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Abstract— Data government has played an instrumental
role in securing the privacy-critical infrastructure in the
medical domain and has led to an increased need of fed-
erated learning (FL). While decentralization can limit the
effectiveness of standard supervised learning, the impact
of decentralization on partially supervised learning remains
unclear. Besides, due to data scarcity, each client may
have access to only limited partially labeled data. As a
remedy, this work formulates and discusses a new learning
problem federated partially supervised learning (FPSL) for
limited decentralized medical images with partial labels.
We study the impact of decentralized partially labeled data
on deep learning-based models via an exemplar of FPSL,
namely, federated partially supervised learning multi-label
classification. By dissecting FedAVG, a seminal FL frame-
work, we formulate and analyze two major challenges of
FPSL and propose a simple yet robust FPSL framework,
FedPSL, which addresses these challenges. In particular,
FedPSL contains two modules, task-dependent model ag-
gregation and task-agnostic decoupling learning, where
the first module addresses the weight assignment and the
second module improves the generalization ability of the
feature extractor. We provide a comprehensive empirical
understanding of FSPL under data scarcity with simulated
experiments. The empirical results not only indicate that
FPSL is an under-explored problem with practical value but
also show that the proposed FedPSL can achieve robust
performance against baseline methods on data challenges
such as data scarcity and domain shifts. The findings of
this study also pose a new research direction towards label-
efficient learning on medical images.

Index Terms— Partially supervised learning, federated
learning, multi-label classification

I. INTRODUCTION

FUELED by the advances in deep learning research, par-
tially supervised learning (PSL) [1]–[9] has emerged as

a research direction for label-efficient learning on medical
images, considering the practical issues such as data scarcity
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Fig. 1: Illustration of FPSL for a multi-label classification task on
chest X-ray images. Here, each client (data node) is annotated for
only one thoracic disease. We use this simple example to convey
the main concept of the problem of interest (in practice, each client
could be partially labeled for multiple classes). In this scenario, we
only know whether each image in the first data node has infiltration
but have no knowledge on the other three diseases. To ensure data
government, only model weights and the metadata (e.g. statistics) of
the local data can be communicated between each data node and the
parameter server (see Sec. IV for a formal description). The goal of
FPSL is to utilize the four partially labeled datasets stored in the
different data nodes to train the model of interest in the parameter
server.

and high annotation cost. The problem of PSL, also known
as the missing annotations problem [1] or partial labels
problem [8] in the literature, is a family of learning tasks
where the training data are partially labeled. Unlike commonly
seen labeled data and unlabeled data, the definition of partially
labeled data is associated with multi-task learning (MTL) [10]:
given a task of interest that can be decomposed into multiple
sub-tasks, an instance is only annotated for a subset of sub-
tasks. In the medical domain, the problem of PSL commonly
arises from the collection of multiple datasets from different
sources for the task of interest, where each dataset is annotated
for a specific sub-task as the annotation process usually re-
quires relevant expertise. This makes all these datasets partially
labeled when the task of interest includes all these sub-tasks.

As the datasets are acquired from different sources (e.g. dif-
ferent hospitals), the partially labeled datasets might be stored
separately in different locations without direct connections.
In the medical domain, data regulations commonly refer to
situations that the data stored in the client are not allowed to be
transferred to the server or other clients. A detailed explanation



is given in Sec. IV. These regulations might be made and
supervised by either the data holder or even the government
(e.g. EU General Data Protection Regulation [11] and US
Health Insurance Portability and Accountability Act [12]).
Thus, it is natural to think about the connection between PSL
and federated learning (FL) [13]. FL is a learning paradigm
that aims to utilize decentralized data stored separately in
different places and has become a topic of active research
in medical image analysis [14]–[19].

In this work, we extend the problem formulation of PSL to
a federated setup and formulate federated partially supervised
learning (FPSL) for medical images. As one of the core con-
tributions of this work, a formal problem definition of FPSL is
provided in Sec. IV. To the best of our knowledge, this is the
first study of FPSL. For an intuitive understanding, a concrete
example of FPSL is illustrated in Fig. 1. It is worth noting that
a direct combination of FL and PSL does not provide a robust
solution to the problem of interest. Firstly, the federated setup
poses a non-trivial barrier for the implementation of some
PSL methods. For example, VRM-based PSL methods [8],
[9] require access to the training data in a centralized fashion.
Another popular family of PSL methods, label propagation-
based PSL methods [3] involve iterated training over each
partially labeled dataset to generate pseudo labels. In contrast
to semi-supervised learning, where labels are instance-wise
(each instance is either labeled or unlabeled), PSL has task-
wise labels (each task is either labeled or unlabeled for a
given instance). Thus, in PSL, more iterations should be
consumed to ensure the quality of pseudo labels for certain
tasks, which leads to a low efficiency in computation under
a federated environment. Secondly, in the medical domain,
the partially labeled datasets stored in the clients (data nodes)
are commonly small, i.e. the partial labels are scarce, which
means the local data might not be able to support the efficient
training of a model with complex network architecture [4], [7].
Thirdly, in FL, the data are assumed to be non-independent and
identically distributed (non-IID). Generally, non-IID describes
the situation that each client (e.g. hospitals) collect data from
different populations. In this work, as the data are partially
labeled, clients can have different label distributions. But,
none of the existing PSL methods have tried to tackle these
challenges.

Before presenting our solution, we first examine an ex-
isting FL framework, FedAVG [13], which has served as a
seminal baseline in FL for fully labeled data. By analyzing
FedAVG under FPSL, we suggest that there are two major
challenges of FPSL. Firstly, in the model aggregation step,
the aggregation weights should reflect the impact of partial
supervision. Secondly, a direct consequence of label scarcity
and class imbalance in the local training phase is overfitting.
Especially, when each client only has partial labels with
respect to a few classes, the features extracted by the learned
model might not be able to generalize well to unseen classes.
It is important to mitigate the local overfitting by learning
robust features. To address the two aforementioned challenges,
we present a simple yet robust FPSL framework FedPSL
based on FedAVG [13]. FedPSL consists of two modules that
are designed to address the two challenges respectively. The

first module is a task-dependent model aggregation (TDMA)
module. The model (a neural network) is decomposed into two
parts: a feature extractor and a predictor. The aggregation of
the predictor in the parameter server [20] is dependent on the
sub-tasks across the clients (i.e. each class is considered as a
sub-task under the perspective of MTL). The second module
is a task-agnostic decoupling learning (TADL) module. The
local feature extractor could suffer from overfitting caused
by both partial supervision and data scarcity. We aim to
improve the generalization ability of the local feature extractor
by decoupling the learning process of the feature extractor
and predictor. To achieve this goal, we first reformulate the
optimization objective as a bi-level optimization problem [21],
where the feature extractor and the predictor are optimized on
different data splits. Then, by using meta-learning [22], we
perform meta-optimization on the feature extractor to alleviate
the overfitting.

