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Abstract

The purpose of federated learning is to enable multiple clients to jointly
train a machine learning model without sharing data. However, the exist-
ing methods for training an image segmentation model have been based
on an unrealistic assumption that the training set for each local client is
annotated in a similar fashion and thus follows the same image supervision
level. To relax this assumption, in this work, we propose a label-agnostic
unified federated learning framework, named FedMix, for medical image
segmentation based on mixed image labels. In FedMix, each client updates
the federated model by integrating and effectively making use of all avail-
able labeled data ranging from strong pixel-level labels, weak bounding
box labels, to weakest image-level class labels. Based on these local mod-
els, we further propose an adaptive weight assignment procedure across
local clients, where each client learns an aggregation weight during the
global model update. Compared to the existing methods, FedMix not
only breaks through the constraint of a single level of image supervision,
but also can dynamically adjust the aggregation weight of each local client,
achieving rich yet discriminative feature representations. To evaluate its
effectiveness, experiments have been carried out on two challenging med-
ical image segmentation tasks, i.e., breast tumor segmentation and skin
lesion segmentation. The results validate that our proposed FedMix out-
performs the state-of-the-art methods by a large margin'.

arXiv:2205.01840v1 [cs.CV] 4 May 2022

Keywords: Federated learning, mixed supervisions, medical image segmenta-
tion, pseudo labeling, adaptive weight aggregation

*J. Wicaksana, D. Zhang, X. Huang, H. Wu and K. -T. Cheng are with the Department of
Electronic and Computer Engineering, The Hong Kong University of Science and Technology,
Kowloon, Hong Kong. E-mail: {jwicaksana, dongz, xhuangbs, hwubl, timcheng}@ust.hk

tZ. Yan and X. Yang are with the School of Electronic Information and Communica-
tions, Huazhong University of Science and Technology, Wuhan, China. E-mail: {z_yan
,xinyang2014}@hust.edu.cn

IThe code is available at: https://github.com/Jwicaksana/FedMix



“canceFous_” “cancerous”

= " =

(b) Image-Level (c) Bounding (d) Pixel-Level
(a) Input Image Class Labels Box Labels Labels
- - - - ’
Weak Supervisions (more labour inputs) Strong Supervisions

Figure 1: Examples of different levels of medical image labels, where the image-level
class labels in (b) contain only the lesion category. The bounding box labels in (c)
contain not only the lesion category, but also a coarse location. The pixel-level labels in
(d) contain both the lesion category and location information of each pixel, which is a
strong image supervision. Although strong image supervisions are more informative,
they are very expensive to obtain. The utilization of some easily obtained image
supervisions is beneficial in practice.

1 Introduction

Medical image segmentation is a representative task for image content analysis
supporting computer aided diagnosis, which can not only recognize the lesion
category, but also locate the specific areas [I]. In the past few years, this
task has been extensively studied and applied in a wide range of underlying
scenarios, e.g., lung nodule segmentation [2], skin lesion boundary detection [4],
and COVID-19 lesion segmentation [3].

The optimization of deep learning models usually relies on a vast amount
of training data [5]. For example, for a fully-supervised semantic segmentation
model, the ideal scenario is that we can collect the pixel-level annotated im-
ages as much as possible from diverse sources. However, this scenario is almost
infeasible due to the following two reasons: ) the strict sharing protocol of sen-
sitive patient information between medical institutions and i¢) the exceedingly
high pixel-level annotation cost. As the expert knowledge usually required for
annotating medical images is much more demanding and difficult to obtain, var-
ious medical institutions have very limited strong pixel-level annotated images
and most available images are unlabeled or weakly-annotated [3,20,21]. There-
fore, a realistic clinical mechanism which utilizes every available supervision for
cross-institutional collaboration without data sharing is highly desirable.

Thanks to the timely emergence of Federated Learning (FL), which aims to
enable multiple clients to jointly train a machine learning model without shar-
ing data, the problem of data privacy being breached can be alleviated [11]. FL
has gained significant attention in the medical imaging community [12,17], due
to the obvious reason that medical images often contain some personal infor-
mation. During the training process of a standard FL model, each local client
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Figure 2: An illustration of our proposed Mixed Supervised Federated Learning
(FedMix) framework. The local client update utilizes every available supervision for
training. Based on which, an adaptive weight aggregation procedure is used for the
global federated model update. Compared to the existing methods, FedMix not only
breaks through the constraint of a single level of image supervision, but also can
dynamically adjust the aggregation weight of each local client, achieving a rich yet
discriminative feature representation.

first downloads the federated model from a server and updates the model lo-
cally. Then, the locally-trained model parameters of each client are sent back
to the server. Finally, all clients’ model parameters are aggregated to update
the global federated model. Most of the existing FL frameworks [13, 18] require
that the data used for training by each local client needs to follow the same level
of labels, e.g., pixel-level labels (as shown in Fig. 1 (d)) for an image semantic
segmentation model, which limits the model learning ability. Although, some
semi-supervised federated learning methods [31,33] attempt to utilize the unla-
beled data in addition to pixel-level labeled images in training, they do not make
any use of the weakly-labeled images (e.g., image-level class labels in Fig. 1 (b)
and bounding box labels in Fig. 1 (¢)), which are invaluable.

