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Abstract— Magnetic Resonance Elastography (MRE) can 

characterize biomechanical properties of soft tissue for 
disease diagnosis and treatment planning. However, 
complicated wavefields acquired from MRE coupled with 
noise pose challenges for accurate displacement extraction 
and modulus estimation. Using optimization-based 
displacement extraction and Traveling Wave Expansion-
based Neural Network (TWENN) modulus estimation, we 
propose a new pipeline for processing MRE images. An 
objective function with Dual Data Consistency (Dual-DC) 
has been used to ensure accurate phase unwrapping and 
displacement extraction. For the estimation of complex 
wavenumbers, a complex-valued neural network with 
displacement covariance as an input has been developed. 
A model of traveling wave expansion is used to generate 
training datasets for the network with varying levels of 
noise. The complex shear modulus map is obtained 
through fusion of multifrequency and multidirectional data. 
Validation using brain and liver simulation images 
demonstrates the practical value of the proposed pipeline, 
which can estimate the biomechanical properties with 
minimal root-mean-square errors when compared to state-
of-the-art methods. Applications of the proposed method 
for processing MRE images of phantom, brain, and liver 
reveal clear anatomical features, robustness to noise, and 
good generalizability of the pipeline. 

 
Index Terms—Magnetic resonance elastography, 

Modulus estimation, Neural network, Traveling waves, 
Phase unwrapping 

I. INTRODUCTION 
agnetic Resonance Elastography (MRE) can measure 
viscoelastic mechanical parameters of soft tissues 
noninvasively [1], [2]. In recent years, studies have 

investigated the diagnostic potential of MRE for liver cirrhosis 
[3], brain tumors [4], liver tumors [5], and Parkinson’s diseases 
[6]. Post-processing of MRE images includes two major steps: 
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1) extraction of wavefield from the original wrapped phase; and 
2) estimation of biomechanical properties based on the 
measured wavefield [7]. However, accurate displacement 
extraction from wrapped phase images with noise remains 
difficult [8]. In vivo wavefields of soft tissues with complicated 
anatomical structures usually contain deflections and 
reflections with acquisition noise. These bring challenges to the 
accurate estimation of the biomechanical properties of soft 
tissues [9].  

As the first step of processing MRE images, the quality of the 
extracted wavefield determines the overall performance of the 
extracted biomechanical properties. In phase images, wave 
information is encoded with a motion encoding gradient, such 
that the magnitude of the motion can introduce a wrapping 
effect. Thus, phase unwrapping is necessary. Conventional 
approaches involve unwrapping a single image frame before 
performing  Fast Fourier transform (FFT) in the time domain to 
extract the principal component [10]. In addition, 
spatiotemporal information can also be used for phase 
unwrapping [11]. Unwrapping algorithms such as Sorting by 
Reliability (SG) algorithm  [12] and Dilate-Erode-Propagate 
(DE) [8] work in a search-like or discrete greedy update manner, 
which can fail in complicated wrapped scenarios [8]. Laplacian-
based Estimation (LBE) simultaneously performs phase 
unwrapping and FFT in the frequency domain [13]. LBE is 
noise-resilient, but may introduce additional background offset 
noise. This can have a negative impact on the estimated 
biomechanical properties. The phase gradient method (PG) 
does not need direct phase unwrapping, but is noise-sensitive 
and requires specially designed modulus estimation algorithms 
[14]. Therefore, a noise-resistant, accurate method for 
wavefield extraction that can perform both phase unwrapping 
and extraction of the principal component is required. 

MRE is a shear-wave-based elastography that requires the 
estimation of complex wavenumbers from acquired wave 
images. Numerous methods have been proposed to date [9] and 
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typical algorithms include Direct Inversion (DI) using the 
Helmholtz equation [15] and local frequency estimation (LFE) 
[16]. Due to the use of Laplace operators, DI is susceptible to 
noise and prone to edge artifacts. Iterative algorithms with prior 
information such as Multifrequency Elasticity Reconstruction 
using Structured Sparsity and ADMM (MERSA) [17] and MRE 
Inversion by Compressive Recovery (MICRo) [18] were 
proposed to use DI as an estimation kernel. But these methods 
had similar problems due to the differentiation operation. LFE 
is more noise-resistant, but its ability to recover anatomical 
features is limited. Enhanced Complex Local Frequency (EC-
LFE) was developed to provide viscosity information, but 
structural resilience remained a problem [19].  