As the first study in FPSL, a primary goal in this work
is to provide a comprehensive empirical understanding on
FPSL under data scarcity. In addition, we aim to evidence
the contributions of FedPSL. Specifically, we aim to provide
an empirical understanding on the effects of data scarcity and
class imbalance under the federated setup, which both can lead
to overfitting. Here, the term “data scarcity”, also known as
“label scarcity” refers to the situation that only limited partial
labels are available in the clients. The term “class imbalance”
has two meanings: i) the classes with more partial labels can
dominate the learning process, and ii) for each class, there are
more negative examples than positive examples. Without loss
of generality, we illustrate FPSL with multi-label classification
(MLC), a representative task prone to overfitting in a federated
setup. MLC is a fundamental yet challenging task as it does
not have mutually exclusive classes. In contrast to multi-class
settings, we can not utilize the constraint of mutually exclusive
classes as prior knowledge in either loss formulation [4], [5]
or data augmentation [8], which are utilized in centralized
PSL. We evaluate FedPSL against strong baselines in terms of
both performance and robustness under various data challenges
such as label scarcity and class imbalance. The empirical
results show that FedPSL can consistently outperform the
baseline methods and can be used as a robust framework for
FPSL.

The contributions can be summarized as follows:
1) We formulate and discuss for the first time the problem

of FPSL for decentralized medical images, and propose
FedPSL, a simple and robust framework for federated
partially supervised multi-label classification under data
scarcity.

2) We formulate and explain the challenges of FPSL.
3) We propose a novel federated partially supervised train-

ing pipeline including a task-dependent model aggre-
gation module and a task-agnostic decoupling learning
module.

4) We show initial evidence that FPSL is an under-explored
problem compared with existing learning paradigms and
offer the community the first benchmark of federated
partially supervised multi-label classification, accompa-
nied with a set of performance evaluations and baseline



comparisons.
The rest of this paper is organized as follows. Sec. II

reviews the relevant literature for FL and PSL and Sec. IV
formally formulates FPSL, the problem of interest. Sec. V-
C theoretically analyzes the challenges of FPSL. Sec. VI
describes the proposed solution in detail. Sec. VII describes the
proposed benchmark tasks and provides experimental results
and analysis. Section VIII summarizes this work.

II. RELATED WORK

A. Federated Learning
There are few FL studies directly related to FPSL.

Three related areas are federated unsupervised representa-
tion learning (FURL) [23], federated positive-unlabeled (PU)
learning [24], and federated semi-supervised learning (semi-
SL) [25]. FedU [23] present a divergence-aware update mech-
anism for FURL. However, FedU only considers the local up-
dates rather than global aggregation. As a federated extension
of PU learning, FedAwS [24] shares a similar problem formu-
lation as FPSL by assuming that each client only has access to
labels of one class. However, FedAwS is designed for multi-
class classification only. That is to say, each client will have
both fully labeled and unlabeled data, and thus differs from the
partial labels problem discussed in this work. As semi-SL has
been successfully applied to PSL, federated semi-SL is another
related domain to FPSL. The state-of-the-art federated semi-SL
method FedMatch [25], for instance, adopts a pseudo-labeling
training strategy based on consistency regularization. However,
FPSL methods that are based on semi-SL exhibit large variety
in terms of class-wise performance, as the quality of pseudo
labels are dependent on the amount of available partial labels.
We will illustrate this point via experiments in Sec. VII-E.

B. Partially Supervised Learning
Recently, there have been efforts made to utilize multiple

partially labeled datasets in the medical domain. However,
none of these methods are designed for the situation that the
partially labeled datasets are decentralized. [8], [9] address
the partial labels issue by generating vicinal labels based on
human structure similarity, which can only be implemented
in a centralized training environment. [3], [5] both require a
fully labeled dataset in the training process. It is less practical
to assume that fully labeled data are available in each client,
and only having one client or a few clients with fully labeled
data will inevitably impair the learning process in contrast to
centralized training. Besides, PSL methods that are based on
label propagation [3] have iterating training procedures, which
not only increase the complexity of a federated implementation
but also lead to sub-optimal performance. A practical issue
that is often ignored in the medical domain is that there are
only limited labeled data available. In this work, we denote the
situation that only limited partial labels are available in each
client as label scarcity. PSL methods with complex network
architectures or training procedures [4], [7] normally perform
much worse than counterparts that have access to large-scale
training data in a centralized environment [8]. With small-
scale local training data in each client, the issue becomes

more challenging in a federated environment. As existing
PSL methods struggle in the problem formulation defined in
Sec. IV), it is important to study the problem of FPSL and
develop a robust solution.

III. PRELIMINARIES

1) Partially Supervised Learning: Before we formulate the
problem of federated partially supervised learning, we briefly
review partially supervised learning (PSL). Given a task of
interest, suppose there are C > 1 classes of interest indexed
by the set C. Let x denote an image instance, yfull denote
the corresponding complete label of x with the label set
S(yfull) ⊂ C, where S(·) is a set operation.1 Analogous to
yfull, we define the incomplete label or partial label of x as
ypart with the label set S(ypart). Here, we require |S(ypart)| ̸= ∅
and |S(ypart)| ⊂ |S(yfull)|, i.e. 0 < |S(ypart)| < |S(yfull)|, where
| · | is the cardinality. For simplicity, we use y to denote the
partial label with respect to x in the remainder of the paper.

Without loss of generality, we assume that the partially
labeled dataset S = {(xi, yi)}|S|

i=1 can be split into K sub-
datasets where each sub-dataset contains label information of
a few classes, i.e. S =

⋃K
k Sk. Here, Sk = {(xk

i , y
k
i )}

|Sk|
i=1

denotes the partially labeled dataset in the kth sub-dataset and
yki is the partial label of the example xk

i with S(yki ) = Ck ⊂ C
where Ck is the class set for the kth sub-dataset. For a better
illustration of PSL, a common task is presented below as a
concrete example.

2) Multi-Label Classification: As a generalization of multi-
class classification, a multi-label classification (MLC) task
could be interpreted as C binary classification tasks. In con-
trast to multi-class classification, the classes in MLC are not
mutually exclusive, i.e. each image instance could belong
to more than one category at the same time. For example,
a chest X-ray image could be diagnosed as cardiomegaly
and emphysema simultaneously. Mathematically, given the
input image space X , F = {f : X → RC} is a family
of functions of interest. For partially supervised multi-label
classification [9], each sub-dataset is only annotated for a true
subset of C.

