arXiv:2204.03500v1 [cs.LG] 7 Apr 2022

Multi-Task Distributed Learning using Vision
Transformer with Random Patch Permutation

Sangjoon Park, and Jong Chul Ye, Fellow, IEEE

Abstract—The widespread application of artificial intelligence
in health research is currently hampered by limitations in data
availability. Distributed learning methods such as federated learn-
ing (FL) and shared learning (SL) are introduced to solve this
problem as well as data management and ownership issues with
their different strengths and weaknesses. The recent proposal of
federated split task-agnostic (FESTA) learning tries to reconcile
the distinct merits of FL and SL by enabling the multi-task
collaboration between participants through Vision Transformer
(ViT) architecture, but they suffer from higher communication
overhead. To address this, here we present a multi-task dis-
tributed learning using ViT with random patch permutation.
Instead of using a CNN based head as in FESTA, p-FESTA adopts
a randomly permuting simple patch embedder, improving the
multi-task learning performance without sacrificing privacy. Ex-
perimental results confirm that the proposed method significantly
enhances the benefit of multi-task collaboration, communication
efficiency, and privacy preservation, shedding light on practical
multi-task distributed learning in the field of medical imaging.

Index Terms—TFederated learning, Split learning, Multi-task
learning, Vision Transformer, Privacy preservation

I. INTRODUCTION

RTIFICIAL intelligence (AI) has been gaining unprece-

dented popularity thanks to its potential to revolutionize
various fields of data science. Specifically, the deep neural
network has attained expert-level performances in the various
applications of medical imaging [1]], [2]].

To enable the Al models to offer precise decision support
with robustness, an enormous amount of data are indispensable.
However, data collected from volunteer participation of only
a few institutions cannot fully meet the amount to guarantee
robust performances. Even for the large public datasets, it
may inevitably include unquantifiable biases stemming from
the limited geographic regions and patient demographics such
as ethnicities and races, resulting in performance instability
in real-world applications. Especially for the newly emerging
disease like Coronavirus disease 19 (COVID-19), this limitation
can be exacerbated as it is hard to build a large, well-curated
dataset with sufficient diversity promptly.

Therefore, the ability to collaborate between multiple institu-
tions is critical for the successful application of Al in medical
imaging, but the rigorous regulations and the ethical restrictions
for sharing patient data is an another obstacle to multi-
institutional collaborative work. Several formal regulations

Submitted: April 5, 2022

Sangjoon Park is with the Department of Bio and Brain Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon 34141,
Republic of Korea (E-mail: depecher @kaist.ac.kr).

Jong Chul Ye is with the Kim Jaechul Graduate School of AI, KAIST,
Daejeon 34141, Republic of Korea (E-mail: jong.ye @kaist.ac.kr).

and guidelines, such as the United States Health Insurance
Portability and Accountability Act (HIPAA) [3] and the
European General Data Protection Regulation (GDPR) [4],
state the strict regulations regarding the storage and sharing of
patient data.

Accordingly, distributed learning methods, which perform
learning tasks at edge devices in a distributed fashion, can
be effectively utilized in healthcare research. Specifically,
distributed learning was introduced to enable the model training
with data that reside on the source devices without sharing.
Federated learning (FL) is one of these methods that enables
distributed clients to collaboratively learn a shared model
without sharing their training data [5]]. However, it still holds
several limitations in that it is heavily dependent on the
client-side computation resources for parallel computation
and not completely free from privacy concerns with gradient
inversion attack [6]], [[7]. Another distributed learning method,
split learning (SL) [8], which splits the network into parts
between clients and the server, is a promising method that puts
low computational loads at the edge devices; however, it has
the disadvantage of high communication overhead between
the clients and server [9]], and also has limitation in privacy
preservation as the private data can be recovered by the
malicious attack with feature hijacking and model inversion
[10]]. In addition, SL show significantly slower convergence
compared with FLL and shows suboptimal performance under
significantly skewed data distribution between clients [11]].

Inspired by the modular decomposition structure of Vision
Transformer (ViT), a novel distributed learning method dubbed
Federated Split Task-Agnostic learning (FESTA) was recently
proposed for distributed multi-task collaboration using ViT
architecture [12]]. The FESTA framework, equipped with the
shared task-agnostic ViT body on the server-side and multiple
task-specific convolutional neural network (CNN) heads and
tails on the clients-side, was able to balance the merit of FL
and SL, thereby improving the performances of individual
tasks under distributed multi-task collaboration setting at a
level even better than the single-task expert model trained in a
data-centralized manner.

Nevertheless, there remain several critical limitations with
the FESTA framework. First, the communication overhead is
higher than that of SL and FL, as the model should continuously
share features and gradients as well as head and tail parts
of the network, which may impose difficulties in practical
implementation. Second, we found that the large size head and
tail parts in the original FeSTA tends to reduce the role of
the shared body, resulting in a small improvement compared
to the single task learning despite the ViT’s the potential for

multi-task learning (MTL). Finally, the FESTA framework was
not free from the privacy issue, as the features transmitted to
the server body can be hijacked and reverted to the original
data by the outside malicious attackers or "honest-but-curious"
server in the same manner in SL.

To alleviate these drawbacks, here we introduce p-FESTA
framework, a Federated Split Task-Agnostic learning with
permutating pure ViT, which empowers communication ef-
ficient MTL with privacy-preservation. Although the overall
composition of p-FESTA is similar to that of FESTA, instead
of using a CNN based head, p-FESTA adopts a simple and
task non-specific patch embedder like a vanilla ViT, enforcing
the self-attention within the transformer architecture to improve
the MTL performance. For privacy preservation, we introduce
a Permutation module that randomly shuffles the order of all
patch features ahead of sending them to the server, to prevent
either outside attacker or "honest but curious" server from
reverting features into original data containing privacy.

