. Additional results for representative subjects
with different levels of data corruption are included in a Sup-
plemental Video showing reconstructions in 3D. We observe
that reconstructions without regularization (Fig. 8b) present
a noisy appearance. Noise can be mitigated either by the
regularizer penalizing high-frequency content (Fig. 8c) or by
our proposed DD regularizer (Fig. 8a), but resolution is better
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Fig. 9. PSD comparisons. a) Reconstruction alternatives in the
case with median degradation (uterus ROI); b) DSVR and RGDSVR
(trunk ROI).

preserved when using the DD regularizer, for instance at the
boundaries between the fetal body and the amniotic fluid in
the area enclosed in blue. We observe that differences are
mainly affecting fine details of the reconstruction, which may
not be captured in the LOOCV experiment due to imperfect
mapping of the reconstructions or noise and artifacts in the
excluded stack. This hypothesis is supported by the L-curve
experiment in § III-A, where we have observed improvements
approaching 5 dB when introducing DD regularization, much
higher than differences with no regularization in Table I.
Ability to resolve fine detailed structures is evident when
comparing to results without motion compensation (Fig. 8e).
Non-robust reconstructions (Fig. 8d) look similar to robust
reconstructions (Fig. 8a). However, impact of non-suppressed
artifacts is noticeable locally, as in the area within the blue
ellipse, where more uniform fluid background is observed
when the robust formulation is adopted.

In Fig. 9a we show the Power Spectral Density (PSD)
averaged along the three axes of the reconstruction grid for the
aforementioned reconstruction alternatives applied to the same
subject. Reconstructions without regularization (xλ=0) present
the largest power at high spatial frequencies with disruption
of power law of attenuation above approximately 1.5 mm,
probably stemming from a Gibbs ringing filter applied as part
of the scanner k-space reconstructions. However, we know
from image inspection in Fig. 8b that a significant amount
of the energy at high frequencies is contributed by noise.
Noise reduction was effective when using the handcrafted
regularizer, but we observe here (xH) that this comes at
the price of strong suppression of high frequency signal
components. The DD-based regularized reconstructions (x) lie
somewhere in between both scenarios, likely with better signal
preservation at high frequencies and strong noise reduction.
Small differences are observed between non-robust (xτ=0)
and robust reconstructions, but the non-robust version presents
slower PSD decay rates consistent with reduced suppression
of artifactual structures. Motion compensation has an impact

TABLE II
MEAN ± STD RESULTS OF COMPARISON WITH THE LITERATURE

BY LOOCV. BEST RESULTS ARE SHADED

Fig. 10. Three orthogonal views with reconstructions using a) DSVR
and b) RGDSVR. Areas enclosed by the blue (top panel), green (central
panel) and red (bottom panel) ellipses suggest that our method provides
improved conspicuity of the main vessels, sharper contrast and better
delineation of the bowel loops, and increased resolution of stacked tissue
layers in the neck, respectively.

in moderate to high spatial frequencies, with power enhance-
ments versus non-compensated reconstructions (xσI→∞) above
5 dB at 2 mm, for instance.

C. Comparison With Other Methods

Table II reports results of LOOCV for Slice to Vol-
ume Reconstruction (SVR) [4], Patch to Volume Reconstruc-
tion (PVR) [10], Super-Resolution Reconstruction (SRR) [7],
Deformable Slice To Volume Reconstruction (DSVR) [11],
and our RGDSVR method, again using all cases in our cohort.
We observe that RGDSVR generally provides higher metrics
than other approaches. Statistical significance is assessed by
two-tailed sign tests which have shown highly significant
differences when comparing RGDSVR with any of the alter-
natives for all metrics used for comparison ( p < 5 · 10−10).
As for the remaining approaches, results are in line with those
reported in [11], with DSVR generally overtaking previous
methods. Therefore, in what follows experiments are focused
on RGDSVR and DSVR.