IV. PROBLEM SETUP

Now, we formulate the problem of federated partially
supervised multi-label classification, an exemplar of FPSL.
Analogous to Sec. III-.1, we have K clients (data nodes) in a
federated system and Sk = {(xk

i , y
k
i )}

nk
i=1 denotes the partially

labeled dataset stored in the kth client. Following standard
practice in FL, we assume Sk∩Sl = ∅ for k ̸= l and {Sk}Kk=1

are all non-IID data. In addition to the partially labeled data,
unlabeled datasets {Uk}Kk=1 might also be available in each
client. Given a model of interest fθ and an independent
fully labeled target dataset T = {(xt

i, y
t
i)}

nt
i=1 that is unseen

during the training, the learning outcome is to find the optimal
parameter set θ that minimizes the estimated empirical risk:

R̂θ =
1

nt

nt∑
i

L(fθ(xt
i), y

t
i) = LT (fθ), (1)

1Here, we use ⊂ instead of = because x might not contain all classes.



where L(·, ·) is the loss function.
In this work, we consider a seminal FL setup, where each

data node (client) is only connected to a master node (server).
The master node does not store any clinical data and could
be implemented as a parameter server (PS) [20]. In addition
to the standard setup of FL, the privacy-critical nature of the
medical domain imposes another constraint: the transferring
of clinical data between the master node and data nodes is
prohibited. That is to say, only model weights and metadata
(e.g. statistics of data) [26] should be communicated across
nodes. In contrast to the common data privacy issues in FL,
the data holders are prevented from exchanging user data in
any form to ensure data government. For example, a hospital
might not be allowed to upload the patients’ data stored in its
server to another institute. With this new constraint, FPSL on
medical images is more challenging than a simple integration
of FL and PSL.

It is worth mentioning that the primary goal of this work is
to formulate FPSL on medical images to facilitate data govern-
ment. To obtain privacy-preserving guarantees, an integration
of differential privacy [27] techniques such as DPSGD [28]
will be required, which, while being out of the scope of this
work, is a promising direction for future work.

V. TOWARDS UNDERSTANDING FPSL
FPSL is an emerging yet practical problem in the medical

domain. Yet, there is limited analysis in the literature. In this
section, we aim to provide the first preliminary theoretical
understanding of FPSL, which also motivates our method in
Sec. VI. We continue to use federated partially supervised
multi-label classification as an example.

A. A Multi-Task Representation of MLC
To ease the analysis below, we first describe the mathe-

matical formulation of MLC. A multi-label classifier can be
denoted as gϕ ◦ fθ, where fθ is the feature extractor and
gϕ is the multi-label predictor. Given an input x, we have
(gϕ ◦ fθ)(x) = gϕ(fθ(x)).

If the multi-label predictor is a fully-connected layer [29],
the parameters of the multi-label predictor ϕ can be further
represented as a C × d matrix, where d is the dimension of
the output feature vector fθ(x) ∈ Rd extracted by the feature
extractor. In this way, we can represent the classification
network output as

(gϕ ◦ fθ)(x) = ϕ · fθ(x), (2)

where · denotes the dot product operation. The optimization
goal is then

minθ,ϕLS(gϕ ◦ fθ). (3)

More specifically, given C classes of interest, we can
decompose the weight matrix ϕ into C weight vectors, i.e.

ϕ =


ϕ1

ϕ2

...
ϕC

 . (4)

For a single class c, the probability score of the prediction is
then

pc(x) = sigmoid(ϕc · fθ(x)), (5)

where sigmoid(z) = 1
1+exp−z .

B. A Closer Look at FedAVG

Given the formulation of MLC, to understand the difference
between FPSL and standard supervised FL, we dissect a
seminal FL method, FedAVG [13]. Given {Sk}Kk=1 stored in
K clients, there are K corresponding multi-label classifiers,
denoted as {gϕk

◦ fθk}Kk=1. For FedAvg [13], {θk}Kk=1 and
{ϕk}Kk=1 are aggregated into θ0 and ϕ0 in the PS by

θ0 =
∑
k

wkθk,

ϕ0 =
∑
k

wkϕk,
(6)

where wk = nk∑
k nk

and
∑

k wk = 1. As we assume supervised
FL here, nk is just the number of labeled instances in each
client k.

Without loss of generality, let us look at a single class c.
Following the formulation of Eq. (2) and Eq. (6), the final
prediction model can be written as

gϕc
0
◦ fθ0(x) = ϕc

0 · fθ0(x)

=
∑
k

wkϕ
c
k ·

∑
k

wkfθk(x)

=
∑
i,j

wiwjϕ
c
i · fθj (x).

(7)

Eq. (7) is fairly robust under various setups when {θk}Kk=1 and
{ϕc

k}Kk=1 are reliable. In a hypothetical scenario, if {θk}Kk=1

and {ϕc
k}Kk=1 both share the same properties of the oracle

functions θ∗ and ϕc∗, Eq. (7) implies gϕc
0
◦ fθ0(x) = gϕc∗ ◦

fθ∗(x).

C. Challenges of FPSL

The hypothetical scenario in Sec. V-B, where each client
has fully labeled data, is however, rarely the case in practice,
especially in the medical domain. Under FPSL, the labels can
be partial at each client, which means {θk}Kk=1 and {ϕc

k}Kk=1

might not be as reliable as assumed in standard supervised
FL. In addition to partial supervision, each client might
not have enough labels for each class to learn meaningful
representations.

Again, let us look at a single class c. Assume that K > 1
clients are split into two sets, which are KL and KU . KL

denotes the clients that contain partial labels with respect to
class c and KU denotes the clients that do not contain any
partial labels with respect to class c. Under this definition,



Eq. (7) can be reformulated as

gϕc
0
◦ fθ0(x) =

∑
iL∈KL,jL∈KL

wiLwjLϕ
c
iL · fθjL (x)

+
∑

iL∈KL,jU∈KU

wiLwjUϕ
c
iL · fθjU (x)

+
∑

iU∈KU ,jL∈KL

wiUwjLϕ
c
iU · fθjL (x)

+
∑

iU∈KU ,jU∈KU

wiUwjUϕ
c
iU · fθjU (x).