To overcome the limitations of the DI-based method, 
Multifrequency Dual Elasto-Visco inversion (MDEV) was 
proposed to improve noise robustness using multi-frequency 
data averaging [20]. However, differentiation operation could 
still introduce structural edge artifacts, making it sensitive to 
noise. To improve the capability of distinguishing anatomical 
features, k-MDEV applied directional filter banks to suppress 
noise and new estimation kernels with a single-wave 
assumption [21]. However, the use of the Laplace operator may 
over-enhance the object boundary and the assumption of single-
wave may be invalid when there are strong reflections. 
Elastography Software Pipeline (ESP)  [22] used a series of 
filters for denoising and Gabor wavelets for inversion. ESP 
could recover refined anatomical details but required many 
parameter-tuning steps.  

Non-Linear Inversion (NLI) algorithms based on Finite 
Element (FE) can provide good inversion [9], [23], [24]. 
However, the computation cost was high and the boundary 
condition settings could greatly influence the results [25]. 
Notably, by implementing a parallelized, subzone-based 
domain decomposition approach, the NLI algorithm proposed 
by the Dartmouth group avoids undue bias from the applied 
boundary conditions and high computational cost [26]. The 
method has been used to establish benchmark values for 
viscoelastic properties of the human brain [27]. Recently, data-
driven algorithms using Deep Learning (DL) were proposed 
using the training set from FE simulation  [28], [29]. These 
methods also relied on specific FE models for specific 
application scenarios, hindering their generalization 
performance.  Traveling Wave Expansion (TWE) was first 
introduced to solve the inversion problem by using large fitting 
windows [30]. However, the inverse of the ill-conditioned 
matrix limited the spatial resolution that can be achieved. 
Therefore, a noise-resistant method with low-computational-
cost, clearly delineated anatomical features and strong 
generalizability is required. 

A. Paper Contribution 
In this study, we propose an optimization-based phase 

unwrapping method with Dual Data Consistency (Dual-DC) to 
simultaneously perform phase unwrapping and FFT. For the 
inversion of complex shear modulus, a TWE-based Neural 
Network (TWENN) algorithm is proposed. Detailed 
Simulation, phantom, and human studies were performed to 
demonstrate the pipeline's accuracy and reliability. 

B. Paper Organization 
The remaining sections are organized as follows: In Section 

II, the proposed pipeline including Dual-DC and TWENN is 
presented. In Section III, the test datasets, evaluation metrics, 
implementation details of the proposed pipeline and 
comparative algorithms are introduced. Section IV presents 
detailed results followed by Section V that provides a thorough 
analysis of the results. 

II. METHODS 
The proposed pipeline for processing MRE images includes 

an optimization-based phase unwrapping method with Dual-
DC, and a Traveling Wave Expansion-based Neural Network 
(TWENN) modulus estimation to estimate complex shear 
modulus (Fig. 1). 

A. Optimization-based Phase Unwrapping with Dual 
Data Consistency  

The displacement extraction of phase images acquired from 
MRE generally consists of two steps: phase unwrapping and 
computation of the principal components using FFT [7]. Here, 
an optimization-based method was proposed to perform these 
two tasks simultaneously.  

1) Problem Formulation 
If 𝑼∗ = 𝑼′ + 𝑖 ⋅ 𝑼′′  is the complex displacement field 

rotating at a frequency 𝜔, representing the oscillating motion. 
In the process of image acquisition, at a specific time point 
𝑡"(𝑗 = 1,… , 𝐽) within the motion cycle where the phase offset 
is 𝜑" = 𝜔𝑡" , the image phase recorded by motion encoding 
gradient is 𝝓": 
 𝝓" = Re4𝑼∗ ⋅ e#$!5 = 𝑼% ⋅ cos4𝜑"5 − 𝑼%% ⋅ sin4𝜑"5, (1) 

Therefore, the image 𝑰" acquired at 𝑡" is 
 𝑰" = |𝑨| ⋅ e#𝚽 ⋅ e#𝝓!, (2) 
where |𝑨| is the magnitude of image and 𝚽 is the background 
phase of 𝑰". The purpose of displacement extraction is to obtain 
𝑼∗ from 𝑰"(𝑗 = 1… 𝐽), which includes two tasks: computation 
of principal component and phase unwrapping. Two objective 
functions are proposed to solve them, respectively. 