We compare the resolution provided by RGDSVR and
DSVR. The reconstruction grid orientation can be different for
both methods, so we have used sinc interpolation to reformat
our datasets into the grid of the reference method. In Fig. 9b
we show the mean±std PSD of both methods across our
whole cohort. The curves suggest better preserved moderate
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Fig. 11. Input data and reconstructions for a) low and b) high motion examples, corresponding respectively to cases with 25- and 75-percentile
degradation. Top rows show the input data for different stacks in planes containing the slice direction, with larger degradation observed in b) when
compared to a). Bottom rows show the 3D reconstructions for the same planes. Retrieval of consistent and sharp information about the fetal anatomy
is generally observed, with minor inconsistencies and artifacts in the high motion example (as in the area enclosed by the blue ellipse).

to high spatial frequency information when using RGDSVR,
with highly significant differences as assessed by a two-tailed
sign test for structures below 10 mm ( p < 10−8).

A radiologist with 11 years’ experience in fetal MRI was
asked to select the higher quality image in each of three
orthogonal pairs of matched slices extracted around the center
of the trunk FOV from DSVR and RGDSVR. Preferences
were averaged per-subject and this resulted in 62 cases were
RGDSVR ranked better (86.11 %) and 10 cases were DSVR
ranked better (13.89 %). In Fig. 10 we visually illustrate the
differences between DSVR and RGDSVR by selecting areas
where these can be clearly perceived. Despite reconstructions
are not spatially matched due to arbitrary definitions of refer-
ence deformations, we observe that RGDSVR tends to provide
sharper results for comparable levels of noise and artifacts.
This is illustrated by the ellipses on top of the main vessels,

the bowel, and the neck, respectively in the top, central and
bottom panels.

D. Performance for Variying Levels of Motion

In Fig. 11 we show examples of input data and recon-
structions for low (Fig. 11a) and high (Fig. 11b) motion
cases, corresponding respectively to subjects with 25- and
75-percentile acquired data degradation. Visual results are
presented for the 5 acquired stacks along planes containing the
slice direction and centered on relevant information about the
fetal anatomy. We observe that reconstructions (bottom rows)
are able to suppress the inconsistencies in the input data (upper
rows) and produce sharp results for most imaged structures.

We have computed the Pearson correlation ρ of the PSNR,
NCC and SSIM metrics considered in the LOOCV experi-
ments, assumed to be related to the reconstruction quality,
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TABLE III
MAE (WEEKS) AND R2 IN GA ESTIMATION USING DIFFERENT RECONSTRUCTIONS, ROIS, AND DEEP FEATURES. BEST RESULTS ARE SHADED

Fig. 12. Bland-Altman plots for DenseNet-201. a) DSVR trunk. b) RGDSVR trunk. c) RGDSVR brain. d) RGDSVR brain & trunk. Solid blue line:
mean differences. Solid red lines: 95� limits of agreement. Dashed lines: corresponding approximate confidence intervals [41].

against the average NCC of adjacent input slices, which is
related to acquired data quality, for reconstructions without
and with motion correction. We observe stronger correlation
between input and output data quality without (ρPSNR = 0.349,
ρNCC = 0.371 and ρSSIM = 0.556) than with motion correc-
tion (ρPSNR = 0.330, ρNCC = 0.303 and ρSSIM = 0.439).
Thus, correlation is still important but becomes weaker when
introducing motion correction, which may indicate that result-
ing reconstructions are less sensitive to the artifacts and
inconsistencies in the original data.

E. Clinically-Oriented Application: GA Prediction

Despite potential gains of proposed reconstructions are sug-
gested by the experiments in § III-C, lack of GT makes direct
comparison of methods very challenging. In addition, it is
very difficult to faithfully reproduce the different sources of
corruption in real data as well as complex patterns of fetal and
mother motion by simulations. Therefore, we have resorted
to a task-based validation where we perform comparisons
on a clinically-oriented GA prediction problem. To ensure
comparisons are performed using the same FOV, we assess
the performance of RGDSVR and DSVR for GA estimation
using a trunk ROI corresponding to the FOV used as the target
reconstruction volume in the experiments in [11]. As existing
methods for fetal GA estimation from MRI [14], [39], [40]
are based on brain data, we also test the GA estimation
performance using a brain ROI from our reconstructions. In all
cases we use the GA estimation method described in § II-H
with 3D space spanned by slices from Nr = 200 random
volume reorientations. Finally, to investigate the added value
of non-brain features, we combine brain and trunk ROIs by
using Nr = 100 random reorientations each. In this case,
common regression and z-score normalization weights are
computed at training using slices from both ROIs, and joint
median ensemble of estimates is used at inference.