The new architectural change gives the p-FESTA several
unique advantages. First, the communication overhead was
reduced significantly by saving features to be used throughout
the entire learning process. Furthermore, the benefit of MTL
is enhanced by enforcing the head to play a small role and the
multi-task body to do heavy lifting. In addition, data privacy is
also enhanced with a simple but effective permutation module
using the intrinsic property of ViT.

II. RELATED WORKS
A. Vision Transformer (ViT)

ViT [[13]], a recently introduced deep learning model equipped
with an exquisite attention mechanism inspired by its suc-
cessful application in natural language processing (NLP), has
demonstrated impressive performances across many vision
tasks. The multi-head self-attention in ViT can flexibly attend
to a sequence of patches of the image to encode the cue,
enabling the model to be robust to nuisances like occlusion,
spatial permutation, and adversarial perturbation, and thereby
having the model to be more shape-biased like human than
CNN-based model [14].

In addition, the modular design of the ViT is straightforward,
implying that the components can be easily decomposed into
parts: head to project the images patches into embeddings,
transformer body to encode the embeddings, and tail to yield
task-specific output. This easily decomposable design offers
the possibility in the application for MTL. Recall that the
motivation of MTL is originated from attempts to mitigate
the data insufficiency problem where the numbers of data for
individual tasks are limited. MTL can offer the advantage of
improving data efficiency, reducing overfitting through shared
representation, and faster convergence by leveraging auxiliary
knowledge.

Specifically, MTL with transformer-based models has
emerged as a popular approach to improve the performances of
the closely related task in NLP [[15]], [[16]]. In this approach, a
shared transformer learns several related tasks simultaneously,
like sentence classification and word prediction, and the tasks-
specific module yields the outcome for each task. As shown in

previous literature [[16]], the model trained with MTL strategy
generally shows improved performances in a wide range of
tasks. Even though not well been studied as in language, the
decomposable design of ViT has unleashed the application of
MTL to visual transformer models. In an early approach [17]],
the ViT was divided into the task-specific head, tail, and shared
transformer structures across the tasks, and it was possible to
attain a similar generalization performance with fewer training
steps, by sharing the transformer model among the related
tasks.

B. Federated Split Task-Agnostic (FESTA) Learning

The main motivation of existing FESTA framework as
described in Fig.[TJA and Fig. 2B was to devise a framework to
maximally exploit the distinct strengths of FL and SL methods
and to improve the performances of individual tasks with
collaboration between clients performing various tasks.

Let C = U?Zl C}. be a group of client sets with different
tasks, where K denotes the number of tasks and the client set
C}, includes one or more clients having different data sources
for the k-th task, i.e. Cy, = {c},c§,..., ¢k, : Nx > 1}. Clients
in each client set for the k-th task has its own task-specific
model architecture for head H,. and a tail 7., while the server-
side transformer body B is shared.

For training, the server and each client initialize the weights
of each sub-network with random initialization or from the
pre-trained parameters. For learning round ¢ = 1,2,... R,
individual clients do the forward pass on their task-specific head
H. using the local training data {(xgl), ygl))}fv:cl, and send the
intermediate feature h{") to the server: h”) = Hc(:ngi)). The
transformer body B, then receives the intermediate features
from all clients and gets features bgl) in parallel with the
forward pass, to send them back to each client c: bg') = B(hg)).
With the feapures bgl), .the task-specific tail in client yield
the output g,ﬁ’) = 72(()?)), and forward pass finishes. Back-
propagation is performed exactly the opposite way, in order
of tail, body, and head. First, loss is calculated in tail as:
Ec(yﬁz),ﬁ(l‘?(?{c(xﬁz))))), where /.(y,y) denotes the ¢ task-
specific loss between the target y and the estimate . Then,
the gradients are pass from tail, body to head in reverse order
to forward-propagation, using the chain-rule.

For multi-task body update, the optimization is performed
by fixing the head and tails. For the task-specific head and
tail updates, the optimization problem is solved by fixing the
Transformer body. In addition, per every "UnifyingRounds",
the server aggregates, averages and distributes the head and
tail parameters between clients participating in the same task,
as in FedAvg [18].

In the previous study, the FESTA along with the MTL
was shown to ameliorate the individual performances of the
clients in collaboration, while resolving the data governance
and ownership issue as well as eliminating the need to transmit
the huge weights of the transformer body [12].

Feature from
Task-specific CNN head

1
Client-side i Client-side
: InpuL.
[271 ¥ S D,
--- : ,1”! '"E i Server-side :
i Server-side ! i H
i[Lass]tok : ly:; S ' [class]token :
i [class]token i P H
) i l 'I Embed +] —
E;fe P F—— ! i :
Task-specific —i—-:,_, | — : - X
Head (CNN) : Multi-task i 2 Multi-task [-
(H) | s - | e\ z Transformer | ! Tosk specifc
: Transformer [Teskspecifie] | 3 . Bod |] Tail
H — -3 H
—==- Body m |\ £ . Y e
N ! 2 : (B) ;
Pt (B) i S == =
S N - i = ! Output
; Output ! ~ !
- — i L) :
i Patch embedding to Permutation i Revert
]
1
1
i

(A) Original FESTA

same space

(B) Proposed p-FESTA

module

@ Permutation key

Fig. 1. The model configuration of (A) the original FESTA and (B) the proposed p-FESTA frameworks.
(A) Original FESTA ! (B) Proposed p-FESTA
On-line learning (round = 1 ... R) —— | —— (1) Initial feature preparation (round = 1) — —— (2) On-line learning (round =2 ... R)

I

g !