2) Objective Function for Principal Components 
Cross differences among the acquired images are used to 

remove the background phase. For images acquired at two 
temporal points 𝑡(  and 𝑡) , (𝑝, 𝑞) ∈
{(𝑥, 𝑦)|𝑥 < 𝑦, 1 ≤ 𝑥, 𝑦 ≤ 𝐽}: 

 
𝑰(
𝑰)
= 𝑒#*𝝓"+𝝓#,

= 𝑒#-𝑼$⋅0123*$",+123*$#,45𝑼$$⋅0+367*$",5367*$#,48 
(3) 

Define the constant coefficients 𝐸() and 𝐹(), 
𝐸() = cos4𝜑(5 − cos4𝜑)5	
𝐹() = −sin4𝜑(5 + sin4𝜑)5 

(4) 

The relationship between unknown 𝑼∗  and known 𝑰"  is 
established so that the principal components are obtained. Thus, 
the first data consistency (DC) term of phase can be written as: 

𝒪9:; =MN
𝑰(
𝑰)
− 𝑒#*𝑼$⋅<"#5𝑼$$⋅="#,N

>(,)

 (5) 
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3) Objective Function for Unwrapping 
With Eq. (5) only, 𝑼∗  may still be wrapped. The absolute 

value of the wrapped phase gradient is much higher than that 
after unwrapping. Using the chain rule, the gradient of phase 
after unwrapping (true phase gradient) can be obtained directly 
from the wrapped phase [7]. Thus, data consistency is achieved 
between the true phase gradient and the gradient of 𝑼∗. 

If the background phase is ignored, 
𝑰!
A𝑰!A
	≈ 𝑒#𝝓! , by using the 

chain rule, the phase gradient is calculated from the wrapped 
phase, 

𝜕𝑒#𝝓!
𝜕𝑥 = 𝑖 ⋅ 𝑒#𝝓! ⋅

𝜕 R𝑼% ⋅ cos4𝜑"5 − 𝑼%% ⋅ sin4𝜑"5S
𝜕𝑥  

cos4𝜑"5
B𝑼$

BC
− sin4𝜑"5

B𝑼$$

BC
= − #

D%𝝓!
BD%𝝓!

BC
	. 

(6) 

In matrix form, we have 

T
cos(𝜑;) −sin(𝜑;)

⋮ ⋮
cos4𝜑E5 −sin4𝜑E5

V T
B𝑼$

BC
B𝑼$$

BC

V =

⎣
⎢
⎢
⎢
⎡−

#
D%𝝓'

BD%𝝓'

BC
⋮

− #

D%𝝓(
BD%𝝓(

BC ⎦
⎥
⎥
⎥
⎤
. (7) 

Let 𝑯 = T
cos(𝜑;) −sin(𝜑;)

⋮ ⋮
cos4𝜑E5 −sin4𝜑E5

V，T
B𝑼$

BC
B𝑼$

BC

V = ^𝑼
%
C_

𝑼%%C_
`, then 

^𝑼
%
C_

𝑼%%C_
` = (𝑯′𝑯)+;𝑯′

⎣
⎢
⎢
⎢
⎡−

#
D%𝝓'

BD%𝝓'

BC
⋮

− #

D%𝝓(
BD%𝝓(

BC ⎦
⎥
⎥
⎥
⎤
. (8) 

Thus, the second data consistency term (DC) of phase 
gradient can be defined as 

𝒪9:> = a
𝜕𝑼%

𝜕𝑥 − 𝑼%C_ a
>
+ a

𝜕𝑼%

𝜕𝑦 − 𝑼%F_ a
>

+a
𝜕𝑼%%

𝜕𝑥 − 𝑼%%C_ a
>
+ a

𝜕𝑼%%

𝜕𝑦 − 𝑼%%F_ a
>
.

 (9) 

4) Optimization Using Dual-DC 
The displacement extraction problem in MRE including FFT 

and unwrapping can be treated as an optimization problem (10) 
by combining (5) and (9) as an objective function. Here, the 

adaptive Momentum (ADAM) algorithm was used to solve this 
optimization problem.  

 

min
𝑼
d∑ a𝑰"

𝑰#
− 𝑒#*𝑼$⋅<"#5𝑼$$⋅="#,a

>
(,) +

𝜆g
hB𝑼

$

BC
−𝑼%C_ h

>
+hB𝑼

$

BF
−𝑼%F_ h

>

+hB𝑼
$$

BC
−𝑼%%C_ h

>
+hB𝑼

$$

BF
−𝑼%%F_ h

>

ij, 

(10) 

where 𝜆 is a weighting parameter. 
 

Algorithm 1 Dual-DC phase unwrapping 
Input: Measured complex MR images 𝑰" , Phase offset 𝜑" 
for each image. 
Output: Main displacement components 𝑼∗ = 𝑼′ + 𝑖 ⋅ 𝑼′′ 
1. Initialize the 𝑼∗  to be updated and set weighting 

parameter 𝜆  and maximum number of iterations 
𝑚𝑎𝑥𝐼𝑡𝑒𝑟. Set number of iterations 𝐿 = 0. 