Clients participating in FL. may have different labeling budgets. Therefore,
there may be a wide range of inter-client variations in label availability. Weak
labels are easier to acquire and thus more broadly available compared to pixel-
level ones. In practice, there is a wide range of weak labels with varying strengths
and acquisition costs. While an image-level label indicating whether a breast
ultrasound image is cancerous or not is easier to acquire compared to a bound-
ing box label pointing out the specific location of the cancerous region, it is
also less informative. Therefore, effectively utilizing the information from these
weakly-labeled data with varying levels of label strengths as well as unlabeled
data, especially for clients without pixel-level labeled data would be highly ben-



eficial for improving the federated model’s robustness while preventing training
instability.

In this work, as illustrated in Fig. 2, we propose a label-agnostic Mixed Su-
pervised Federated Learning (FedMix) framework, which is a unified FL model
making use of data labeled in any form for medical image segmentation. Specif-
ically, in the absence of pixel-level labels, FedMix first effectively utilizes un-
labeled images as well as useful information contained in the weakly-labeled
images (i.e., image-level class labels and bounding box labels) for producing
and selecting high-quality pseudo labels. Through an iterative process, the ac-
curacy of selected pseudo labels which are then used for local training on the
client sides improves, leading to better model performance. To further improve
the model robustness, FedMix takes into account the variability of local clients’
available labels through an adaptive aggregation procedure for updating the
global federated model. Compared to the existing methods, FedMix not only
breaks through the constraint of a single type of labels, but also can dynami-
cally assign an optimized aggregation weight to each local client. Experimental
results on two challenging segmentation tasks demonstrate the superior perfor-
mance of FedMix on learning from mixed supervisions, which is valuable in the
clinical setting. Our contributions are summarized as follows:

e The mixed supervised FL framework targeting multi-source medical image
segmentation through an iterative pseudo label generator followed by a
label refinement operation, based on the information derived from weakly-
labeled data, to target high-quality pseudo labels for training.

e An adaptive weight assignment across clients, where each client can learn
an aggregation weight. Adaptive weight assignment is essential to handle
inter-client variations in supervision availability.

e Extensive experiments on the challenging breast tumor segmentation and
skin lesion segmentation. FedMix outperforms the state-of-the-art meth-
ods by a large margin.

The rest of this paper is organized as follows: Existing and related work are
summarized and discussed in Section 2. The details of FedMix are introduced
in Section 3. In Section 4, we present thorough evaluation of FedMix compared
with the existing methods. We provide ablation studies as well as analysis in
Section 5, and conclude the paper in Section 6.

2 Related Work

2.1 Federated Learning

Federated learning (FL) is a distributed learning framework, which is designed
to allow different clients, institutions, and edge devices to jointly train a machine
learning model without sharing the raw data [11], which plays a big role in pro-
tecting data privacy. In the past years, FL has drawn great attention from the



medical image communities [18,46] and has been validated for multi-site func-
tional magnetic resonance imaging classification [13], health tracking through
wearables [52], COVID-19 screening and lesion detection [17], and brain tu-
mor segmentation [12,17]. In clinical practice, different clients may have great
variations in data quality, quantity, and supervision availability. Improper use
of these data may lead to significant performance degradation among different
clients. To reduce the inter-client variations, FL has been combined with domain
adaptation [16, 53, 50], contrastive learning [54] and knowledge distillation [55]
to learn a more generalizable federated model. However, existing works do not
consider the variation in supervision availability (i.e., different clients have dif-
ferent levels of image labels), which is often observed in clinical practice. In
our work, we use all the available image label information including image-level
class labels, bounding box labels, and pixel-level labels to train a medical image
segmentation model and propose a mixed supervised FL framework.