(8)

1) Impact on Task-Specific Predictor: Let us assume that
fθk in Eq. (8) can achieve the same performance of the
oracle function and focus instead on the task-specific predictor
gϕk

. For unlabeled clients KU (with respect to class c), no
contributions should be made to the model aggregation as no
label information are utilized in the local training. Thus, the
third and the fourth terms of Eq. (8) will inevitably degrade
the final performance. At the beginning of the federated
training, {ϕk}k∈KU

are randomly initialized or initialized with
unsupervised pre-trained weights. During the local training,
{ϕk}k∈KU

are untouched as no label information are involved
in the training of the task-specific predictors. Thus, {ϕk}k∈KU

are only updated when synchronized with the global model
weights, i.e. they have to wait to be updated by propagating
the error of initialization. Compared with {ϕk}k∈KL

, which
are optimized in each local training round, {ϕk}k∈KU

are
de facto stragglers [30] in distributed ML. This means that
{ϕk}k∈KU

not only lower the performance but also slow down
the convergence.

One might argue that, with large-scale training, FedAVG
or advanced variants of FedAVG (e.g. FedProx [31]) can
automatically mitigate this compound negative effect caused
by decentralization and partial supervision. However, it is less
practical to collect such large-scale annotations in the medical
domain. On the contrary, under the problem formulation of
this work, the limited partial labels will further exacerbate the
situation.

Moreover, let us consider an extreme case. Say class c is
a rare disease and the unlabeled datasets in clients k ∈ KU

are relatively larger in size than the partially labeled ones in
clients k ∈ KL, i.e. wi ≫ wj ∀i ∈ KU , j ∈ KL. This will
make the fourth term a dominating term in (8), which can
significantly deteriorate the FL system, for the same reasons
mentioned above.

2) Impact on Task-Agnostic Feature Extractor: Now, let us
relax the assumption in Sec. V-C.1 and analyze the behavior
of fθ. In standard SL, θ and ϕ are optimized together by
minimizing Eq. (1). Thus, under a more Bayesian view, the
prediction can also be represented as (gϕc|θ ◦ fθ)(x), i.e. ϕc

is dependent on θ (or in another direction, θ is dependent on
ϕc). With large-scale fully labeled data, such a dependence
is normally ignored, as in each client, fθ should extract
information for all classes of interest more or less. However,
under FPSL, the clients KU are not optimized to capture
features with respect to c. This can cause non-trivial weight
divergence [32] across the clients KU and the clients KL in
the system.

Eq. (6) can also be interpreted as ensemble learning [33].
Ensemble learning aims to improve the model generalization
ability by leveraging multiple classifiers [34]. However, under
FPSL, due to partial supervision, the quality of fθ in a client
could be biased to a few classes. While this may have a
positive effect on the first term of Eq. (8) for class c, the
other classes can be negatively influenced by the last three
terms. Again, with large-scale labeled data, this issue can be
mitigated. However, with limited data, the overfitting could
be severe. Ideally, θ should be task-agnostic to improve the
generalization ability of the feature extractor.

VI. METHOD

Motivated by the limitations of FedAVG in Sec. V-C, we
present FedPSL, a FPSL framework consisting of two simple
yet efficient techniques that aim to better handle the weight
assignment and efficiently utilize the limited partial supervi-
sion. First, we propose a model aggregation by considering the
number of partial labels in Sec. VI-A. Second, we propose to
decouple the feature extractor and predictor in the learning
process in Sec. VI-B. The empirical advantages of FedPSL
will be illustrated in Sec. VII.

A. Task-Dependent Model Aggregation
As discussed in Sec. V-C.1, the model aggregation on the

predictor should be linked with class-wise partial labels across
the clients, instead of the amount of data. To mitigate the
negative impact of wrong weight assignments in FedAVG,
the model aggregation is conducted separately for the feature
extractor and the multi-label predictor. For the feature extractor
fθ, we adopt the same aggregation mechanism as Eq. (6).
While, for the multi-label predictor gϕ, we aggregate the task-
specific weights ϕc independently. We have

θ0 =
∑
k

nk∑
k nk

θk,

ϕc
0 =

∑
k

nc
k∑

k n
c
k

ϕc
k,

(9)

where nc
k denotes the number of labeled examples in client k

with respect to class c.
In contrast to Eq. (6), which is designed for standard SL,

we use the number of partially labeled examples with respect
to class c in each client to indicate the contribution of this
client. For clients that do not contain label information of
c, the contributions to the model aggregation will just be
zeros. However, we still use nk, instead of

∑
c n

c
k, to indicate

the contribution to θ. This is because
∑

c n
c
k ≥ nk, which

could exacerbate the negative effect of class imbalance on the
feature extractor and the proposed solution aims to alleviate it.
For the same reason, the feature extractor and the multi-label
predictor should be decoupled in the local training to improve
the generalization ability.

B. Task-Agnostic Decoupling Learning
As discussed in Sec. V-C.2, the feature extractor fθ and the

multi-label predictor gϕ are mutually dependent. This means



that the training of fθ could get biased to the partially labeled
classes in each client. To mitigate the local overfitting and
improve the generalization ability of fθ, we propose a local
training strategy based on meta-learning [22].

Before presenting the training strategy, we first rephrase
the local training target as a bi-level optimization [21], [35]
problem. Assume the local training data Sk can be split into
two subsets, one is denoted as the training set and the other
one is denoted as the validation set. We propose the following
formulation:

min
θ
Lval(gϕ∗|θ ◦ fθ(x), y);

s.t. ϕ∗|θ = argmin
ϕ

Ltrain(gϕ ◦ fθ(x), y),
(10)

where θ is the upper level variable and ϕ is the lower level
variable. Intuitively, we misalign the sample spaces of fθ and
gϕ to mitigate local overfitting.

It is worth mentioning that the formulation Eq. (10) only
makes sense under data scarcity. Given large-scale fully la-
beled data, Eq. (10) actually leads to less inefficient training
than standard joint supervised training, as θ and ϕ are opti-
mized in different feature spaces. However, with only limited
partially labeled data, we leverage Eq. (10) as a form of meta-
learning to improve the generalization ability of fθ.

A direct implementation of Eq. (10) is difficult and suffers
from inefficient training. Thus, we approximate Eq. (10) with
stochastic gradient descent (SGD). The idea is to approximate
ϕ∗ by adapting θ using only a single training step, without
solving the inner optimization completely. The local training
scheme in each client is illustrated in Algorithm 1. Note, in
Line 6− 7, we evaluate the gradients with respect to both θk
and ϕk with Btrain, instead of ϕk alone in Eq. (10). Line 9
depicts the meta-optimization step, where the meta-objective
is

minθLBval
(gϕk

◦ fθ′
k
) =

minθLBval
(gϕk

◦ fθk−α∇θk
LBtrain

(gϕk
◦fθk ))

(11)

In our implementation, to efficiently utilize the available data,
we do not split Sk into two non-overlapping subsets. Instead,
when sampling a random mini-batch, we simply split the mini-
batch into half to generate Btrain and Bval.

The complete federated training scheme is presented in
Algorithm 2.