2. Calculate cross phase differences 𝑰"
𝑰#

. (3) 

3. Calculate coefficients 𝐸() and 𝐹() using 𝜑". (4) 
4. Calculate phase gradient 𝑼%C_ ,𝑼%F_ ,𝑼%%C_ ,𝑼%%F_  from MR 

images 𝑰". (8) 
5. repeat 
6.       Update 𝒪9:;. (5)  
7.       Update the gradient of  𝑼∗, B𝑼

$

BC
, B𝑼

$

BF
, B𝑼

$$

BC
, B𝑼

$$

BF
. 

8.       Update 𝒪9:>(9) 
9.       Update 𝑼∗ using ADAM algorithm. (10) 
10.       𝐿 = 𝐿 + 1 
11. until 𝐿 ≥ 𝑚𝑎𝑥𝐼𝑡𝑒𝑟 
12. return 𝑼∗ = 𝑼′ + 𝑖 ⋅ 𝑼′′ 

B. TWENN: Traveling Wave Expansion-based Neural 
Network Modulus Estimation 

The TWE model was used to generate noisy training data. It 
was also used to construct and train a complex value covariance 
neural network to mine the mapping from wavefield to 
wavenumber, and finally use multi-frequency multi-directional 
fusion to obtain the complex shear modulus. 

Fig. 1.  A flow chart of the pipeline of MRE image processing for displacement extraction, training data generation, structure of network and multi-
data fusion. Complex displacement field was extracted from phase images using an optimization of an objective function with dual-DC.  Training 
data was generated by TWE model for network training. The normalized complex wavenumber was estimated by TWENN. Complex shear 
modulus was obtained by combining multi-frequency and multi-direction data. 
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1) Traveling Wave Expansion 
For homogeneous, incompressible, isotropic, and viscoelastic 

material, at spatial location 𝑟, the complex value displacement 
is 𝑢(𝒓) . It is expressed as the superposition of 𝑀  traveling 
waves [30]: 

 
𝑢(𝒓) =M 𝑤G

H

GI;
	

= M 𝑎G ⋅ 𝑒#⋅*J
$5#⋅J$$,⋅𝒏)L ⋅𝒓	

H

GI;
 

(11) 

where 𝑤G is the 𝑚th traveling waves, 𝑎G is the complex value 
amplitude of the displacement, 𝑚 is the number of traveling 
waves, 𝒏Gw  is the unit vector of the propagation direction of the 
𝑚th traveling wave, 𝑘∗ = 𝑘% + 𝑖 ⋅ 𝑘′′  is the local complex 
wavenumber, 𝑘%  is the real wavenumber related to material 
elasticity, 𝑘′′  is imaginary wavenumber related to material 
viscosity. The complex wavenumber can be normalized by 
vibration frequency 𝜔: 

 𝑘∗_ =
𝑘∗

𝜔 =
𝑘%

𝜔 + 𝑖 ⋅
𝑘′′
𝜔 	

= 𝑘%y + 𝑖 ⋅ 𝑘%%_ . 
(12) 

Thus, the aim of the inversion is to find the operator ℱN: 𝑢 ⟶
𝑘∗_.   

2) Training Data Generation 
To construct a neural network capable of realizing the 

mapping operator ℱN , training data set was prepared using 
TWE model. The training set was created by varying different 
numbers of traveling waves 𝑀 , propagation direction 𝒏Gw , 
complex amplitude 𝑎G  and complex wavenumber 𝑘 . In this 
study, an isotropic patch of 3×3 (2D) or 3×3×3 (3D) was used 
for the inversion of 𝑘  at each location. The relatively small 
patch used is to increase the spatial resolution. To obtain ℱN 
with better noise robustness, noise 𝜁(𝒓)  was added to the 
training set. Suppose ℂ(𝒓) is the normalized, complex-valued 
Gaussian noise, 𝑏  is the intensity of the noise, 	𝜁(𝒓) = 𝑏 ⋅
ℂ(𝒓) .The detail of dataset generation rules is shown in 
Appendix. The training data 𝑑(𝑟) at location 𝑟 can be written 
as: 

𝑑(𝑟) = 𝑢(𝒓) + 𝜁(𝒓)	

=M 𝑎G ⋅ 𝑒
#⋅O𝑘′+𝑖⋅𝑘′′Q⋅𝒏)L ⋅𝒓	

H

GI;
+ 𝑏 ⋅ ℂ(𝒓) (13) 

For 2D cases, the training data 𝒅 can be written as a 2D tensor 
as follows: 

𝒅 = �
𝑑4𝑟+;,+;5 𝑑4𝑟R,+;5 𝑑4𝑟;,+;5
𝑑4𝑟+;,R5 𝑑4𝑟R,R5 𝑑4𝑟;,R5
𝑑4𝑟+;,;5 𝑑4𝑟R,;5 𝑑4𝑟;,;5

� (14) 

 
Where 𝑟C,F is a vector pointing from the center of the patch to 
the target pixel position (𝑥, 𝑦). Likewise, for 3D cases, 𝒅 will 
be a three-dimensional tensor. 
 