2.2 Semi-supervised Federated Learning

In a standard federated learning setting, not every local client has access to
pixel-level supervision for image segmentation to facilitate model learning with
weakly-labeled and unlabeled training data. To this end, some semi-supervised
federated learning approaches require clients to share supplementary informa-
tion, e.g., client-specific disease relationship [32], extracted features from raw
data [34], metadata of the training data [35], and ensemble predictions from
different clients’ locally-updated models besides their parameters [33]. Addi-
tional information sharing beyond the locally-updated model parameters may
leak privacy-sensitive information [415] about clients’ data. Yang et al. [31] pro-
posed to avoid additional information sharing by first training a fully-supervised
federated learning model only on clients with available pixel-level supervision
for several training rounds and then using the model to generate pseudo labels
for local clients based on the unlabeled data. Those confident pseudo labels are
used to supervise the local model updates on unlabeled clients for subsequent
rounds. In this work, we design a unified federated learning framework that
utilizes various weakly supervised data in addition to fully-supervised and un-
labeled data for training while limiting the information sharing between clients
to only locally-updated model parameters for privacy preservation.

2.3 Medical Image Segmentation

The deep learning-based image recognition technology has been used for various
medical image segmentation tasks, e.g., optic disc segmentation [24], lung nod-
ules segmentation [2], skin lesion boundary detection [1], and COVID-19 lesion
segmentation [3]. However, training a fully-supervised deep model for image se-
mantic segmentation often requires access to a mass of pixel-level supervisions,
which are expensive to acquire [21]. In particular, the problem of the expensive
pixel-level supervision is much more obstructive for medical image segmenta-
tion [26]. To this end, efforts have been made to explore the use of some easily



obtained image supervisions (e.g., scribbles [43], image-level classes [6], bound-
ing boxes [7], points [3], and even unlabeled image [36]) to train a pixel-level
image segmentation model. However, most of the existing works are based on
only one or two types of image supervisions, which greatly limits the model
learning efficiency. In most cases, access to some pixel-level annotated data
is required to facilitate model training, which may not always be available for
each participating client. In our work, we carefully use image-level class labels,
bounding box labels, and pixel-level labels to train local clients and propose an
adaptive weight assignment procedure across clients for medical image segmen-
tation.

3 Owur Approach

In this section, we first introduce the notation and experimental setting of the
proposed unified federated learning framework, ¢.e., Fedmix, in Section 3.1.
Then, we provide a framework overview in Section 3.2. Finally, we present im-
plementation details including pseudo label generation, selection, and federated
model update of the proposed FedMix in Section 3.3 and Section 3.4.

3.1 Preliminaries
3.1.1 Experimental Settings

To emulate the real scenario setting, we focus on deep learning from multi-source
datasets, where each client’s data is collected from different medical sources.
We focus on exploring variations in cross-client supervisions and thus limit each
client to a single level of labels.

3.1.2 Training Notations

In this paper, we denote D = [Dy, ..., Dy] as the collection of N clients’ train-
ing data. Given client i, DF = [X,Yy], DY = [X], D™ = [X, Yimg), and
Do = [X | Yipor] Tepresent the training data that is pixel-level labeled, unla-
beled, image-level class labeled, and bounding box-level labeled, respectively.
X and Y represent the sets of the training images and the available labels.

To integrate various levels of image labels, in our work, we modify the bound-
ing box labels and image-level class labels to pixel-level labels. Specifically, the
bounding box point representation is converted into pixel-level label where the
foreground class falls inside the bounding box and the background class falls
outside the bounding box. For image-level class labels, we constrain the pixel-
level label to the corresponding image class. Consequently, Yg¢, Yimg, and Yopor
has the same dimension, e.g., Y € RICTDXHEXW " indicates the total number
of foreground classes while W and H indicates the weight and height of the
respective image data.



Algorithm 1: Pseudocode of FedMix

input : D
parameter: 5, \: hyperparameters for adaptive aggregation
T: maximum training rounds
e: threshold for dynamic sample selection
output : O¢1: parameters of Fy
O¢o: parameters of I
051, 952 — initialize()
fort=1:T do
£= (), 0 = () 0 = )
fori=1:N do
fi, f4 + download (b1, O¢2)
X,Y < D,
Y1, Ys = F{(X), F3(X)
M; < sample(Y7,Ys,¢)
Yl, )}2 < reﬁne(Yl, Y27 Y)
AL, AL, L+ update(FY, F3;d;)
921.add(A9f1), 922.add(A952), Lt.add(Lh)
end
9513 052 = aggregate(eéla 0227 'Ct; 67 )‘)
end
return 0¢1 and O¢o

3.2 Overview

As illustrated in Fig. 2, to fully utilize every level of labels at various clients, the
pseudo-code of FedMix is presented in Algorithm 1 and FedMix has two main

components:

1. Pseudo Label Generation and Selection. In the mixed supervised
setting, clients without access to pixel-level label rely on the pseudo labels
for training. To improve the pseudo labels’ accuracy, we design a unified
refinement process using every level of labels and dynamically select high-
quality pseudo labels for training.

