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Guest Editorial
Special Issue on Geometric Deep

Learning in Medical Imaging

I. INTRODUCTION

IN RECENT years, more and more attention has been
devoted to geometric deep learning (GDL) and its

applications to various problems in medical imaging. Unlike
convolutional neural networks (CNNs) limited to 2-D/3-D
grid-structured data, GDL can handle non-Euclidean data (i.e.,
graphs and manifolds) and is hence well-suited for medical
imaging data such as structure-function connectivity networks,
imaging genetics and omics, spatio-temporal anatomical rep-
resentations, physics-informed GDL for optimal imaging sam-
pling and acquisition, GDL in imaging inverse problems, etc.
However, despite recent advances in GDL research, questions
remain on how best to learn representations of non-Euclidean
medical imaging data; how to convolve effectively on graphs;
how to perform graph pooling/unpooling; how to handle
heterogeneous data; and how to improve the interpretability of
GDL. After discussing many other domain experts, we identify
the need for a special issue that brings to the attention of the
medical imaging community these interesting topics.

This Special Issue of IEEE TRANSACTIONS ON MEDICAL

IMAGING timely focuses on state-of-the-art GDL techniques
and their applications in medical imaging.

This Special Issue received a large interest from the sci-
entific community, i.e., 57 manuscripts were submitted and
19 articles were finally selected for publication. Each article
was carefully reviewed by three to four experts in the field
and went through a rigorous review process, composed of
typically two rounds of revisions. In the following section,
we provide key elements of each of the manuscripts included
in this Special Issue.

II. ARTICLES INCLUDED IN THE SPECIAL ISSUE

In [A1], Ma et al. develop a novel framework to effi-
ciently predict postoperative facial appearance by leveraging
the power of geometric deep learning. They introduce a
facial shape change prediction network (FSC-Net) to learn
the nonlinear mapping from bony shape changes to facial
shape changes. The FSC-Net is capable of predicting postoper-
ative facial appearances significantly faster than biomechanical
modeling methods but with comparable shape accuracy. The
experiments on MIDAS dataset demonstrated the effectiveness
of the proposed model on TOF-MRA representations, and
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tested the GCS model with state-of-the-art semi-supervised
methods using the proposed model as the backbone.

In [A2], Chen et al. propose a novel semi-supervised
learning framework named generative consistency-based semi-
supervised (GCS) model to utilize reconstruction consistency
to improve the texture representation. They employ a new
model as the backbone of the GSC model, which transfers
time-of-flight magnetic resonance angiography (TOF-MRA)
into graph space and establishes correlation using Transformer.
Finally, a dataset of 40 patients (24 females and 16 males)
with jaw deformities is utilized to evaluate the proposed
method. Evaluation results indicate that FSC-Net achieves 15×
speedup with accuracy comparable to a state-of-the-art (SOTA)
finite-element modeling (FEM) method.

In [A3], Song et al. propose a dual-modality fused brain
connectivity network combining the resting-state functional
magnetic resonance imaging (fMRI) and diffusion tensor
imaging (DTI). Three mechanisms (a multi-center attention
graph, a multi-channel mechanism, and a pooling mechanism)
are introduced into the current graph convolutional network
(GCN) to improve the classifier performance. Experimental
results on three datasets (i.e., an ADNI 2 dataset, an ADNI
3 dataset, and an in-house dataset) indicate that the proposed
method is effective and superior to other related algorithms.

In [A4], Zhuang et al. propose a unified graph representation
for all three knee cartilages (i.e., attached to femur, tibia,
and patella) per subject. And then, guided by the cartilage
graph representation, they design a cartilage surface net-
work (CSNet) to enhance the cartilage structure identifica-
tion and give strong interpretability. The two major steps in
the framework enhance the knee cartilage representation and
improve defect assessment accordingly. The comprehensive
experiments show that the proposed method yields superior
performance in knee cartilage defect assessment, plus its
convenient 3-D visualization for interpretability.

In [A5], Song et al. propose an interpretable structure-
constrained graph neural network (ISGNN) with enhanced
features to automatically discriminate between pseudo pro-
gression and true tumor progression. Their network employs a
metric-based meta-learning strategy to aggregate class-specific
graph nodes, and focus on meta-tasks associated with various
small graphs. Furthermore, a model interpretation scheme for
the GNN model is designed to justify the predictions and
improve the model reliability. Comprehensive experimental
evaluation on the in-house dataset demonstrates excellent
interpretable results in the diagnosis of glioma progression.
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In [A6], Peng et al. propose a self-supervised learning (SSL)
framework on GCNs, namely Graph CCA for temporal sElf-
supervised learning on fMRI analysis (GATE). The proposed
GATE system can tackle the spurious factors in dynamic FC
analysis by developing a GCN-based CCA regularization with
the designed multi-view temporal augmentation strategy on
BOLD signals. The experiments on two fMRI datasets [autism
brain imaging data exchange (ABIDE), and Frontotemporal
dementia (FTD)] demonstrate that GATE achieves state-of-
the-art performance under the label-efficient setting.