Clients) rServer) : rClients) rServer) rClients) (Server)
E Client1 & _" a8 . Saved features
i e oA 25 Save features clont1 B Bg
| . "H PE ass
: .-g |:| |:| :CgIVID»W‘_‘@% 1
]
: L — —
Multi-task Client 2 AL P Muiti-task Cliont 2 EIIEEES Multitask
Transformer g I-1 Transformer 33 [= Transformer
Body g Body g Body
B B ° B
! n—
: Client 3 B) b Saved features
i 3 3 Save features Client 3 3 ®
L S I M g
\ \ —) . VAN —_—

Fig. 2. The learning process of (A) the original FESTA and (B) the proposed p-FESTA frameworks.

III. METHOD
A. p-FESTA

Nonetheless, the FESTA framework still has several draw-
backs. First, the communication cost can be higher since
the features and gradients should be continuously exchanged
between the server and clients like in SL but the head and
tail weights should also be aggregated between the clients
as in FL. Accordingly, the total communication costs are
inevitably higher than SL, and even higher than FL depending
on the network size. Second, as shown in our ablation
study without the transformer body, the CNN head and tail
themselves already have strong representation capacity, which
may diminish the role of the transformer body between head
and tail. Third, privacy concerns may arise as there is no
privacy-preserving method from the model inversion attack on
the feature transmitted from client to server.

The proposed p-FESTA is a framework devised to mitigate
these shortcomings. As shown in Fig. [IB and Fig. 2B, the
overall composition of p-FESTA is similar to that of FESTA,
which decomposes networks into head H, body B and tail
T. However, unlike previous FESTA, we do not use the
CNN head tailored for each task. Having the CNN head to

be powerful enough to play a major role in the task hinders
the shared transformer from being an important component
as there remains little room to improve with this additional
module. Instead, we adopted a simple and task non-specific
patch embedder like a vanilla ViT, enforcing the self-attention
within the transformer architecture to do the heavy lift.

Unfortunately, the use of patch embedding in a vanilla ViT
may be prone to outside attackers that attempts to invert the
patch embedder to obtain the original images. To address this,
here we propose a novel permutation module as depicted in
Fig.[IB to prevent either outside attacker or "honest but curious"
server from reverting features into original data containing
privacy. Specifically, this Permutation module randomly shuffles
the order of all patch features ahead of sending them to the
server, and stores the key to reverse the permutation on the
client-side. Then, the transformer body B in the server does a
forward pass with the permutated patch features and sends the
encoded features back to the clients. Finally, the client reverses
the permutation with the saved key and yields the final output
by passing the reverted features to the task-specific tail 7.
The back-propagation is performed in the exact opposite way,
where the same Permutation module to forward-propagation is

(A)

Attacker or “honest-but-curious” server

(B)
Attacker or “honest-but-curious” server
Decoder

Restore image

Update
Prior
Attacker model y
ll I B
ypred
P v ~
Fy AWje-rV,, L
Client k Hijack Client k
Private data ‘ Private data
Client model y Server £= Client model
= AW, X e
: (L " cxmm T
Ypred — — g = H f
Fi > 8 Fy
Fig. 3. Possible privacy attacks in (A) federated learning and (B) split learning.
(A) (B) .
Randomly permutate Permutation
Patch Position image patches | module |
beddi beddi Patch . i |
Tlr:ariat:lr;? ?Ir:arenabllr;? feaatucres l Client 1 | e — E |
[+ = Co—) : =
[o= + = C— — '
= = / i = i
=+ == — |
o= + = Co— — i
i !
= + = oo— e I Server e ! Server
(e] =y
: m) CIES N
: ;o —_ e
e =TT aam
[Toam + = T | ——— e | T
= + =0 = e —em : : i
— : I
e + =Co— — | Client k — i
[e + = omm— - am Data1 p.& = /
| [g o p
[} -em = - —— | .: : i
? ? @ Save permutation key | : [e e B !
Unknown @ Unknown @ (client) ’
Fig. 4. (A) The Permutation module to enhance privacy and (B) the illustration of different permutation patterns for each data of each client.

utilized.

The availability of Permutation module attributes to an
intriguing property of ViT that all the components composing
the transformer body, such as multi-head self-attention, feed-
forward network, and layer normalization, is fundamentally
"permutation equivariant" [14]. They are processed indepen-
dently in a patch-based manner and the order of the patch does
not affect the outcome, and therefore, the transformer body can
be trained without any performance degradation. In addition, as
the orders of patches are completely shuffled, it is infeasible for
a malicious attacker to successfully revert the original image.
How the Permutation module can provide privacy protection
from the malicious attacker will be described in more detail
in the following.

B. Protecting Privacy with Permutation Module

For FL, privacy is improved by the ephemeral and focused
nature of the federated aggregation, averaging, and distribution

of the model updates, assuming that the model updates are
considered to be less informative than the original data.
However, recent studies have thrown doubt to the false sense of
security, showing that private data can be uncovered faithfully
only with these local model updates [19]-[21]. In detail, given
the access to the global model W and the client’s model update
AW, the attacker can optimize the input image from a prior to
produce a gradient that matches the client’s model update as
illustrated in Fig. B]A. However, this type of attack is infeasible
for the proposed p-FESTA method, since only the tail part of
the entire model is aggregated and distributed by the server
to the clients. For instance, for COVID-19 classification, the
task-specific tail is a simple linear classifier, with which the
original data with privacy cannot be uncovered.

SL protects privacy in a different way. As the name suggests,
SL split the entire model into client-side and server-side sub-
networks and does not send the models between the server and
clients. Instead, the features and gradients are transmitted back

and forth between the server and clients, and it can be the
prey of the malicious attacker [10]. As described in Fig. 3B,
when clients send the intermediate features f to the server,
the attackers may hijack the features, and instead of running
the remainder of the SL. model, they train three components:
encoder F , decoder G, and discriminator D with their own
data. The D is trained to discriminate between the hijacked
feature f and the feature f encoded by F', which enforces
f to be in the same feature space to f. Simultaneously, G
learns to decode f into the image with minimal error. Then,
well-trained G can also be used to decode the hijacked feature
f to original data faithfully.