2. Adaptive Aggregation for Federated Model Update. FedMix uses
an adaptive aggregation operation where the weight of each client is de-
termined by not only its data quantity but also the quality of its pseudo
labels. Our aim is to learn a federated model for tumor segmentation, the
local model updates without access to pixel-level labels have to be inte-
grated with care. In this way, the reliable clients will be assigned higher
aggregation weights, leading to a better federated model.



3.3 Pseudo Label Generation and Selection
3.3.1 Pseudo Label Generation

Based on the cross-pseudo supervisions [30], we train two differently initialized
models, Fi(.) and F5(.) to co-supervise each other with pseudo labels when no
pixel-level label is available. The training image X is fed to the two models F;
and F5 to generate pseudo labels Y7 and Y3, respectively. The pseudo labels
are then refined, denoted as ¥; and Y3, and used for training the model of each
local client. Details of the corresponding refinement strategies for each type of
label are introduced as follows:

1. Pixel-level labels: Under this kind of supervision, we do refine the
pseudo labels, which can be expressed as Y7 = Y5 = Y.

2. Bounding box labels: Each of the predictions Y; = F;(X;) and Ys
Zf’g(Xg) is refined according to the corresponding bounding box label, i.e.,
Y1 = Y1 % Yoo and Yo = Y5 * Yipor.

3. Image-level class labels: We do not apply pseudo label refinement,
which can be formulated as Y7 = Y7, and Y5 = Y5.

4. No labels (i.e., WithoutAsupervisions) : We do not refine the pseudo labels,

which is formulated as Y7 = Y7, and Y5 = Y5.
A specific client ¢ is trained by minimizing:
»Ci - Ldice(YhY/Q) +£dice(}6»}>1)v (1)

where Lg;.. is the Dice loss function.

3.3.2 Dynamic Sample Selection

Despite the effectiveness of the above pseudo label generation and refinement
processes, the pseudo labels may be incorrect. Therefore, we propose a dy-
namic sample selection approach to select high-quality data and pseudo la-
bels. Specifically, given client ¢ and its training data D;, we generate a mask
M; = {mq,...,mp,||m; € [0,1]} to select reliable training samples according to
Eq. 2. We measure the consistency between pseudo labels before refinement,
i.e., Y1 and Y5. Higher prediction consistency between Y; and Y> indicates a
higher likelihood that the pseudo labels are closer to ground truth. The above
process is expressed as:

m, — {1 if dice(Y1,Ys) >=¢ 2)

0 o.w.,

where € € [0,1] is a threshold which is inversely proportional to the amount of
selected training samples. For pixel-level labels, m; = 1 for all training samples



as Yy =Y, = Yy:. As training progresses, the models are more capable of gen-
erating more accurate pseudo labels. Consequently, ZZIIM“" m; progressively
increases to |D;|, allowing the model to learn from a growing set of training

data. More discussions of dynamic sample selection are provided in Section 5.1.

3.4 Federated Model Update

At each training round, every local client ¢ first receives the federated model’s
parameters 92 from the server at time or iteration t. Then, every client updates
the model locally with its training data D;. Finally, the gradient update from
each local client AF)EH will be sent to the server to update the federated model’s
parameters according to Eq. 3.

N
O O+ > wi AT (3)
=1

In FedAvg [11], the aggregation weight of each client, w;, is defined as | D;|/ ZillDl | D;.
In the mixed supervised setting, relying only on data quantity for weight assign-

ment is sub-optimal. Thus, supervision availability of each client should also

be taken into account during the aggregation process. To this end, we propose

to utilize the client-specific training loss to infer the data quality. Each client’s
training loss not only provides a more objective measurement of its importance
during FedMix optimization but also prevents the federated model from rely-

ing on the over-fitting clients. The proposed adaptive aggregation function is
defined by

|D;| ALP
=l T =Dl A B
Zi:l |Di| Zi:l A‘Ci

(4)
and
S+ d;’

1=

Wy <—

()

where A and 3 are hyper-parameters to tune, impacting the degree of reliance
towards different clients. More discussions of adaptive aggregation can be found
in Section 5.2.