In [A7], Jiang et al. present a new approach to exploit
the geometry and physics underlying electrocardiographic
imaging (ECGI) to learn efficiently with a relatively small
dataset. A spatial-temporal graph convolutional neural net-
work (ST-GCNN) is introduced to describe the unknown
and measurement variables over their respective geometrical
domains. Then, the geometry-dependent physics between the
two domains is explicitly modeled via a bipartite graph over
their graphical embeddings. Both simulation and real data
experiments demonstrate its ability to be quickly fine-tuned
to new geometry using a modest amount of data.

In [A8], Meng et al. propose a weakly and semi-supervised
graph-based network that investigates geometric associations
and domain knowledge between segmentation probability
maps (PM), modified signed distance function representa-
tions (mSDF), and boundary region of interest characteristics
(B-ROI) in three aspects. A dual adaptive graph convolutional
network (DAGCN) is proposed to reason the cross-domain
segmentation probability maps and modified signed distance
function representations. A dual consistency-based paradigm
on region and boundary geometric associations is utilized
in a semi-supervised manner. Experiments on six large-scale
datasets demonstrate the proposed model’s superior perfor-
mance on optic disc (OD) and optic cup (OC) segmentation
and vertical cup to disc ratio (vCDR) estimation.

In [A9], Ma et al. present CortexODE, a deep learning
framework for cortical surface reconstruction. CortexODE
leverages neural ordinary differential equations (ODEs) to
deform an input surface into a target shape by learning a dif-
feomorphic flow. The proposed CortexODE can be integrated
to an automatic learning-based pipeline, which reconstructs
cortical surfaces efficiently in less than 5 s. The pipeline
utilizes a 3-D U-Net to predict a white matter segmenta-
tion from brain Magnetic Resonance Imaging (MRI) scans,
and further generates a signed distance function that rep-
resents an initial surface. The experiments on three datat-
sets (Alzheimer’s Disease Neuroimaging Initiative (ADNI)
dataset, the WU–Minn Human Connectome Project (HCP)
Young Adult dataset, and the developing HCP (dHCP) dataset)
demonstrate that the CortexODE-based pipeline can achieve
less than 0.2 mm average geometric error while being orders
of magnitude faster compared to conventional processing
pipelines.

In [A10], Zhang et al. propose a local-to-global graph
neural network (LG-GNN) to classify brain disorders with
rs-fMRI in an end-to-end fashion, which employs a local
ROI-GNN to learn good brain graph embeddings and identify
biomarkers, and a global subject-GNN to incorporate the

non-imaging information and the relationships between sub-
jects into the framework. A pooling strategy based on an
attention mechanism is proposed to select the most discrimi-
native feature embeddings generated by the local ROI-GNN.
The experimental results on two public medical datasets (e.g.,
ABIDE and ADNI) demonstrate that the proposed LG-GNN
achieves state-of-the-art performance.

In [A11], Cai et al. present a graph transformer geometric
learning framework to model the multimodal brain network
constructed by structural MRI (sMRI) and diffusion tensor
imaging (DTI) for brain age estimation. In the method, a
multi-level construction of brain graph networks with diver-
sified connections based on spatial relation, feature corre-
lation and cross-modal association is employed. Then, a
multi-level construction of brain graph networks with diver-
sified connections based on spatial relation, feature correla-
tion and cross-modal association. The proposed method is
evaluated with the sMRI and DTI data from UK Biobank
and Alzheimer’s Disease Neuroimaging Initiative database.
Experimental results demonstrate that the method has achieved
promising performances for brain age estimation and AD
diagnosis.

In [A12], Liu et al. propose a novel self-supervised learning
framework, named STSNet, to boost the performance of
3-D tooth segmentation leveraging on large-scale unlabeled
intraoral scanned (IOS) data. The framework follows two
stage training, i.e., pre-training and fine-tuning. In pre-training,
three hierarchical-level contrastive losses are proposed for
un-supervised representation learning on a set of predefined
matched points from different augmented views. The pre-
trained segmentation backbone is further fine-tuned in a super-
vised manner with a small number of labeled IOS meshes.
The experiments convincingly corroborate the effectiveness of
the proposed unsupervised pre-training strategy for helping
alleviate the necessity of large-scale labeled training data for
accurate 3-D tooth segmentation.

In [A13], Xu et al. propose a CNN module to generate
an initial segmentation, followed by a GNN to improve the
connectivity of the initial segmentation for identification of the
arteriole and venule in optical coherence tomography angiog-
raphy (OCTA). Based on this way, domain specific information
is incorporated into the GNN module. This method was
extensively evaluated on multi-center clinical datasets with
different field-of-views (FOVs).