The feature space hijacking is also possible for our p-
FESTA. To make the matter worse, the head part of our
model is relatively simple and can be easy prey for an attacker.
This is why we introduce a novel Permutation module to
protect privacy as described in Fig. @A. The Permutation
module randomly shuffles the order of all patch features. In the
implementation, the permutations of each data of each client
are all different without any regularity as shown in Fig. @B,
resulting in innumerable patterns for all data. With these random
permutations, even if a malicious attacker or server steals patch
features to uncover private data, the parameter of position
embedding, an unknown learnable variable, cannot be inferred
as they have no information about the original order of patches.
It is also infeasible to inverse the patch features to image
patches since the added position embedding, which is unknown
to the attacker, should be subtracted first for inversion. This
makes a contradiction that the attacker should already know an
"unknown" to infer the other "unknown", making the inversion
attack a type of underdetermined problem.

C. Training Procedure

The learning process of the p-FESTA is akin to the original
FESTA, but dissimilar in several aspects. Instead of task-
specific head H;, for each task k, the task non-specific patch
embedder H prepares the patch embeddings h. for each client
c at the beginning and sends them to the server after passing
them through the Permutation module. The server then saves
the received patch embeddings h. on its side and uses them
throughout the remainder of the learning process in order to
update the body B and tail 7 parts of the model. Consequently,
the overall communication costs can be significantly reduced
compared to the original FESTA, as the communications to
send the intermediate feature h. or to update the head 7 are
no more required.

As can be seen, the head part of the model, the patch
embedder, cannot be updated in this configuration. However,
fixing the parameters of the patch embedder did not bring
about any performance exacerbation thanks to the simple
structure to just embed the image patches into the same vector
spaces. Having them trainable rather slightly decreased the
performances by resulting in the discrepancy in embedding
between tasks. The experimental results will be provided in
the ablation study of Section III-H. The detailed process of
the proposed p-FESTA is formally described in Algorithm [I]

Algorithm 1: Proposed p-FESTA algorithm

1 Function ServerMain:

2 Initialize server body weight client head/tail weights
for tasks k € {1,2,... K} do in parallel
3 for clients ¢ € C}, do in parallel
4 he < ClientHead(c)
5 L Save patch embedding /. in server memory
6 for rounds i = 1,2,... R do
7 for tasks k € {1,2,... K} do in parallel
8 for clients c € C}, do in parallel
9 if i =1 or (i — 1) € UnifyingRounds
then
10 L Set client w%) — Wk
11 Load hgl) by batch from server memory
& b« B(hY)
12 Zﬁg; + ClientTail(c, b)) &
Backprop.
13 w%ﬂ) < ClientUpdate(c)
14 Update body
(1), 0 1 5o oL
Wi — wg K = Cgék Nyowd
15 if 7+ € UnifyingRounds then
16 for tasks k € {1,2,... K} do
17 L Update w7 g ¢ - % wgi’fl)
ceCyg

18 Function ClientHead (c):

19 z. < All data on client c

20 he < H(z)

21 Randomly permutate patch embedding A,
22 return h,

23 Function ClientTail (¢, b.):

24 yc < Current batch of label from client ¢
25 L. + .(ye, Te(be)) & Backprop.
26 return %ﬁc

27 Function ClientUpdate (c¢):
28 Backprop. tail, body & wr, + wr, — 1 a%;

29 return wr,

IV. RESULTS

A. Implementation Details

As for the head part, we used the task non-specific patch
embedder consisting of the convolution layer with a kernel
size of 16 x 16 and stride of 16, input channel of 3, and
output channel of 768. For the server-side body, the transformer
encoder of the ViT-base model, consisting of 12 encoder layers
and 12 attention heads, was used. For the tail part, the network
architectures specialized to yield the task-specific output were
adopted. For the COVID-19 classification task, we used a
simpler linear classifier. For severity prediction, the mapping
module with five up-sizing convolution layers was adopted as
proposed in [22]. For pneumothorax segmentation, the decoder

TABLE I
DATA PARTITIONING FOR COVID-19 CLASSIFICATION

CNUH KNUH BIMCV
Class (Test) (Client #1) (Client #2)
Normal 417 400 93
Other infection 58 400 -
COVID-19 81 293 782
Total 556 1093 875
TABLE II

DATA PARTITIONING FOR COVID-19 SEVERITY PREDICTION

. CNUH YNU Brixia
Severity (Test) (Client #3) (Client #4)
1 26 63 261
2 11 59 443
3 8 25 414
4 7 35 866
5 12 18 745
6 17 86 1536

Total 81 286 4265

part of U-Net [23]] was used.

We simulated the distributed MTL between the institutions
participating in three different CXR tasks: classification, sever-
ity prediction of COVID-19, and pneumothorax segmentation.
As in [12], the model was first initialized with pre-trained
weights for the CheXpert dataset. We minimized the binary
cross-entropy (BCE) losses for each class for the classification
task. The severity of COVID-19 was predicted and evaluated
in an array-based manner as suggested in [24]]. Specifically,
BCE losses for each six location arrays of the lung were
used for the optimization in severity prediction. Finally, for
the pneumothorax segmentation, we minimized the binary
cross-entropy loss combined with dice and focal losses. The
SGD optimizer was used for the classification and severity
prediction tasks, while the Adam optimizer was utilized for the
segmentation task, with a learning rate of 0.0001 and a warm-up
constant learning rate scheduler for all tasks. The batch size was
4 per client, and the warm-up step was 500. The total training
round was 6,000 for all clients, and the tail weights are averaged
every 100 local iterations. To adjust the scale of gradients, the
1:2:10 gradient scaling was applied for classification, severity
prediction, and segmentation, respectively.