VII. EXPERIMENTS

The purposes of the conducted experiments are threefold.
Firstly, we aim to illustrate that FPSL is an under-explored
yet challenging problem compared with standard FL and
centralized training. Secondly, we want to discuss several
initial solutions to FPSL. Thirdly, we want to demonstrate
the robustness of FedPSL against label scarcity and class
imbalance. We use a multi-label classification (MLC) task
on chest X-ray images (CXRs) to evaluate the proposed
framework. The labels for a MLC task are usually sparse
(e.g. 60% of CXRs in ChestX-ray14 dataset [36] have no
findings of thoracic diseases), which makes federated partially
supervised MLC even more difficult.

Algorithm 1 Local training procedure for client k.
Sk: Partially labeled data in client k
E: Number of epochs
B: Number of batches
α, β: Learning rates

1: function CLIENT UPDATE(θk, ϕk)
2: for t = 1, 2, · · · , E do
3: for b = 1, 2, · · · , B do
4: Sample Btrain,Bval from Sk
5: // Update ϕk with Btrain
6: θ

′

k ← θk − α∇θkLBtrain(gϕk
◦ fθk)

7: ϕk ← ϕk − α∇ϕk
LBtrain

(gϕk
◦ fθk)

8: // Meta-update θk with Bval
9: θk ← θk − β∇θkLBval

(gϕ ◦ fθ′
k
)

10: return θk, ϕk

Algorithm 2 Training procedure for FedPSL.
M : Metadata
T : Number of training rounds

1: for t = 1, 2, · · · , T do
2: for k = 1, 2, · · · ,K do
3: θk, ϕk ← θ0, ϕ0 ▷ Synchronize with PS
4: θk, ϕk ← Client Update(θk, ϕk)
5: Upload {θk}Kk=1 and {ϕk}Kk=1 to PS
6: θ0, ϕ0 ← Aggregate({θk}Kk=1, {ϕk}Kk=1,M ) ▷ Eq. (9)

A. Datasets
We utilize three public datasets to simulate the multi-site

partially labeled datasets. The visual difference on the multi-
site CXRs is illustrated in Fig. 2.

1) ChestX-ray14 Dataset: ChestX-ray14 dataset2 [36] is a
public CXR dataset for multi-label chest disease detection.
It contains label information for 14 classes. Each CXR can
contain multiple diseases at the same time.

2) Tuberculosis Chest X-ray Database: Tuberculosis Chest
X-ray Database (Tuberculosis dataset)3 [37] is a public CXR
dataset, where each CXR is only annotated for tuberculosis.

3) COVID-19 Detection Dataset: COVID-19 Detection
Dataset (COVID-19 dataset)4 [38] is a public CXR dataset,
where each CXR is annotated for COVID-19.

B. Experimental Setup
There are K clients in our experiments. The goal is to

leverage K partially labeled datasets (S1 - SK) stored in K
separated clients to learn a multi-label image classifier for C
diseases. Note, to ensure data government, only model weights
and metadata are allowed to be exchanged between the PS and
each data node.

We follow [29], [36] and choose area under receiver oper-
ating characteristic (AUROC) as the evaluation metric in this

2https://nihcc.app.box.com/v/ChestXray-NIHCC/
3https://www.kaggle.com/datasets/tawsifurrahman/

tuberculosis-tb-chest-xray-dataset
4https://www.kaggle.com/datasets/tawsifurrahman/

covid19-radiography-database

https://nihcc.app.box.com/v/ChestXray-NIHCC/
https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.kaggle.com/datasets/tawsifurrahman/tuberculosis-tb-chest-xray-dataset
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database


(a) ChestX-ray14 (b) Tuberculosis (c) COVID-19

Fig. 2: Visual illustration of multi-site CXRs. (a) is diagnosed with
cardiomegaly and emphysema. (b) is tuberculosis positive. (c) is
COVID-19 positive.

work. Note, AUROC does not specify the threshold, unlike
precision, recall, or F1-score, and is thus preferred in our
quantitative comparison. We report the mean over three runs
with different random seeds. We select the best performance
in each run based on the highest average AUROC of the C
diseases.

C. Baselines

The choice of baseline methods gives consideration to two
aspects. First, we want to provide an empirical understanding
of FPSL. Second, we want to examine the performance of the
seminal methods from existing learning paradigms such as SL,
semi-SL, and self -SL, when addressing FPSL.

We first compare FedPSL against five robust FPSL base-
lines.

• FedAVG is an adaptation of FedAVG [13] to FPSL. To
differentiate from FedAVG, we use FedAVG to denote
the method. FedAVG is a seminal method that has robust
performance in FL. In the data nodes, we only update the
weights given the partial labels in the backpropagation.
Note, this is equivalent to standard SL. In the PS, only
the shared weights are aggregated and synchronized.

• FedProx is an adaptation of FedProx5 [31] to FPSL. To
differentiate from FedProx, which is designed for non-
IID fully labeled data, we use FedProx to denote the
method. We follow the same setup of FedAVG and use
0.001 for the proximal term.

• FedSSP denotes a learning paradigm of self-supervised
pre-training followed by fine-tuning on partial labels. We
adapt SimSiam6 [39] to a federated environment. The
prediction heads are fine-tuned based on partial labels,
in a fashion similar to FedAVG.

• FedMatch is an adaptation of FedMatch7 [25], a state-
of-the-art federated semi-SL baseline based on consis-
tency regularization training. As there is no existing PSL
method designed for the problem of interest yet. We
adapt FedMatch as a strong PSL baseline with default
hyperparameters.

• FedMatch+ follows the same setup of FedMatch,
except that the feature extractor is pre-trained in the same
way as FedSSP.

5https://github.com/litian96/FedProx
6https://github.com/facebookresearch/simsiam
7https://github.com/wyjeong/FedMatch

The second group includes four centralized baselines, where
the corresponding constraints in Sec. IV are relaxed (i.e. cen-
tralized training is feasible or full labels are available). We
include three centralized PSL methods to provide an empirical
understanding of the impact of FPSL and a supervised Oracle
with full labels.

• IML [2] is the simplest PSL method, which simply
ignores missing labels, i.e. only backpropagating the
gradients corresponding to the partial labels.

• FixMatch8 is a centralized semi-SL method, which is
adapted to PSL for the same reason of FedMatch. We
use the same set of hyperparameters of FedMatch. This
is also the centralized training counterpart of FedMatch.

• MixUp-PME [9] is a centralized PSL method based
on data augmentation and pseudo labeling. We use the
default hyperparameters of [9].

• Oracle is the standard SL baseline, which has central-
ized data with full labels. As expected, this is the best
performance that the model of interest can achieve under
standard SL, which is also considered as the upper bound
performance for centralized fully labeled data.