4 Experiments

4.1 Datasets and Evaluation Metrics

Dataset. In our work, experiments are carried out on two challenging medical
image segmentation tasks:

e Breast tumor segmentation. In this task, three public breast ultra-
sound datasets, namely BUS [37], BUSIS [35], and UDIAT [39], are used



Table 1: Statistics of the breast ultrasound dataset

Site # Patients | # Images %

BUS 600 780 (152?7’
BUSIS 562 562 522
UDIAT 163 163 123

Table 2: Statistics of the HAM10K dataset

Site Source # Patients | # Images
Rosendahl | rosendahl 1552 2259
modern 1695 3363
Vidir old 278 439
molemax 3954 3954

for evaluation and each of them is regarded as a separate client. More
details of this dataset are introduced in Table 1.

e Skin tumor segmentation. HAMIOK [40] consists of four different
sources. Each source acts as a client in FL. The statistics of HAM10K are
presented in Table 2.

Following the standard practice, the training data is randomly and patient-
wisely split into 80% for training and 20% for testing. All the breast ultrasound
and skin dermoscopy images are resized to 256 x256 pixels and then randomly
flipped and cropped to 224 x224 pixels for training.

Evaluation metrics. In this work, Dice coefficient (DC) is used for the eval-
uation of the two segmentation tasks. Considering the two-model architecture
of FedMix, the predictions or outputs of F; are used for evaluation.

4.2 Implementation Details

Network architectures. UNet [41] combined with the group norm [412] is
selected as the baseline segmentation model.

Supervision types. The following types of labels are included in our experi-
ments: 1) pixel-level labels (denoted as L), 2) bounding box labels (denoted as
B), 3) image-level class labels (denoted as I), and 4) unlabeled (denoted as U),
e.g., training with only the raw images.

Comparison methods. The following four prevailing frameworks are included
for comparison:

e Local learning (LL): Each client trains a deep learning network based on
its pixel-level labeled data.

10



Table 3: Quantitative results of local learning (LL) and FedAvg under the fully-
supervised setting for breast tumor segmentation.

C1 C2 C3
Frameworks T T T Avg.
LL 66.96 | 87.37 | 87.23 | 80.52

FedAvg 77.46 | 92.44 | 87.12 | 85.67

Table 4: Quantitative results of different learning frameworks under the semi-
supervised setting for breast tumor segmentation.

C1 C2 C3
Frameworks 7 7 T Avg.
LL (trained on C3) | 64.72 | 83.40 | 87.23 | 78.45
FedST [31] 64.83 | 85.66 | 86.38 | 78.95
FedMix 68.17 | 89.19 | 87.97 | 81.77

e Federated Averaging (FedAvg): All clients, owning pixel-level labels, col-
laboratively train a federated model.

e Semi-supervised federated learning via self-training [31] (FedST): FedST
is proposed to utilize both pixel-level labeled and unlabeled data for fed-
erated training. FedST is selected as it does not require additional infor-
mation sharing beyond the locally-updated model parameters.

e Our proposed Federated learning with mixed supervisions (FedMix): Fed-
Mix integrates various levels of labels.

The performance of FedAvg under the fully-supervised setting is regarded as an
upper bound of federated learning techniques. We evaluate the performance of
FedMix under the semi-supervised setting by comparing FedMix with FedST.
We also evaluate the performance of FedMix under various settings to show how
additional weak labels improve the federated model’s performance.

Training details. All the networks are trained using the Adam optimizer with
an initial learning rate of le-3 and a batch size of 16. All methods are imple-
mented within the PyTorch framework and trained on Nvidia GeForce Titan
RTX GPUs for 300 rounds. The federated training is performed synchronously
and the federated model parameters are updated every training round. We set
e =09, A =10, and g = 1.5 and § = 3 for adaptive aggregation on breast
tumor and skin lesion segmentation respectively.

4.3 Results on Breast Tumor Segmentation

Experiment settings. Data from BUS, BUSIS, and UDIAT are represented
by C1, C2, and C3 respectively. To better demonstrate the value of weak labels,
C3, owning the least amount of data, is selected as the client with pixel-level

11



Table 5: Quantitative results of FedMix under various weakly-supervised settings for
breast tumor segmentation.

supervision
[01pc—203] C1 C2 Cc3 | Ave
U, U, L] 68.17 | 89.19 | 87.97 | 81.77

I, U, L] 68.37 | 89.47 | 88.56 | 82.13
B, B, L] 71.26 | 89.36 | 89.41 | 83.34

Table 6: Quantitative results of federated learning under the fully-supervised setting
with various aggregation functions for breast tumor segmentation. AdaptAgg is the
proposed aggregation function.

Aggregation C1 C2 C3
Function L L L
FedAvg 7746 | 92.44 | 87.12 | 85.67
AdaptAgg | 79.02 | 93.08 | 88.27 | 86.79

Avg.

labels. The levels of the labels on C1 and C2 are adjusted accordingly for
different cases. As only C1 contains both healthy and cancerous images, it is
regarded as the client with image-level labels when needed.