The FL, SL, FESTA and p-FESTA was simulated on the
modification of Flower (licensed under an Apache-2.0 license)
[25] framework. All experiments were performed with Python
3.8 and Pytorch 1.8 on Nvidia RTX 3090, 2080 Ti.

B. Practical Simulation for Multi-task Collaboration

One of the paramount motivations for FL in medical imaging
is to make a robust model leveraging the dispersed and small-
sized datasets from multiple institutions while avoiding data
governance. Therefore, we assume the FL scenario in which
the data of several clients are scanty.

For COVID-19 classification and severity prediction, we
used both publicly available datasets and private data collected
from local institutions. Overall, 1093 CXR from a local hospital

TABLE III
DATA PARTITIONING FOR PNEUMOTHORAX SEGMENTATION

Subset #1 Subset #2 Subset #3
Data (Test) (Client #5) (Client #6)
Total 1000 4840 4839

(KNUH, client #1) and 875 from public data (BIMCV [26],
client #2) were used for training and 556 CXRs from another
hospital (CNUH) were used as the external test set in COVID-
19 classification task as shown in Table Similarly, for
the COVID-19 severity prediction task, 286 CXRs from a
local hospital (YNU, client #3) and 4,265 from public data
(Brixia [27]], client #4) were used as the training, and 81
CXRs data of another hospital (CNUH) were used as the
external test set as provided in Table [[I} For pneumothorax
segmentation, we used the Society for Imaging Informatics in
Medicine and the American College of Radiology (SIIM-ACR)
Pneumothorax Segmentation Challenge [28] dataset consisting
of 10,679 CXR images. The randomly selected 1,000 CXR
images were used as the test set, and the remaining 9679 CXR
images were randomly split with a 1:1 ratio (4840 and 4839
CXRs) into two clients (client #5 and client #6) to emulate
the participation of two hospitals as in Table For practical
simulation of collaboration between hospitals, we allocated
non-overlapping data sources to each client except for the
pneumothorax segmentation task where the exact sources of
the data can not be estimated. Overall, six clients participated
in the MTL scenario, two clients per task. For this study,
Institutional Review Board approvals of each participating
hospital were obtained and informed consent was waived.

Considering the sizes and compositions of each client,
collaboration for the COVID-19 classification task can be
regarded as the collaboration between all clients having small
data with a substantial imbalance in data distribution. Likewise,
the collaboration for COVID-19 severity can be considered to
be the simulation of an imbalance in data size between the
participants, one client has scanty data while the other client
has relatively sufficient data, in addition to the differences
in data composition. Finally, the clients for pneumothorax
segmentation emulate the situation in which each participating
clients have relatively sufficient and homogeneous data with
similar sizes.

When viewed in terms of the relevance between tasks,
the COVID-19 classification and severity prediction task
can be considered to be highly correlated tasks, while the
pneumothorax segmentation task may be regarded as a less
relevant task.

C. Performance Metrics

To evaluate the classification performance, the area under
the receiver operating characteristic curve (AUC) was used. For
the severity prediction task, the mean squared error (MSE) of
prediction was used as in the previous work [22]. To evaluate
the segmentation accuracy, the Dice coefficient was calculated
to measure the intersection of the segmentation results and
ground truth annotations. All experiments were performed

TABLE IV
PERFORMANCE COMPARISON WITH OTHER DISTRIBUTED LEARNING METHODS

Classification

AUC

Severity Segmentation

Methods

Average Normal

Others

MSE Dice

COVID-19

Data centralized
Federated learning
Split learning
FeSTA (STL)
p-FeSTA (STL)
FeSTA (MTL)
p-FeSTA (MTL)

0.671 (0.051)
0.601 (0.036)
0.546 (0.024)
0.718 (0.047)
0.696 (0.022)
0.780 (0.019)
0.884 (0.008)

0.735 (0.071)
0.597 (0.146)
0.522 (0.067)
0.680 (0.088)
0.739 (0.093)
0.785 (0.009)
0.906 (0.004)

0.777 (0.045)
0.483 (0.068)
0.534 (0.050)
0.677 (0.032)
0.557 (0.118)
0.793 (0.100)
0.890 (0.011)

1.592 (0.081)
2.159 (0.188)
2.546 (0.414)
1.318 (0.125)
1.717 (0.148)
1.416 (0.048)
1.361 (0.057)

0.793 (0.005)
0.789 (0.001)
0.790 (0.000)
0.801 (0.011)
0.803 (0.004)
0.796 (0.013)
0.808 (0.003)

0.500 (0.051)
0.722 (0.023)
0.583 (0.013)
0.795 (0.036)
0.790 (0.045)
0.761 (0.034)
0.857 (0.014)

Values are presented in mean (standard deviation) of three repeats with different seed.

repeatedly with three different seeds to exclude the coincidence
of getting over- or underestimated results.

D. Comparison Results

Table [[V|shows a comparison of the proposed p-FESTA with
data centralized training, other distributed learning, and original
FESTA methods. For a fair comparison, all other methods
underwent the same pre-training step as the proposed method.
The same model architectures were used for all other distributed
learning methods except for the original FESTA methods, in
which the task-specific CNN head is a key part of the method.
For original FESTA methods, DenseNet-121 equipped with
PCAM operation [29] tailored for CXR classification were
used as the head instead of the simple patch embedder as in
our previous work [22].