D. Implementation
1) Data Pre-Processing: Each CXR has a resolution of

1024×1024. During both training and testing of the model,
each CXR is first resized to 224× 224 and the image is then
normalized by instance normalization: x̂ij = xij−µ(x)

σ(x) , where
x is an image, x̂ is the normalized image, (i, j) is the position
of the pixel in a 224× 224 image, and µ and σ are the mean
and standard deviation of the pixels of x. We use the same
data augmentation policy proposed in [26] for all methods in
the training process.

2) Network Architecture: All baseline methods use a
DenseNet121 [40] as the encoder fθ. We choose DenseNet121
following [29] and because it is a commonly adopted model
in FL [13] for a lightweight experimental setup.9 Each of the
federated methods has K + 1 DenseNet121s for K clients
and the PS, while each of the non-federated methods has one
DenseNet121. All models are implemented in PyTorch on an
NVIDIA Tesla V100.

3) Training: For a fair comparison, all networks are initial-
ized with the same random seeds. We train all methods with
partial or full labels for 100 epochs. The synchronization and
aggregation for the federated methods are performed every
10 epochs. We use a standard Adam [41] optimizer with a
fixed learning rate α = β = 10−3 for supervised training
or partially supervised training, i.e. we use the same learning
rates for the standard SL setup and the meta-learning setup.
The binary cross-entropy for each class is weighted by Nneg

Npos
,

where Nneg and Npos are the numbers of negative cases and
positive cases for the class of interest in the labeled data. We
use the PyTorch bi-level optimization package higher10 to
perform the meta-optimization step.

8https://github.com/google-research/fixmatch
9The experiments with more advanced architectures are considered out of

the scope of this work.
10https://github.com/facebookresearch/higher

https://github.com/litian96/FedProx
https://github.com/facebookresearch/simsiam
https://github.com/wyjeong/FedMatch
https://github.com/google-research/fixmatch
https://github.com/facebookresearch/higher


TABLE I: Label statistics of positive cases for the experimental setup
without one-class clients in the federated system. “0” denotes that
the client does not have any partial labels for the disease, i.e. this
disease is unlabeled.

Disease Clients
1 2 3 4

Infiltration 141 0 0 0
Effusion 131 98 0 0

Atelectasis 78 91 121 0
Nodule 0 45 67 55

Consolidation 0 0 40 49
Pneumothorax 0 0 0 45

E. Federated System without One-Class Clients
1) Data Setup: In the first experiment, we consider a com-

mon scenario, where each client has 1 < Ck < C classes,
i.e. each client has more than one class. Furthermore, we
assume that the domain shifts across the clients are negligible.
Here, we use K = 4 clients and C = 6 classes to simulate
the situation. We use the four batches (batch 2 - batch 5,
with default batch splits) of ChestX-ray14 dataset to create
four clients. Each client contains 103 partially labeled CXR
images. The label statistics are presented in Table I. We also
prepare 300 positive cases and 300 negative cases for each of
six classes from other batches as an independent balanced test
set.

2) Results: The numerical results are presented in Table II.
Impact of Partial Supervision Compared with the Oracle, the
fully supervised baseline, all PSL methods (both centralized
and decentralized) are negatively impacted, as PSL methods
only receive partial labels. However, PSL methods can achieve
competitive performance on certain diseases, even with partial
labels, e.g. “Consolidation” and “Pneumothorax”. This means
that PSL methods do make a difference where there are limited
training examples as they can extract meaningful information
even without full supervision (with respect to certain classes).
Analysis of Centralized PSL Methods Recall that IML [2]
is the centralized baseline that does not utilize any advanced
techniques (e.g. pre-training, pseudo labeling, regularization).
MixUp-PME [9] improves the overall performance of IML,
while it slightly decreases the performance of several diseases
compared to IML. We conjecture that the performance of
MixUp-PME is class-dependent and can further be improved
with sophisticated training tricks such as the ones described
in [9]. FixMatch [42] performs even worse than IML as a
state-of-the-art pseudo-label based semi-SL method. A similar
phenomenon is also reported in [8], where pseudo labeling-
based PSL methods are less robust with only limited labeled
data, i.e. they fail to generate high-quality pseudo labels.
Impact of Decentralization Based on Table II, decentraliza-
tion seems to have a positive impact on PSL: When comparing
the centralized and decentralized methods, decentralized PSL
methods outperform centralized PSL methods by a large
margin. This is actually counter-intuitive, as under standard
SL, decentralization usually slows the convergence rate and
lowers the overall performance. As all methods are trained by
SGD with random mini-batch sampling, we conjecture that
centralization can amplify the negative impact of partial su-
pervision. In a centralized environment, a random mini-batch

could contain partially labeled examples from several partially
labeled datasets. The partial supervision can cause inefficient
training during back-propagation, especially when C is large.
In contrast, decentralization slightly alleviates this issue. In
each client, each mini-batch only contains relevant partial
labels. This process can be more efficiently than centralized
training for the model to extract transferable representations
for only a few classes. Besides, in a centralized environment,
when there are “dominating” classes (classes with more partial
labels) or “easy” classes (classes with lower learning diffi-
culty), the learning process will be inevitably influenced by
such class imbalance. Meanwhile, decentralization ensures that
local training is conducted independently and class imbalance
is somewhat mitigated by model aggregation.
Comparison with Federated Baselines FedAVG and
FedMatch+ are the two best performing FPSL baselines con-
sidering average F1-score. While self -SL has played an impor-
tant role in label-efficient learning, self-supervised pre-training
shows different influences on FedAVG and FedMatch, a
state-of-the-art federated semi-SL method. The federated pre-
training slightly improves the performance of FedAVG on a
few classes at the cost of decreased performance on other
diseases. On the contrary, FedMatch significantly benefits
from federated pre-training on all classes. As mentioned
before, semi-SL suffers from label scarcity to produce high-
quality pseudo labels. The results show that FedMatch+
can leverage pre-training to deal with label scarcity. It is
worth mentioning that FedMatch+ (i.e. self -SL and semi-SL)
does significantly improve the performance on several classes
over the FedAVG baseline. However, similar to FedSSP, the
performance of a few classes are negatively influenced. In
contrast to standard image recognition tasks, such as CIFAR-
10 and CIFAR-100 [43], which are commonly used in FL
studies and assumed to have similar learning difficulties,
medical images require additional consideration. In addition
to the number of partial labels for each class, we hypothesize
that the performance of FedMatch+ is also determined by
the learning difficulty of each class, which is not reflected in
Sec. V-C.
Analysis of FedPSL FedPSL, while being based on
FedAVG, outperforms all FPSL baselines by a large margin.
Meanwhile, we also notice that FedPSL can even outperform
Oracle on “Consolidation”. To have a better understanding on
the credit assignment of the two proposed modules, we further
include ablation models that either include only the TDMA
(task-dependent model aggregation) module or only the TADL
(task-agnostic decoupling learning) module. These ablation
models are denoted as FedPSL w/ TDMA and FedPSL
w/ TADL, respectively. The two modules both improve the
performance of FedAVG, with TADL having a larger impact.
However, as shown in Algorithm 1, TDMA requires less
computation to achieve better performance than TADL and
is thus more computationally-efficient.