3) Covariance Complex Neural Network 
Studies have shown complex value neural networks are more 

suitable for solving complex-valued problems [31]. Therefore, 
a complex-valued neural network was constructed to process 
these complex-valued wavefields. In a cascade structure, 
TWENNs had 9-layer fully connected complex-value neural 
networks, with the number of neurons in each layer being 

60,50,40,30,20,15,10,6,1, respectively. No extra layers were 
used.  

If the weight matrix of the linear layer is W = A+ 𝑖B, and the 
complex input is h = α + 𝑖β, the output is Wh = Aα − Bβ +
𝑖(Aβ + Bα) . To preserve the phase angle, and to keep the 
magnitude within a certain range, a new complex activation 
function named modSigmoid is designed [32]: 
 modSigmoid(z) = Sigmoid(|z| + a)e#N*, (15) 
where z is the complex input data, a is a real bias to be learned, 
𝜃S is the angle of z and Sigmoid(x) = ;

;5T+,
.  

Because the covariance can expose the information within the 
wave field better [33], a covariance term 𝑫 = vec(𝒅)vec(𝒅)U 
is used as the model input, where vec(⋅)  is an operator 
transforms a tensor to a column vector. 𝑘%y  and 𝑘%%_  are 
estimated separately by two parallel multi-layer full connection 
networks (Fig. 1). Two separate networks are used to estimate 
𝑘′y 	and	𝑘′′_.	For	each	network,	mean	square	error	is	used	as	
a	loss	function	for	optimization.	In	this	study,	the network 
was trained using the ADAM algorithm. ℱN(𝜔) was trained 
and obtained at different frequencies 𝜔.	

4) Mutli-frequency and Mutli-direction Fusion 
For the wavefield 𝑼V),W-

∗  obtained from MRE at different 
frequencies 𝜔G(𝑚 = 1,… ,𝑀)  and in different directions 
𝑑X(𝑛 = 1,… ,𝑁) , the corresponding normalized complex 
wavenumber 𝑘∗_(𝜔G, 𝑑X) is obtained using the trained network 
ℱN(𝜔G).  

For complex shear modulus 𝐺∗ = 𝐺% + 𝑖𝐺′′ , using 
corresponding principle [17], 

 𝐺∗ = 𝜌 V.

(J$+#⋅J$$).	
= \

*J$]+#⋅J$$] ,
.
	
. (16) 

Thus, the storage modulus 𝐺% and loss modulus 𝐺%% can be 
estimated from the average of  𝑘∗_(𝜔G, 𝑑X): 

 
𝐺% + 𝑖𝐺%% = \

^
∑ 0$1(3),𝑑-)),- +%⋅∑ 0$$1 (3),𝑑-)),-

78 `
.. (17) 

This method does not do any pre-filtering to filter the noise, 
and the final modulus is filtered by a 3×3 median filter. 

 
Algorithm 2 Modulus estimation with TWENN 
Input: Wavefields of multi-frequency and multi-direction 
𝑼V),W-
∗ , information of spatial resolution and vibration 

frequencies 𝜔G(𝑚 = 1,… ,𝑀) 
Output: Complex shear modulus 𝐺∗ = 𝐺% + 𝑖𝐺′′ 
1. Set the patch size, and intensity of the noise 𝑏. 
2. Generate training data based on spatial resolution and 

vibration frequencies using the traveling wave 
expansion model. (13) 

3. Construct covariance complex neural network ℱN . 
(14,15) 

4. Training  ℱN(𝜔)	using ADAM. 
5. Calculate 𝑘∗_(𝜔X, 𝑑G) using ℱN. 
6. Estimate 𝐺∗ = 𝐺% + 𝑖𝐺′′ using multi-frequency multi-

directional data fusion. (17) 
7. return 𝐺∗ = 𝐺% + 𝑖𝐺′′ 

III. VALIDATION AND VERIFICATION 
Wrapped phase images from simulation liver dataset and in 
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vivo brain MRE experiment were used for the validation of the 
proposed phase unwrapping method with Dual-DC. Modulus 
estimation with TWENN was validated using simulated 
phantom, brain, and liver wavefields. The proposed pipeline 
combining Dual-DC and TWENN was validated using 
phantom, brain, or liver MRE images. A summary of the data 
sets and methods used is shown in TABLE I. Results are also 
compared with those from state-of-the-art methods. 