The single-task models trained with either p-FESTA showed
a similar order of magnitude in performances of three tasks
compared with data centralized training, surpassing those of
FL and SL. The improvements with the p-FESTA over FL
and SL were noticeable, especially for the classification and
severity prediction tasks, where the data insufficiency and
imbalance problems are prominent. Note that the slightly
better performance of the single-task model trained with the
original FESTA than the p-FESTA for the task of severity
quantifiacation, which is even better than data centralized
learning, may attribute to the more expressive task-specific
CNN head tailored for CXR tasks.

As shown in Table the model obtained with MTL
between three tasks using p-FESTA significantly outperforms
the single-task counterparts and all other distributed learning
methods. Note that the performance gain with the MTL over the
single-task model is more prominent in the p-FESTA than the
previous FESTA. Even when compared with the MTL model
obtained with FESTA, p-FESTA showed similar or slightly
better performance in severity prediction and segmentation, but
substantially outperformed the previous one in the classification
task, providing generally superior performances.

The fact that the benefit of MTL is formidable in classifica-
tion and severity prediction is intriguing, as they are the tasks
in which scanty data with skewed distribution are problematic.
On the contrary, the performance improvement was modest for
pneumothorax segmentation where each participating clients
have a relatively large number of data with even distribution.
Moreover, the close relevance between COVID-19 classification

and severity prediction might have further enhanced the benefit
of MTL to those tasks, compared with the relatively less
relevant task of pneumothorax segmentation.

E. Communication Costs between Server and Clients

In this section, we provide the estimated communication
costs between the server and clients. Given the number of data
as D, the batch size as B, the rounds between aggregation
and distribution by the server as n, and the transmission of
features, gradients, and the head, body, tail parameters as F’, G,
and P, Py, P;, the communication costs 7" of each distributed
learning strategies for a total of IR rounds between the server
and one client can be formulated as follow:

2R
TFLZY(PhWLPbJFPt)v (1)
TsL = 2BR(F + G),)
2R
Tresta = 2BR(F + G) + T(P” + P), 3)
2RP,
Tyresta = DF + BR(F + G) + - L 4)

where the constant 2 is multiplied to take account of the both-
way transmissions between server and client. Note that the
cost for features and gradients transmissions are not multiplied
by 2 in p-FESTA to reflect no transmission of features and
gradients to the head during the learning process.

TABLE V
COMMUNICATION COSTS OF THE DISTRIBUTED LEARNING METHODS

Total Features/gradients = Parameters
Classification
FL 10456.152M - 10456.152M
SL 9474.048M 9474.048M -
FESTA 11390.423M 9474.048M 1916.375M
p-FESTA 4880.648M 4844.890M 35.758M
Severity
FL 11090.794M - 11090.794M
SL 9474.048M 9474.048M -
FESTA 12025.065M 9474.048M 2551.017M
p-FESTA 5435.649M 4765.249M 670.401M
Segmentation
FL 11160.985M - 11160.985M
SL 9474.048M 9474.048M -
FESTA 12095.256M 9474.048M 2621.208M
p-FESTA 5899.113M 5158.520M 740.592M

TABLE VI
ABLATION STUDIES FOR THE PROPOSED p-FESTA

Classification Severity Segmentation
Method: AUC
ethods :
Average Normal Others COVID-19 MSE Dice
Proposed 0.884 (0.008) 0.906 (0.004) 0.890 (0.011) 0.857 (0.014) 1.361 (0.057) 0.808 (0.003)

w learnable head
w/o permutation
w/o position embedding

0.890 (0.001)
0.890 (0.010)
0.827 (0.028)

0.909 (0.014)
0.909 (0.002)
0.831 (0.035)

0.895 (0.005)
0.904 (0.023)
0.786 (0.049)

0.866 (0.013)
0.858 (0.008)
0.862 (0.007)

1.545 (0.386)
1.461 (0.064)
1.942 (0.112)

0.789 (0.000)
0.809 (0.002)
0.798 (0.004)

Values are presented in mean (standard deviation) of three repeats with different seed.

Numerically, the communication cost for each distributed
learning method in our experimental setting can be calculated as
in Table[V] As one of the critical drawbacks, the communication
cost of FESTA is larger than SL and even higher than FL.
On the contrary, the proposed p-FESTA substantially lessens
the communication burden by saving the head features at
the beginning and using them throughout the entire learning
process on the server-side. In our experimental setting, the
total communication overhead of the proposed p-FESTA is
less than half of the previous FESTA, and also significantly
lower than SL as well as FL.

FE. Ablation Studies

Results of ablation studies are suggested in Table

1) Fixed Head: We first performed an ablation to verify
whether fixing the head parametersand the patch embedder does
not harm the performance. Compared with the proposed method
with a fixed head, the same model trained using the learnable
head showed similar or even slightly worse performance for
severity prediction and segmentation, which may attribute to
the overfitting to training data. Therefore, we concluded that
the patch embedder can be fixed during all the learning rounds
without concerns of performance degradation.

2) Permutation Module: We next ablated the Permutation
module to verify whether our method is indeed "permutation
equivariant". For this proposition to be true, the performance
should be the same regardless of the presence of Permutation
module. As expected, the performances with and without the
Permutation module were in the same order of magnitude,
with the differences falling within standard deviations, proving
that the permutation does not affect the performance of the
transformer model.

3) Position Embedding: In the proposed method, the position
embedding takes two roles, first provides position information
to yield the final output in the tail, and second adds an
unknown parameter to prevent an attacker from uncovering
patch features into image patches. We performed the ablation
study to confirm that the position embedding is necessary for
optimal performance in addition to privacy preservation. The
model trained without the position embedding showed slightly
lower performances than that with the position embedding in all
tasks, suggesting that the position embedding is indispensable
for the best performance as well as privacy preservation.