In [A14], Cui et al. present Brain Graph Neural Network
Benchmark (BrainGB), a benchmark for brain network
analysis with GNNs. BrainGB standardizes the process by
1) summarizing brain network construction pipelines for both
functional and structural neuroimaging modalities and 2) mod-
ularizing the implementation of GNN designs. In this works,
the authors summarize the preprocessing and construction
pipelines for both functional and structural brain networks to
bridge the gap between the neuroimaging and deep learning
community. They also conduct a variety of empirical stud-
ies and suggest a set of general recipes for effective GNN
designs on brain networks, which could be a starting point
for further studies. The hosted website of BrainGB is at
https://braingb.us
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In [A15], Chen et al. propose a Graph-Structured Knowl-
edge Transfer (GraphSKT) framework to perform hierarchical
reasoning by modeling both the intra- and inter-domain topo-
logical structures for domain adaptive lesion detection task.
GraphSKT contains two modules: 1) IntraSKT, a geometric
and semantic relation graph to model long-term dependencies
via feature aggregation and enhance the discriminability of
learned instance-level features; 2) InterSKT, the cross-domain
region-wise dependencies modeled via a heterogeneous rela-
tion graph and guided by the GW discrepancy, reinforcing the
transferability of learned instance-level features. The extensive
experiments on two types of datasets (Colonoscopic Polyp
Detection and Colonoscopic Polyp Detection) demonstrate that
the proposed GraphSKT significantly outperforms the state-of-
the-art approaches for the detection of polyps in colonoscopy
images and of mass in mammographic images.

In [A16], Tang et al. present a self-supervised method for
non-rigid registration between 3-D surfaces to learn shape
correspondences directly from a group of bone surfaces
segmented from CT scans, without supervision from time-
consuming and error-prone manual annotations. The key to
the proposed method is the observation that a shape can be
naturally aligned with itself under affine transformation, and
enhancing the similarity of embeddings in the spectral domain
significantly benefits near-isometric shape matching, which
both can be used as strong and effective self-supervisions
in training functional correspondences. The proposed method
achieves state-of-the-art results on several public benchmarks
and provides informative and discriminative features for
non-rigid registration.

In [A17], Kong et al. present a self-supervised method for
non-rigid registration between 3-D surfaces to learn shape
correspondences directly from a group of bone surfaces seg-
mented from CT scans, without any supervision from time-
consuming and error-prone manual annotations. The key to
the proposed method is the observation that a shape can be
naturally aligned with itself under affine transformation, and
enhancing the similarity of embeddings in spectral domain
significantly benefits near-isometric shape matching, which
both can be used as strong and effective self-supervisions
in training functional correspondences. The proposed method
achieves state-of-the-art results on several public benchmarks
and provides informative and discriminative features for
non-rigid registration.

In [A18], Gaggion et al. introduce HybridGNet, an encoder-
decoder neural architecture that leverages standard convolu-
tions for image feature encoding and GCN networks (GCNNs)
to decode plausible representations of anatomical structures.
They also present the “image-to-graph skip connections”
(IGSC) module, which allows localized features to flow from
standard convolutional blocks to GCNN blocks, and show that
it improves segmentation accuracy. Their study confirms that
incorporating connectivity information through the graph adja-
cency matrix helps to improve the anatomical plausibility and
accuracy of the results when compared with other landmark-
based and pixel-level segmentation models. Their compre-
hensive experimental setup compares HybridGNet with other
landmark and pixel-based models for anatomical segmentation

in chest X-ray images, and shows that it produces anatomically
plausible results in challenging scenarios where other models
tend to fail.

In [A19], Liu et al. propose a framework for COVID-19
diagnosis, termed Structural Attention Graph Neural Network
(SAGNN), which can combine the multi-source informa-
tion including features extracted from chest CT, latent lung
structural distribution, and non-imaging patient information
to conduct diagnosis of COVID-19 severity and predict the
conversion time from mild to severe. They provide a struc-
tural attention mechanism with node-level and subgraph-level
attention to effectively distinguish different infection degrees
of left and right lungs. Experiments are conducted on a real
dataset with 1687 chest CT scans, which includes 1328 mild
cases and 359 severe cases. The experimental results validated
that the proposed SAGNN achieved the best performance
compared with existing methods in identifying severe cases
and predicting conversion time.

III. CONCLUSION

We hope this Special Issue could attract considerable atten-
tion in the field, given the increasing importance of geometric
deep learning. A Special Issue for collecting state-of-the-art
algorithms and systems focusing on this cutting-edge research,
developments, trends, and solutions of advanced technologies
could be helpful in our community. Moreover, we also hope
this Special Issue will meet the interest and appreciation of
the readers and might be essential for the clinical practice by
providing GDL tools that can alleviate and support the work
of the clinician in the future.

Finally, we thank the reviewers for their timely and profes-
sional comments. We are also very grateful to the Editor in
Chief of the IEEE TRANSACTIONS ON MEDICAL IMAGING,
Prof. Leslie Ying, for giving us the opportunity for this
publication and for her guidance. A special thank is dedicated
to the Managing Editor of the journal, Prof. Rutao Yao, for
his timely and robust support. Most importantly, thanks to all
the authors who submitted their manuscripts to this Special
Issue, making it a success.
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