A. Validation of Dual-DC phase unwrapping 
1) Simulated Liver Dataset 
 The artificially wrapped phase was generated using 2D 

wavefield data for publicly available simulated liver images 
(https://bioqic-apps.charite.de/). The displacements were 
normalized with a maximum phase of 4𝜋. Phases at 4 different 
temporal points within one cycle were generated. Complex 
Gaussian noise with different intensities was added to the 
complex image to evaluate the robustness of the algorithm. 

2) In vivo 3D Brain Dataset 
The in vivo brain MRE images were acquired using a 3T 

scanner (uMR790, United Imaging Healthcare, Shanghai, 
China) with TR/TE=4000/65ms, MEG=40mT/m, resolution=3  

mm × 3 mm × 3 mm, and 8 phase offsets [34]. The study 
protocol was reviewed and approved by the Institution Review 
Board of Shanghai Jiao Tong University.  

3) Algorithm Comparison  
The performance of phase unwrapping method is compared 

with that from SR algorithm [12] and LBE [13], [35] that are 
commonly used in postprocessing MRE images [8]. Simulation 
results are compared with the Ground Truth (GT) while mean 
errors are calculated for validation. Interlayer continuity of the 
unwrapped phase is compared for brain MRE images. 

B. Validation of Modulus Estimation using TWENN 
1) Test Data Set  
The test data set contained 107 examples for model evaluation. 

Wavefields with different signal-to-noise ratios (SNRs) and 
complex wavenumbers were generated using the TWE model, 
with a patch size of 3×3 and a resolution of 3 mm × 3 mm at 
60Hz. SNRs were distributed uniformly from 12 dB to 38 dB, 
real normalized wavenumbers were uniformly distributed from 
0.35s/m to 1.35s/m, while imaginary normalized wavenumbers 
were uniformly distributed between 0s/m and 0.28s/m. 
Estimation of 𝑘%y  and 𝑘%%_  at different SNRs and complex 

Application Data Set Details of data Data 
Source 

Method  
Proposed  

Methods for  
Comparison 

Evaluation 
Metrics 

Phase  
unwrapping 

Simulated 
Liver  

2mm×2mm; 
42Hz; RO BIOQIC 

Dual-DC 
SG 

  
LBE  

Mean error 

Brain MRE 3mm×3mm×3mm; 
50Hz; RO 

3T  
scanner 

Interlayer 
 continuity 

Modulus  
estimation 

Test data 3mm×3mm; 
60Hz; SS 

TWE 
model TWENN 

(2D) 

DI (2D) Mean error 

Simulated 
phantom 

1.5mm×1.5mm; 
60,80,100Hz; SS COMSOL 

k-MDEV 
 

MDEV 
 

(BIOQIC) 

 
RMSE 

Simulated 
brain 

1.5mm×1.5mm×1.5mm; 
24, 28, 32, 36, 40, 44, 48, 52, 

56, 60Hz; RO, PE, SS BIOQIC TWENN 
(3D) Simulated 

liver 

2mm×2mm×2mm 
30, 36, 42, 48Hz; 

RO, PE, SS 

Pipeline  
performance 

Phantom 
1.5mm×1.5mm; 

30, 40, 50, 60, 70, 80, 90, 
100Hz; SS 

BIOQIC 
Dual-DC  

+ 
TWENN 

(2D) 

LBE  
+ 

 k-MDEV 
 

PG  
+ 

 MDEV 
 

(BIOQIC) 

Regional 
mean 

Normal brain 
2mm×2mm; 

20, 25, 30, 35, 40, 45Hz; 
RO, PE, SS 

Match with  
structural 

image 

Normal liver 
2.7mm×2.7mm; 
30, 40, 50, 60Hz; 

RO, PE, SS 

1.5T 
scanner 

Regional 
mean 

Hepatic 
siderosis 

 & Cirrhosis 
Liver tumor 

 
CNR Brain tumor 3mm×3mm×3mm; 

30, 40, 50Hz; RO, PE, SS 
3T  

scanner 

Dual-DC + 
TWENN 

(3D) 

TABLE I 
A SUMMARY OF DATA SETS AND METHODS USED FOR COMPARISON. 2D: 2D MODULUS INVERSION; 3D: 3D MODULUS INVERSION; BIOQIC: DATASETS OR 