TABLE VII
COMPARISON OF THE DISTRIBUTED LEARNING METHODS.

FL SL FESTA p-FESTA
Model averaging (6] X (6] (6]
Client-side learning ~ Parallel ~ Sequential ~ Parallel Parallel
Model split X o (6] (6]
Communication cost High High High Low
Benefit of MTL X X Small Large
Privacy protection X X X (6]

V. DISCUSSION

In this work, we introduced a significantly improved feder-
ated task-agnostic learning framework with permutating pure
ViT, dubbed p-FESTA, which resolves the major drawbacks of
our previous FESTA framework, leveraging the intrinsic prop-
erties of the ViT. The newly proposed p-FESTA substantially
reduces the communication overhead between server and clients
as well as enhances the performance with the authentic multi-
task training in the same embedding space, while offering better
privacy preservation. Table summarizes the comparison
between the proposed p-FESTA, original FESTA and other
distributed learning methods.

One of the most tackling problems of the previous FESTA
method was the communication overhead between server and
clients since it requires the feature and gradient transmission
the same as in SL as well as the server-side aggregation and
distribution of the heads and tails parameters for each client.
This configuration increases the communication cost to be
inevitably larger than SL and even larger than FL according
to the network sizes of each model component. To mitigate
the problem, we configured the head part to be a simpler
structure like a patch embedder so that the pre-trained head can
sufficiently show the best performance without the additional
training of the head that requires communications back and
forth between server and clients. Consequently, the feature from
the head could be stored on the server-side at the beginning
and used throughout the entire learning process, reducing the
overall communication cost to approximately half of other
distributed learning methods.

Moreover, having the head part be a common patch embedder
provides another advantage of embedding the image features of
different tasks to be in the same embedding spaces. This results
in the increasing role of following multi-task transformer and
facilitates learning better shared representation, compared with
our previous method where task-specific CNN heads embed

the features into different embedding spaces for each task and
confine the role of transformer resultingly.

Concerns may arise that using a simpler head structure and
saving features in the server-side memory could unleash privacy
leakage, which is especially important for medical data. To
alleviate this concern, we utilized the intriguing properties of
the ViT, the "permutation equivariance" of the self-attention
mechanism. The patch features were randomly permutated
ahead of transmission to the server, making the problem
underdetermined to the attacker while not deteriorating the
performance of the transformer.

The merit of our method can be maximized in "data-hungry"
collaboration. As shown in the experiments, the performance
gain was more prominent for the classification task and severity
prediction tasks where the data of each client are scanty. Given
that one of the important motivations of distributed learning is
to enable building a robust model without data centralization
with the participation of many clients having limited data,
this potential gain in data-hungry collaboration will further
incentivize the widespread application.

Nevertheless, our study is not free of limitations. First,
even though we simulated the practical collaboration between
hospitals on the customized Flower framework, the robustness
to the other tackling factor such as straggler-resilience was
not verified [|6], [30]]. Considering that connection instability
becomes a common problem in online learning, it should
be resolved technically ahead of real-world implementation.
Second, we did not consider other types of attacks for
distributed learning, such as model poisoning or data poisoning
[31]-[33[], which is beyond the scope of this work. For defense
against these types of malicious attacks, the existing methods
[34]-[36] can be utilized along with our framework. Future
work might verify the robustness for these types of malicious
attacks.

VI. CONCLUSION

In this paper, we proposed the novel p-FESTA framework
with pure ViT, which elicits the synergy of MTL among
heterogeneous tasks as well as reduces the communication
overhead significantly compared to the existing FeSTA. In
addition, we also enhanced the privacy using the Permutation
module in a way specific to ViT. We believe that our work
is a step toward facilitating distributed learning among the
institutions wanting to participate in different tasks, mitigating
the major drawbacks of the existing methods.

ACKNOWLEDGEMENT

This research was supported by a grant of the MD-
Phd/Medical Scientist Training Program through the Korea
Health Industry Development Institute (KHIDI), funded by
the Ministry of Health & Welfare, Republic of Korea. We
are grateful to Gwanghyun Kim (Seoul National University)
for his help in the implementation of the framework for the
experiments.

[1]

[2]

[3]

[4]

[5

[ty

[6]

[7]
[8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

REFERENCES

A. Hosny, C. Parmar, J. Quackenbush, L. H. Schwartz, and H. J. Aerts,
“Artificial intelligence in radiology,” Nature Reviews Cancer, vol. 18,
no. 8, pp. 500-510, 2018.

M. K. K. Niazi, A. V. Parwani, and M. N. Gurcan, “Digital pathology and
artificial intelligence,” The lancet oncology, vol. 20, no. 5, pp. €253—e261,
2019.

P. F. Edemekong, P. Annamaraju, and M. J. Haydel, “Health insurance
portability and accountability act,” 2018.

C. J. Hoofnagle, B. van der Sloot, and F. Z. Borgesius, “The european
union general data protection regulation: what it is and what it means,”
Information & Communications Technology Law, vol. 28, no. 1, pp.
65-98, 2019.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtdrik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

P. M. Mammen, “Federated learning: Opportunities and challenges,”
arXiv preprint arXiv:2101.05428, 2021.

P. Vepakomma, O. Gupta, T. Swedish, and R. Raskar, “Split learning
for health: Distributed deep learning without sharing raw patient data,”
arXiv preprint arXiv:1812.00564, 2018.

C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” arXiv preprint arXiv:2004.12088,
2020.

G. Gawron and P. Stubbings, “Feature space hijacking attacks against
differentially private split learning,” arXiv preprint arXiv:2201.04018,
2022.

Y. Gao, M. Kim, S. Abuadbba, Y. Kim, C. Thapa, K. Kim, S. A. Camtepe,
H. Kim, and S. Nepal, “End-to-end evaluation of federated learning and
split learning for internet of things,” arXiv preprint arXiv:2003.13376,
2020.