Quantitative evaluation. According to Table 3, e.g., in the fully-supervised
setting, the LL model of C1 has the lowest DC of 66.96%, indicating the large
intra-client variations among its data. C2 and C3 performs better than C1, i.e.,
87.37% and 87.23% respectively. With FedAvg, every client benefits from the
federation, especially C1 with an increase of 10.50% in DC. Besides, training a
federated model with more data from different clients is useful to learn more
generalizable features, leading to an average increase of 5.15% in DC.

Quantitative results of FedMix and FedST under the semi-supervised setting
are provided in Table. 4. For LL, the results of C1 and C2 are produced using
the model trained on C3. Compared to the locally-learned models under the
fully-supervised setting in Table 3, there exists slight performance degradation
on C1 and C2, i.e., 2.24% and 3.97% decrease in DC respectively, indicating the
limitation of the model trained only on C3. By utilizing the unlabeled data on
C1 and C2 for training, FedST and FedMix are able to train better federated
models compared to LL. The overall improvements of FedST are quite limited
with an average increase of 0.50% in DC while the segmentation results on C3
are badly affected. Comparatively, FedMix consistently improves the results of
all the three clients, leading to an average increase of 3.32% and 2.82% in DC
for LL and FedST respectively.

One interesting observation is that FedMix in semi-supervised learning out-
performs LL with full supervisions, demonstrating the effectiveness of FedMix in
exploring hidden information in unlabeled data. Quantitative results of FedMix
under different settings are presented in Table 5. When C1 owns image-level
labels, not only C1 but also C2 and C3 would benefit from the federation, shown

12
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Figure 3: Exemplar qualitative results of different learning frameworks for breast
tumor segmentation. The upper part (Rows 1 to 7): the raw images, the segmenta-
tion maps produced by local learning (LL), FedST and FedMix under semi-supervision
(i.e,|C1, C2, C3] = [U, U, L]), the segmentation maps of FedMix under mixed super-
vision (i.e.,[C1, C2, C3] = [I, U, L] and [C1, C2, C3] = [B, B, L]), and the manual
annotations by experts respectively. The lower part (Rows 8 to 9): the segmentation
maps obtained by federated learning under full pixel-level supervision using FedAvg
and the proposed adaptive aggregation function respectively.

by performance improvements across clients, i.e., an average of 0.36% increase
in DC. When C1 and C2 have access to bounding box labels, the DC scores of
C1 and C3 are further improved, with an average increase of 1.57% and 1.11%
compared to FedMix with weaker supervisions. To validate the effectiveness of
adaptive aggregation, we compare FedAvg and adaptive aggregation under the
fully-supervised setting. The results are presented in Table 6. Putting more

emphasis on more reliable clients via adaptive aggregation effectively improves
the DC by 1.12%.
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Table 7: Quantitative results of local learning (LL) and FedAvg under the fully-
supervised setting for skin lesion segmentation.

C1 C2 C3 C4
Frameworks T T T T Avg.
LL 88.98 | 93.21 | 94.33 | 94.93 | 92.86

FedAvg 90.39 | 93.57 | 95.88 | 95.44 | 93.82

Table 8: Quantitative results of different learning frameworks under the semi-
supervised setting for skin lesion segmentation.

C1 C2 C3 C4
Frameworks 7 T 7 7 Avg.
LL (trained on C3) | 74.55 | 72.85 | 94.33 | 91.21 | 83.23
FedST [31] 75.08 | 74.08 | 93.78 | 92.24 | 83.79
FedMix 80.55 | 81.72 | 94.54 | 90.92 | 86.93

Qualitative evaluation. According to Fig. 3, LL on C3 produces quite a few
false positives on C2, indicating poor generalization capability due to limited
training data. Under the semi-supervised setting, though the unlabeled data
of C1 and C2 is used for training, the segmentation results of FedST are close
to those of LL as learning from incorrect pseudo labels is not helpful and may
be detrimental. Comparatively, FedMix can utilize the useful information in
unlabeled data and the model generates predictions close to the experts’ an-
notations. The introduction of stronger supervision signals (i.e., from U to I
and B) to FedMix would further reduce false positives and improve the shape
preservation of tumor regions. The utilization of adaptive aggregation in feder-
ated learning is beneficial even under the fully-supervised setting. Adaptively
aggregated federated model can better capture the boundaries and shapes of the
tumor regions and contain fewer false positives compared to the model learned
using FedAvg.