We perform a 6-fold cross validation using the 72 cases in
our cohort. Different GA regression alternatives are compared
by computing the Mean Absolute Error (MAE) and coeffi-
cient of determination R2 with results reported in Table III.
GA predictions using RGDSVR consistently outperform pre-
dictions using DSVR for comparable trunk ROI. Best results
in both cases are obtained using DenseNet-201, respectively
with MAE (R2) 0.931 (0.918) and 1.045 (0.888). We also
observe consistently better results for all models when using
the brain rather than the trunk ROI, with best figures 0.683
(0.950) provided again by DenseNet-201. These results com-
pare favourably with those reported by [39], 0.751 (0.947),
and [14], 0.767 (0.920), and unfavourably with those in [40],
0.508 (0.992). Further to this, with the exception of R2 for
poorly performing MobileNet-v2 and GoogLeNet, additional
improvements are consistently observed for all models when
combining volumetric brain and trunk information, a unique
feature of the proposed technique, with MAE (R2) 0.618
(0.958) for DenseNet-201. However, GT GA is obtained from
the clinical records which is not free from errors. Therefore,
in Fig. 12 we provide Bland-Altman plots of agreement [41]
between DenseNet-201 based predictions (GADN) and GT
GA (GAGT) for the considered reconstructions and ROIs
combinations. Results are color coded according to the abnor-
mality categories legend in Fig. 5b. We observed no statistical
significance at p = 0.05 in GA discrepancies between both
methods when comparing controls and cases with anomalies
with an unequal variances t-test for any of the alternatives
considered in Fig. 12.

IV. DISCUSSION

We have proposed a novel methodology for robust whole-
body fetal MRI reconstruction relying on diffeomorphic
motion estimation to capture plausible deformations of the
fetal organs and high-quality regularization using a deep
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generative model. We have quantitatively and qualitatively
characterized the impact of these components in the recon-
structions. Quantitative comparisons with other fetal MRI
reconstruction methods have shown improved performance
for PSNR, NCC and SSIM metrics when using stack-wise
LOOCV, which has been replicated by radiological rating.
Noticeable differences in reconstruction sharpness have been
demonstrated by resolution analysis and a potentially strong
impact of the reconstruction method in the clinical utility
of fetal MRI has been showcased by a GA prediction task.
Finally, we have provided a conceptually simple GA prediction
method based on free reformatting the 3D reconstructions
for 2D deep feature extraction and correlation constrained
linear regression, showing competitive accuracy with respect
to existing approaches.

Similar to [3], we have built our cost function using the
robust regression via M-estimators framework, so weights for
outlier mitigation are directly derived from the cost func-
tion [18], instead of using independent metrics as in [11].
In addition, the introduction of the smoothing operator G
simplifies previous combinations of voxelwise and slicewise
weights [3], [11] by assuming that motion-induced degradation
of magnetization as well as uncorrected non-rigid motion have
a regional nature.

In the non-rigid registration setting, reproducible morphom-
etry may be compromised by geometric distortions introduced
by the algorithm, which can be alleviated by the diffeomorphic
constraint. Of particular interest, we should highlight the brain;
despite the prominent use of rigid motion models in the past,
non-rigid components may become appropriate to model non-
linearities of the scanner gradient fields [42]. Although our
motion model should probably be refined for the brain, for
instance via decoupled motion models [43], distortion levels in
the reconstructions are small enough so as to lead to accurate
GA estimates.