F. Federated System with One-Class Clients

1) Data Setup: In the second experiment, we consider a
different scenario, where each client has 1 ≤ Ck < C classes,



TABLE II: Quantitative evaluation of multi-label thoracic disease classification in a federated system without one-class clients. The reported
number are the mean and standard deviation of average AUROCs over three random seeds. Bold denotes the highest number in each column
(other than the Oracle). The column “Average” denotes the average AUROCs over classes, which is considered as the overall performance
for a particular method.

Method Infiltration Effusion Atelectasis Nodule Consolidation Pneumothorax Average

Decentralized

FedAVG 0.648 ± 0.027 0.704 ± 0.015 0.690 ± 0.007 0.731 ± 0.021 0.814 ± 0.012 0.800 ± 0.015 0.731 ± 0.008
FedProx 0.604 ± 0.049 0.719 ± 0.003 0.673 ± 0.010 0.762 ± 0.037 0.819 ± 0.011 0.793 ± 0.014 0.728 ± 0.009
FedSSP 0.618 ± 0.065 0.734 ± 0.015 0.697 ± 0.005 0.632 ± 0.008 0.799 ± 0.005 0.702 ± 0.014 0.697 ± 0.011
FedMatch 0.676 ± 0.048 0.710 ± 0.044 0.717 ± 0.042 0.562 ± 0.016 0.761 ± 0.041 0.656 ± 0.030 0.680 ± 0.032
FedMatch+ 0.693 ± 0.008 0.778 ± 0.008 0.748 ± 0.009 0.610 ± 0.012 0.824 ± 0.007 0.761 ± 0.002 0.736 ± 0.003

Centralized
IML [2] 0.599 ± 0.064 0.711 ± 0.009 0.662 ± 0.026 0.570 ± 0.022 0.717 ± 0.015 0.614 ± 0.046 0.646 ± 0.010
FixMatch [42] 0.600 ± 0.017 0.700 ± 0.016 0.637 ± 0.014 0.515 ± 0.013 0.756 ± 0.004 0.559 ± 0.025 0.628 ± 0.005
MixUp-PME [9] 0.561 ± 0.029 0.778 ± 0.016 0.721 ± 0.020 0.586 ± 0.045 0.713 ± 0.040 0.596 ± 0.040 0.659 ± 0.013

Ours
FedPSL w/ TDMA 0.662 ± 0.017 0.757 ± 0.007 0.662 ± 0.064 0.719 ± 0.093 0.845 ± 0.009 0.799 ± 0.030 0.741 ± 0.009
FedPSL w/ TADL 0.692 ± 0.018 0.765 ± 0.007 0.720 ± 0.067 0.731 ± 0.091 0.848 ± 0.012 0.807 ± 0.015 0.757 ± 0.009
FedPSL 0.696 ± 0.017 0.771 ± 0.007 0.720 ± 0.059 0.738 ± 0.081 0.848 ± 0.011 0.803 ± 0.015 0.763 ± 0.011

Oracle 0.868 ± 0.010 0.907 ± 0.025 0.931 ± 0.015 0.792 ± 0.002 0.823 ± 0.009 0.809 ± 0.004 0.855 ± 0.010

TABLE III: Label statistics of positive cases for the experimental setup
with one-class clients in the federated system. “0” denotes that the
client does not have any partial labels for the disease, i.e. this disease
is unlabeled.

Disease Clients
1 2 3 4 5 6

Infiltration 141 0 0 0 0 0
Effusion 131 98 0 0 0 0

Atelectasis 78 91 121 0 0 0
Nodule 0 45 67 55 0 0

Consolidation 0 0 40 49 0 0
Pneumothorax 0 0 0 45 0 0
Tuberculosis 0 0 0 0 167 0
COVID-19 0 0 0 0 0 262

i.e. there can be one-class clients. In contrast to multi-class
clients, the one-class client commonly collects data for a
specific purpose, e.g. a less common disease which is unseen
in other clients. For these less common diseases, the imaging
protocols of these CXRs could be different from the common
diseases, which leads to domain shifts (see Fig. 2). Thus, we
further assume that domain shifts exist across the clients. Here,
we use K = 6 clients and C = 8 classes to simulate the
situation. We use the four batches (batch 2 - batch 5, with
default batch splits) of the ChestX-ray14 dataset to create the
first four clients, and use the Tuberculosis and COVID-19
datasets to create two one-class clients. Each client contains
103 partially labeled CXR images. The label statistics are
presented in Table III. We also prepare 300 positive cases
and 300 negative cases for each of eight classes from other
batches as an independent balanced test set.

2) Results: Based on the empirical results in Table II,
we choose the two best-performing federated PSL methods
FedAVG and FedMatch+ as the baselines. The numerical
results are presented in Table IV.
Impact of One-Class Clients When comparing the results for
this experiment (Table IV) with Table II, we observe an inter-
esting phenomenon: with new one-class clients added into the
federated system, the Oracle tends to get lower performance
on the six diseases in Table II. At first glance, this appears
counter-intuitive, as usually, more labeled data should lead
to better performance. Meanwhile, federated PSL methods
all achieve robust overall performance (“Average”) and can
even outperform the Oracle on several classes (e.g. “Nodule”

and “Tuberculosis”). A good example is “Tuberculosis”. The
CXRs of the Tuberculosis dataset are visually different from
the CXRs of the Chest-Xray14 dataset, as shown in Fig 2.
As the classes of the one-class clients are unseen in the other
clients, the Oracle and PSL methods in fact have the same
training data for ‘Tuberculosis”. However, the Oracle performs
worse. This suggests that the feature extractor of the Oracle is
negatively influenced by this newly added disease with obvious
domain shift. This indicates that federated PSL methods are
robust against the one-class clients and can even benefit from
certain level of decentralization.
Analysis of FedPSL As in the previous experiment (Table II),
FedPSL achieves the best overall performance and compet-
itive performance on every single class. Notably, FedPSL
outperforms all other methods, including Oracle, on “Tuber-
culosis” and “COVID-19”, by a large margin. As these two
classes are only present in two different clients, this further
validates our discussion in Sec. V-C regarding the necessity of
TDMA. Compared with the Oracle, the results further suggest
that severe overfitting is a main challenge under data scarcity,
where TADL is a more efficient solution than TDMA.