MRE PROCESSING PIPELINE WERE FROM HTTPS://BIOQIC-APPS.CHARITE.DE; COMSOL: DATA WAS SIMULATED USING COMSOL (COMSOL AB, 
STOCKHOLM, SWEDEN); 1.5T/3T SCANNER: MRE IMAGES WERE ACQUIRED FROM A 1.5T/3T SCANNER. IMAGE RESOLUTION, VIBRATION FREQUENCY, AND 

THE MOTION ENCODING DIRECTIONS (RO: READ OUT; PE: PHASE ENCODING; SS: SLICE SELECTION;) ARE PROVIDED IN THE DETAILS OF DATA. 
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wavenumbers were compared with those from conventional DI 
(fitting window=3×3). 

2) Simulated Dataset 
The size of the simulated phantom using COMSOL 

(COMSOL, Stockholm, Sweden) had two circular inclusions of 
10 mm radius with complex shear moduli of 4 + i0.48 and 6 + 
i0.84 kPa. The complex shear modulus of background was 2 + 
i0.2 kPa. These values served as GT. A 28dB SNR of Gaussian 
noise was added to the wave images.  

Publicly available MRE data for simulations of the liver and 
brain (https://bioqic-apps.charite.de/) were used for evaluation. 
Both were 3D, FE simulation models based on COMSOL. 
Model geometries were constructed from segmented images of 
a healthy human. Linear viscoelastic models were used and the 
tissue properties were assigned based on previously reported 
values [36], [37]. The data set contained a 3D multi-frequency 
and multi-direction wavefield with known 𝐺′ (GT). The liver 
dataset had a resolution of 2 mm × 2 mm × 2 mm with 4 
frequency components (30, 36, 42, 48 Hz). The brain data set 
had a resolution of 1.5 mm × 1.5 mm × 1.5 mm, and 10 
frequency components (24, 28, 32, 36, 40, 44, 48, 52, 56, 60 
Hz). 

 Root mean squared error (RMSE) of estimated modulus 𝐺Dab′ 
and the structures were compared with k-MDEV and MDEV 
[38]. RMSE is defined as: 

RMSE = ¨‖𝐺Dab
% − 𝐺cd% ‖>>

𝑁 	 (18) 

C. Validation for the Proposed Pipeline 
1) Comparison with Other Pipelines 
Both phantom and human MRE experiment images were used 

to evaluate the performance of the proposed pipeline for MRE 
image processing.  

The proposed pipeline contains a cascading of phase 
unwrapping method using Dual-DC and TWENN for modulus 
estimation. Comparisons were made with two state-of-the-art 
multi-frequency MRE processing pipelines available on a 
public platform [38]: LBE and k-MDEV, PG and MDEV.   

2) Phantom MRE 
For phantom validation, the multi-frequency phantom dataset  

containing four cylindrical inclusions was used  [20]. The 
moduli estimated by each method were averaged in the z-
direction. Regional mean values and ground truth of 𝐺% and 𝐺′′ 
were compared.  

3) Brain MRE 
 Brain MRE images of a patient with a meningioma were 

acquired using a 3T scanner (uMR790, United Imaging 
Healthcare, Shanghai, China) using an electromagnetic actuator 
[34]. MRE was implemented using a single-shot spin-echo 
echo-planar imaging sequence (TR/TE=4000/65ms) with a 
motion-encoding gradient of 40 mT/m and 8 phase offsets. 
Contrast-to-noise ratio (CNR) of 𝐺% with respect to the tumor 
region was used for evaluation:  

CNR =
24𝐺eJf%®®®®®® −	𝐺bgGhi%®®®®®®®®®5>

𝜎eJf> + 𝜎bgGhi> , (19) 

where 𝐺eJf%®®®®®® and 𝐺bgGhi%®®®®®®®®® are the mean value of shear modulus, 
𝜎eJf	and 𝜎bgGhi 	 are the standard deviation of shear modulus, 
for background tissue and tumor tissue, respectively. The 
tumor region was delineated from the T1 structural image, and 
the background neighborhood was delineated as the region of 
one tumor radius outside of the tumor.  
A public data set of normal brain MRE images (https://bioqic-

apps.charite.de/) was also used for evaluation by comparing the 
estimated modulus map and the structural image. 
 