Taking into account the limitations for generating GT
datasets, we have opted for an unsupervised application
of deep architectures for regularizing our reconstructions.
However, there are alternatives for integration of DL into
reconstruction problems [13] and DL could also be applied
for extending the capture range of registration or refining the
characterization of outliers. On the other hand, the memory
footprint of the 3D DD architecture is a strong limitation,
so deep network regularizers based on implicit representa-
tions [44] could be considered.

3D reconstruction errors in whole-body fetal MRI may
arise from multiple causes. We may encounter errors due to
(a) small inaccuracies in motion estimation, (b) inconsistencies
in magnetization of different slices, (c) multiple poses of
the fetal body throughout the scan, and (d) the fetus mov-
ing continuously across the examination. We believe that in
cases (a) and (b) information coming from complementary
stacks can resolve the ambiguities in many instances, so the
robust formulation with deep generative regularization gener-
ally provides satisfactory solutions. However, artifacts in the
reconstructions may be strong in cases (c) and (d), as the
method may struggle to find a good direction for high quality
convergence.

Our reconstruction tool can be applied to different acquisi-
tion settings. Its flexibility has been confirmed by preliminary
application to cardiac and animal brain studies. However,
results could show variable quality. In this regard, recon-
struction quality is ultimately determined by available scan
time, as enlarged sampling redundancy gives more flexibility
to implement robust reconstructions with improved SNR. For
a fixed total acquisition time, there are different acquisition
choices that may impact the reconstruction reliability. Impor-
tantly, [45] studies the comparative performance of overlapped
single orientation scans versus multi-oriented scans in terms
of resolution retrieval, with clear benefits observed in the
latter (see also [46]). In our context, this result may suggest
replacing the repeated sagittal and coronal stacks by new
orientations, perhaps whilst changing the overlapping factors.
However, implementation of optimal sampling schemes is
often limited by hardware specifications of the scanner, inher-
ent complexity of fetal imaging in vivo, computational require-
ments of reconstruction algorithms, or need of harmonization
with protocols currently in place.

Our GA estimation method leverages free reformatting of
volumetric reconstructions to obtain a dense set of slices cov-
ering the fetal structures in the variable spatial configurations
they can adopt due to fetal motion. We have shown that deep
feature extraction using pre-trained models combined with
correlation constrained linear regression provides accurate
results for this task. Our results look competitive to existing
methods [14], [39], [40], particularly when complementing
brain features with trunk information, but there are differences
in the cohorts considered. Most notably, existing methods use
larger cohorts, including single-sequence data from 220 [40]
and 289 subjects [39] and multi-sequence data from 764 sub-
jects [14]. Small sample sizes in our case precluded isolation
of a subset of subjects for testing, a potentially important
limitation when compared to [14] and [40].

In the future, we plan to follow a practical roadmap to
facilitate the application of our algorithm in clinical scenarios.
This may include automated ROI extraction, refining and
further testing the algorithm and GA estimation using addi-
tional cohorts and acquisition protocols, and move towards a
comprehensive analysis pipeline by integrating techniques for
whole-body fetal segmentation and atlas construction [47].

V. CONCLUSION

We have proposed a method for robust whole-body fetal
and placenta MRI based on diffeomorphic registration and
deep generative regularization. Volumetric reconstructions are
obtained from a set of motion-affected and possibly corrupted
single-shot slices. Our proposal provides alternative solutions
to existing methods for the different subproblems faced in
this application. These are validated by an ablation study
and improved quantitative metrics, radiological scoring and
conspicuity have been observed when comparing with existing
methods in a cohort of 72 fetal subjects. A GA estimation task
is defined to assess the clinical utility of our technique, for
which we propose a simple method leveraging the 3D infor-
mation, which produced competitive results. For usual levels
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of motion, our reconstructions provide dense and consistent
representations of the fetal anatomy. Therefore, the proposed
methods may find application in 3D fetal MRI morphometry,
developmental assessment, or fetal surgery planning.
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