4.4 Results on Skin Lesion Segmentation

Experiment setting. Images from Rosendahl, Vidir-modern, Vidir-old, and
Vidir-molemax are represented by C1, C2, C3, and C4 respectively, and C3,
owning the least amount of data, is selected as the client with pixel-level labels.
The levels of the labels on C1, C2, and C4 are adjusted accordingly for different
cases.
Quantitative results. From Table 7, under the fully-supervised setting, Fe-
dAvg improves the performance of the locally-learned models by an average of
0.96% in DC, indicating that cross-client collaboration is beneficial.

The key for semi-supervised federated learning is to extract and use accurate
information from the unlabeled data. Under the semi-supervised setting, where
only C3 has access to annotation (i.e., L), we present the results in Table 8. The
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Table 9: Quantitative results of FedMix under various mixed supervised settings for
skin lesion segmentation.

Supervision

crcz o3 cr| CL | €2 | O | ¢4 | Avg

[U, U, L, U] 80.55 | 81.72 | 94.54 | 90.92 | 86.93
B, B, L, B] | 88.80 | 93.11 | 95.82 | 94.41 | 93.04

Table 10: Quantitative results under the fully-supervised setting with various ag-
gregation functions for skin lesion segmentation. AdaptAgg is the proposed adaptive
aggregation.

Aggregation C1 C2 C3 C4
Function L L L L
FedAvg 90.39 | 93.57 | 95.88 | 95.44 | 93.82
AdaptAgg 90.91 | 93.73 | 96.78 | 95.51 | 94.23

Avg.

locally-learned (LL) model on C3 does not perform well on C1 and C2, observed
through the significant performance degradation which indicates severe inter-
client variations between {C3, C4} and {C1, C2}. As a result, the pseudo
labels on {C1, C2} generated by the model trained on C3 may be inaccurate,
utilizing which for training would be harmful. Instead of using all the pseudo
labels, FedST makes use of only confident predictions. While the model learned
through FedST has an average of 0.56% increase in DC compared to LL, it
performs worse on C3, i.e., 0.55% decrease in DC. The performance drop may
disincentive C3 to participate in the federation thus hindering the deployment
of FedST. With dynamic sample selection and adaptive aggregation, FedMix
manages to select high-quality unlabeled data and more accurate pseudo labels
for training, thus improving the segmentation performance on C3. Additionally,
compared to LL, both C1 and C2 obtain significant performance improvements
with an average increase of 6.00% and 8.87% in DC respectively. In general,
FedMix achieves better overall performance, resulting in an average increase of
3.14% in DC compared to FedST.

Quantitative results of FedMix under various settings are presented in Ta-
ble 9. Incorporating bounding box labels for training improves the pseudo
labels” accuracy. Consequently, the segmentation performance of FedMix is fur-
ther improved by 6.11%, approaching the performance of FedAvg under the
fully-supervised setting. Bounding box labels are much easier to obtain than
pixel-level labels, making FedMix more valuable in clinical scenarios. We fur-
ther conduct a comparison between FedAvg and adaptive aggregation under the
fully-supervised setting, presented in Table 10. The proposed adaptive aggre-
gation function can better utilize the high-quality data and balance the weights
among clients, leading to better convergence and segmentation performance.
Qualitative results. Qualitative results of skin lesion segmentation are shown
in Fig. 4. Consistent with the quantitative results, the segmentation maps on
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FedMix
[C1,62,C3]
[U.U, L]

FedMix
[C1,C2,C3]
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ground
truth

o Unun. n u u
adaptive
aggregation

Rosendahl (C1) Vidir-modern (C2) Vidit-old (C3) Vidit-molemax (C4)

Figure 4: Qualitative results of different learning frameworks for skin lesion segmen-
tation. The upper part (Rows 1 to 6): the raw images, the segmentation maps
produced by local learning (LL), FedST, FedMix under semi-supervision (i.e.,[C1, C2,
C3, C4] = [U, U, L, U]), FedMix under mixed supervision (i.e.,[C1, C2, C3, C4] =
[B, B, L, B]), and the expert annotations respectively. The lower part (Rows 7 to
8): the segmentation maps obtained by federated learning under the fully-supervised
setting with FedAvg and the proposed adaptive aggregation function respectively.

C1 and C2, produced by the locally-learned model on C3, are inaccurate, due
to large inter-client variations between {C1, C2} and {C3, C4}. While the seg-
mentation maps produced by FedST are slightly more accurate compared to
LL, learning from confident pseudo labels is insufficient to train a generalizable
model, shown through the inaccurate segmentation maps produced by FedST
on Cl and C2. Under the same supervision setting, FedMix produces more
accurate segmentation maps by dynamically selecting the high-quality pseudo
labels for training. Given stronger supervisions, e.g., bounding box labels, Fed-
Mix improves the segmentation quality, especially on tumor shape preservation.
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Table 11: Quantitative results of FedMix with and without dynamic sample selection
for breast tumor and skin lesion segmentation.