S. Park, G. Kim, J. Kim, B. Kim, and J. C. Ye, “Federated split vision
transformer for covid-19cxr diagnosis using task-agnostic training,” arXiv
preprint arXiv:2111.01338, 2021.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

M. M. Naseer, K. Ranasinghe, S. H. Khan, M. Hayat, F. Shahbaz Khan,
and M.-H. Yang, “Intriguing properties of vision transformers,” Advances
in Neural Information Processing Systems, vol. 34, 2021.

S. Chen, Y. Zhang, and Q. Yang, “Multi-task learning in natural language
processing: An overview,” arXiv preprint arXiv:2109.09138, 2021.

X. Liu, P. He, W. Chen, and J. Gao, “Multi-task deep neural networks
for natural language understanding,” arXiv preprint arXiv:1901.11504,
2019.

H. Chen, Y. Wang, T. Guo, C. Xu, Y. Deng, Z. Liu, S. Ma, C. Xu, C. Xu,
and W. Gao, “Pre-trained image processing transformer,” arXiv preprint
arXiv:2012.00364, 2020.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273—
1282.

J. Geiping, H. Bauermeister, H. Droge, and M. Moeller, “Inverting
gradients-how easy is it to break privacy in federated learning?” Advances
in Neural Information Processing Systems, vol. 33, pp. 16937-16947,
2020.

L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage
from gradients,” arXiv preprint arXiv:2001.02610, 2020.

S. Park, G. Kim, Y. Oh, J. B. Seo, S. M. Lee, J. H. Kim, S. Moon, J.-K.
Lim, and J. C. Ye, “Multi-task vision transformer using low-level chest
x-ray feature corpus for covid-19 diagnosis and severity quantification,”
Medical Image Analysis, vol. 75, p. 102299, 2022.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234-241.

D. Toussie, N. Voutsinas, M. Finkelstein, M. A. Cedillo, S. Manna, S. Z.
Maron, A. Jacobi, M. Chung, A. Bernheim, C. Eber et al., “Clinical
and chest radiography features determine patient outcomes in young and

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32

—

[33]

[34]

[35]

[36]

middle-aged adults with COVID-19,” Radiology, vol. 297, no. 1, pp.
E197-E206, 2020.

D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet, P. P. de Gusmao,
and N. D. Lane, “Flower: A friendly federated learning research
framework,” arXiv preprint arXiv:2007.14390, 2020.

M. De La Iglesia Vay4, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos,
M. Cazorla, J. Galant, X. Barber, D. Orozco-Beltran, F. Garcia-Garcia
et al., “Bimcv COVID-19+: a large annotated dataset of rx and ct images
from COVID-19 patients,” arXiv preprint arXiv:2006.01174, 2020.

A. Signoroni, M. Savardi, S. Benini, N. Adami, R. Leonardi, P. Gibellini,
F. Vaccher, M. Ravanelli, A. Borghesi, R. Maroldi et al., “Bs-net:
Learning covid-19 pneumonia severity on a large chest x-ray dataset,”
Medical Image Analysis, vol. 71, p. 102046, 2021.

SIIM-ACR, “SIIM-ACR Pneumothorax Segmentation,” https://www.
kaggle.com/c/siim-acr-pneumothorax-segmentation, 2019.

W. Ye, J. Yao, H. Xue, and Y. Li, “Weakly supervised lesion localization
with probabilistic-cam pooling,” arXiv preprint arXiv:2005.14480, 2020.
A. Reisizadeh, 1. Tziotis, H. Hassani, A. Mokhtari, and R. Pedarsani,
“Straggler-resilient federated learning: Leveraging the interplay be-
tween statistical accuracy and system heterogeneity,” arXiv preprint
arXiv:2012.14453, 2020.

L. Lyu, H. Yu, and Q. Yang, “Threats to federated learning: A survey,”
arXiv preprint arXiv:2003.02133, 2020.

V. Tolpegin, S. Truex, M. E. Gursoy, and L. Liu, “Data poisoning attacks
against federated learning systems,” in European Symposium on Research
in Computer Security. Springer, 2020, pp. 480-501.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics. PMLR, 2020, pp. 2938-2948.

L. Lyu, H. Yu, X. Ma, L. Sun, J. Zhao, Q. Yang, and P. S. Yu, “Privacy and
robustness in federated learning: Attacks and defenses,” arXiv preprint
arXiv:2012.06337, 2020.

Y. Zhao, J. Chen, J. Zhang, D. Wu, J. Teng, and S. Yu, “Pdgan: A
novel poisoning defense method in federated learning using generative
adversarial network,” in International Conference on Algorithms and
Architectures for Parallel Processing. Springer, 2019, pp. 595-609.

S. Li, Y. Cheng, W. Wang, Y. Liu, and T. Chen, “Learning to
detect malicious clients for robust federated learning,” arXiv preprint
arXiv:2002.00211, 2020.

https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation
https://www.kaggle.com/c/siim-acr-pneumothorax-segmentation

	I Introduction
	II Related Works
	II-A Vision Transformer (ViT)
	II-B Federated Split Task-Agnostic (FeSTA) Learning

	III Method
	III-A p-FeSTA
	III-B Protecting Privacy with Permutation Module
	III-C Training Procedure

	IV Results
	IV-A Implementation Details
	IV-B Practical Simulation for Multi-task Collaboration
	IV-C Performance Metrics
	IV-D Comparison Results
	IV-E Communication Costs between Server and Clients
	IV-F Ablation Studies
	IV-F1 Fixed Head
	IV-F2 Permutation Module
	IV-F3 Position Embedding

	V Discussion
	VI Conclusion
	References