G. Ablation Studies

In addition to Sec. VII-E and Sec. VII-F, we further design
a few ablation experiments to evaluate FedPSL under various
situations, namely under different levels of data scarcity, with
extreme clients, and under different levels of synchronization
frequency. For simplicity, we use the data setup in Sec. VII-
E.1, where the federated system has K = 4 clients and C =
6, i.e. without one-class clients. We choose FedAVG as the
baseline in this section for its robust performance in previous
experiments.

1) Sensitivity to Data Scarcity: In the first ablation experi-
ment, we study the impact of data scarcity to FedPSL. Here,
data scarcity describes the situation that each client only has
access to small amounts of data. We denote that each client has
n partially labeled examples (we sample the first n examples
in each batch). The relation between the overall performance
and n is depicted in Fig. 3. FedPSL shows obvious advantages
over FedAVG when n is small, while the performance gain
diminishes as n increases. This matches our expectations given
the discussion in Sec. VI: TDMA and TADL are designed



TABLE IV: Quantitative evaluation of multi-label thoracic disease classification a federated system with one-class clients. The reported
number are the mean and standard deviation of average AUROCs over three random seeds. Bold denotes the highest number in each column
(other than the Oracle). The column “Average” denotes the average AUROCs over classes, which is considered as the overall performance
for a particular method.

Method Infiltration Effusion Atelectasis Nodule Consolidation Pneumothorax Tuberculosis COVID-19 Average
FedAVG 0.624 ± 0.029 0.721 ± 0.025 0.701 ± 0.013 0.791 ± 0.012 0.819 ± 0.013 0.785 ± 0.013 0.914 ± 0.010 0.837 ± 0.012 0.774 ± 0.011
FedMatch+ 0.693 ± 0.004 0.773 ± 0.009 0.739 ± 0.009 0.664 ± 0.020 0.810 ± 0.004 0.781 ± 0.004 0.905 ± 0.003 0.780 ± 0.002 0.768 ± 0.005
FedPSL (w/ TDMA) 0.615 ± 0.010 0.752 ± 0.001 0.692 ± 0.017 0.736 ± 0.031 0.836 ± 0.055 0.784 ± 0.032 0.971 ± 0.008 0.832 ± 0.026 0.773 ± 0.010
FedPSL (w/ TADL) 0.653 ± 0.027 0.757 ± 0.027 0.745 ± 0.015 0.779 ± 0.015 0.821 ± 0.016 0.809 ± 0.021 0.941 ± 0.008 0.862 ± 0.028 0.799 ± 0.013
FedPSL 0.679 ± 0.027 0.765 ± 0.027 0.756 ± 0.015 0.784 ± 0.014 0.834 ± 0.015 0.819 ± 0.019 0.967 ± 0.008 0.862 ± 0.028 0.809 ± 0.013
Oracle 0.810 ± 0.025 0.873 ± 0.011 0.865 ± 0.017 0.733 ± 0.049 0.818 ± 0.013 0.788 ± 0.038 0.884 ± 0.053 0.833 ± 0.013 0.825 ± 0.020

Fig. 3: Sensitivity of the overall performance (AUROC) to the size
of the local dataset (n). The overall performance is measured by the
mean AUROC over C = 6 classes in K = 4 clients.

for data scarcity situations. As discussed in Sec. VI-B, with
large-scale data, using TADL could lead to inefficient training.
A potential solution is hybrid training (standard training for
clients with large local datasets and TADL for clients with
small local datasets), an exploration of which is considered
beyond the scope of this work.

2) Sensitivity to Extreme Clients: In the second ablation ex-
periment, we study the impact of extreme clients to FedPSL.
In the previous experimental setups, we tend to assume that
each client has access to the same number of samples. Here,
instead, the extreme clients denote the ones that have signif-
icantly smaller or larger local datasets. While we follow the
previous setup, we choose the second and the third clients to
be our extreme clients. As each batch of the Chest-Xray14
dataset has 104 CXRs, each client can have up to 104 CXRs.
Again, we use n to denote the size of the local datasets in the
extreme clients. The relation between the overall performance
and n is depicted in Fig. 4. FedPSL can achieve more robust
performance that FedAVG. By comparing Fig. 3 and Fig. 4,
we can also infer that, when the federated systems have
roughly the same sizes of total data, the system with extreme
clients has lower performance than the system without extreme
clients.

3) Impact of Synchronization Frequency: An important hy-
perparameter in FL, which is often ignored, is the synchro-
nization frequency. In practice, it is unlikely to exchange
model parameters instantly (e.g. directly exchanging gradients
in distributed machine learning [30]). We perform an ablation
study on the synchronization frequency. We use E to denote
the number of local training epochs before synchronization.

Fig. 4: Impact of extreme clients on the overall performance (AU-
ROC). n denotes the size of the local dataset in the extreme clients,
while each common client has 1000 partially labeled examples. Two
out of four clients are the extreme ones. The overall performance is
measured by the mean AUROC over C = 6 classes in K = 4 clients.

TABLE V: Impact of synchronization frequency on the overall
performance (AUROC). The reported numbers are the mean and
standard deviation of average AUROCs over three random seeds. The
overall performance is measured by the mean AUROC over C = 6
classes. E denotes the number of local training epochs. Bold denotes
the highest number in each column (other than the Oracle).

Method E
10 20 50 100

FedAVG 0.731 ± 0.008 0.693 ± 0.010 0.645 ± 0.015 0.628 ± 0.011
FedPSL 0.763 ± 0.011 0.713 ± 0.024 0.658 ± 0.015 0.639 ± 0.013
Oracle 0.855 ± 0.010 0.855 ± 0.010 0.855 ± 0.010 0.855 ± 0.010

The results are summarized in Table V. In comparison with
FedAVG, FedPSL is more robust against low synchronization
frequency, while the performance gap diminishes as E grows
up. However, FedPSL exhibits a higher standard deviation
than FedAVG.

VIII. CONCLUSION

In this paper, we formulate and discuss the new problem of
federated partially supervised learning (FPSL) for limited de-
centralized partially labeled medical images. We theoretically
discuss the challenges of FPSL and present FedPSL, a simple
yet robust solution to FPSL. We propose a task-dependent
model aggregation module to address the aggregation weight
assignment issue and a task-agnostic decoupling learning
module based on meta-learning to address the local overfitting
issue. Finally, we provide an empirical understanding of FPSL
and our results indicate a new research direction in label-
efficient learning with partial supervision.
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