Sample C1 C2 C3 C4 Av
Selection U U L U &
Breast tumor segmentation
X 34.92 | 47.69 | 30.41 N/A 37.67
v 66.92 | 88.49 | 86.95 | N/A | 80.78

Skin lesion segmentation
X 45.38 | 33.10 | 55.11 | 41.28 | 43.27
v 81.30 | 78.10 | 94.43 | 91.11 | 86.24

Through the comparison under the fully-supervised setting, we observe that the
segmentation maps produced by adaptive aggregation contain fewer false neg-
atives and have better shape consistencies with manual annotations compared
to FedAvg.

5 Ablation Studies

5.1 Effectiveness of Dynamic Sample Selection

We remove the label refinement step in FedMix and utilize FedAvg for com-
parison. Quantitative results are presented in Table 11. We can observe that
without dynamic sample selection, the model may learn from incorrect pseudo
labels which is detrimental for convergence. Dynamic sample selection is based
on the intuition where the prediction consistencies between the two models given
the same input image are positively correlated with the accuracy of the pseudo
labels. We perform separate evaluations on the three datasets for breast tumor
segmentation, (i.e., BUS (C1), BUSIS (C2), and UDIAT (C3)). For each client,
we train two differently initialized models, F; and Fy, locally on 80% of the data
for 20 training rounds.

The prediction consistencies between the two models, measured in DC (%),
are used to select the evaluation set from the remaining 20% of the data ac-
cording to the consistency threshold e. With a smaller €, more samples with
lower prediction consistencies are included for evaluation. With the increase
of €, as only the samples with high prediction consistencies are selected, the
overall DC accuracy is higher. The findings in Table 12 validate our assumption
and demonstrate the value of dynamic sample selection in filtering inaccurate
pseudo labels during training.

5.2 Effectiveness of Adaptive Aggregation

We compare adaptive aggregation with FedAvg and present the results in Ta-
ble 13. For breast tumor segmentation, adaptive aggregation consistently im-
proves performance across clients, with an average of 1.00% increase in DC
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Table 12: The effect of the threshold € to the quantitative results (DC %) on each
client for breast tumor segmentation.

e | BUS (C1) | BUSIS (C2) | UDIAT (C3)
0.1 12.6 135 18.8
02 ] 220 22.9 21.3
03| 253 39.8 26.5
04| 561 0.2 455
05| 559 5.2 0.7
06| 661 60.9 52.9
0.7 | 662 73.6 64.5
08| 723 77.0 64.9
09| 86.07 89.1 79.6

Table 13: Quantitative results of FedMix with and without adaptive aggregation for
breast tumor and skin lesion segmentation.

Adaptive C1 C2 C3 C4 Av
Aggregation U U L U &
Breast tumor segmentation
X 66.92 | 88.49 | 86.95 N/A 80.78
v 68.17 | 89.19 | 87.97 | N/A | 81.78

Skin lesion segmentation
X 81.30 | 78.10 | 94.43 | 91.11 | 86.24
v 80.55 | 81.72 | 94.54 | 90.92 | 86.93

compared to FedAvg. For skin lesion segmentation, due to the inter-client vari-
ations between {C1, C2} and {C3, C4}, adaptive aggregation focuses more on
minimizing the training losses on C1 and C2. As a result, the average DC in-
crease of {C1, C2} is 1.44% while the corresponding increase on C4 is limited
to 0.19%. Overall, adaptive aggregation outperforms FedAvg. Till now, aggre-
gation weight optimization in federated learning is still an open problem and
should be further explored in the future.

6 Conclusion

FedMix is the first federated learning framework that makes effective use of dif-
ferent levels of labels on each client for medical image segmentation. In FedMix,
we first generate pseudo labels from clients and use supervision-specific refine-
ment strategies to improve the accuracy and quality of pseudo labels. Then the
high-quality data of each client is selected through dynamic sample selection
for local model updates. To better update the federated model, FedMix utilizes
an adaptive aggregation function to adjust the weights of clients according to
both data quantity and data quality. Experimental results on two segmentation
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tasks demonstrate the effectiveness of FedMix on learning from various super-
visions, which is valuable to reduce the annotation burden of medical experts.
In the semi-supervised federated setting, FedMix outperforms the state-of-the-
art approach FedST. Compared to FedAvg, the proposed adaptive aggregation
function achieves consistent performance improvements on the two tasks under
the fully-supervised setting. We believe the methods proposed in FedMix are
widely-applicable in FL for medical image analysis beyond mixed supervisions.
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