4) Liver MRE  

    Liver MRE images from a healthy volunteer, a patient with a 
liver tumor, and a patient with hepatic siderosis & cirrhosis 
were acquired using a 1.5T pneumatic MRE system [39] 
(Magnetom Aera, Siemens, Erlangen, Germany, BIOQIC). 
CNR of 𝐺% was used to evaluate the modulus estimation of liver 
tumor data. For normal liver data and iron-deposited cirrhotic 
data, the mean values of 𝐺%  of circled liver tissue were 
compared. 

D. Implementation Details for Dual-DC and TWENN 
For all datasets unwrapped in this paper, the same 

hyperparameters of Dual-DC were used (learning rate = 0.005, 
𝜆 = 1000, the number of iterations = 4000). The networks were 
trained using the ADAM algorithm with a batch size of 500 and 
a step number of 12000.  Before the complex wave field was 
introduced into the network, complex normalization was 
performed based on the maximum absolute value of all data 
points. In this way, the absolute value of the input data was 
normalized between 0 to 1. Due to the fact that physiological 
noise such as vascular pulsation may pollute in vivo 
measurement of brain and liver [40], [41], a relatively larger 
noise intensity 𝑏 of 0.3 was added to the training sets, compared 
with that of 0.001 for the remaining non-living measurement 

Fig. 2.  (a) A comparison of the performance of the three unwrapping methods at varying noise levels. (b) The differences between the 
ground truth and the outputs of three methods. (c) Mean error at different noise levels. 
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dataset (all simulation data and phantom data). If the wavefield 
was continuous between imaging slices, a 3×3×3 patch was 
used. Otherwise, 3×3 patch was used. 

The proposed methods were implemented with PyTorch 
1.12.0 and CUDA 11.6 on an Ubuntu 20.04 LTS (64-bit) 
operating system equipped with an AMD Ryzen 9 5950x 
central processing unit (CPU) and NVIDIA RTX 3080Ti 
graphics processing unit (GPU, 12 GB memory).  

IV. RESULTS 

A. Phase unwrapping test 
1) Simulation test 
Results of unwrapping simulation data showed the proposed 

optimization-based algorithm using dual-DC could unwrap 
phases with a complex Gaussian noise level up to 𝜎 = 0.4 
without observing the offset of the background phase (Fig. 2a). 
However, SG did not perform unwrap at some complex edges 
without noise, and a large number of unwrapping failures were 
observed with increased noise levels (Fig. 2a, b). Although LBE 
had no obvious unwrapping failures, it introduced background 
offset even without noise (Fig. 2b). In contrast, an optimization-
based algorithm using Dual-DC had better performance at 
different noise levels (Fig. 2c). 

2) In vivo dataset test 
It was observed that SG was prone to unwrapping failure. The 

background offset introduced by the LBE could be seen in both 
coronal and sagittal views leading to an obvious 3D wavefield 
discontinuity. All these methods performed unwrapping at the 
transverse layers. However, an optimization-based algorithm  

using Dual-DC still ensured continuity at coronal and sagittal 
views (Fig. 3). The absolute differences also showed that Dual-
DC produced the smoothest phase. 

 
Fig. 3.  (a) comparison of displacement field extracted from brain MRE 
images. (b) The corresponding absolute differences of displacement at 
cross sections marked by the white dotted line. 

B. Modulus estimation test 
1) Simulation data set 
A comparison of inversion between DI and TWENN with 

different complex wavenumbers and signal-to-noise ratios 
(SNR) in 2D wavefield (patch size=3×3) showed TWENN 
performed better than that of DI in estimating 𝑘%y  and 𝑘%%_ . As 
SNR decreased, the advantages of TWENN over DI increased 
(Fig. 4a, b). Furthermore, the mean errors increased with the 
value of modulus, indicating an upper limit of estimation using 
TWENN. The upper limit, however, is higher than that of DI as 
shown in the figure. 

Results of the estimated shear moduli showed TWENN could 
recover the inclusions better than other methods (Fig. 5). Values 
of RMSE showed TWENN was the best at estimating complex 
shear moduli of the inclusions in most cases (TABLE II). 

 

 
Fig. 4.  Distribution of mean errors of estimating 𝑘!"  (left) and 𝑘!!#  (right) 
for different SNR values and normalized complex wavenumber.	

 
Fig. 5.  Comparisons of estimated (a) 𝐺′ and (b) 𝐺′′ maps using different 
methods based on phantom simulation. 28dB of noise was added to the 
simulated wave images.	

2) Simulation test of brain and liver 
Based on the simulated complex wavefield of the brain and 

liver, it was observed that TWENN had the best estimation 

Method 
RMSEG'+RMSEG''i (kPa) RMSE (kPa) CNR 

BK Inc#1 Inc#2 Brain simulation Liver 
simulation 

Brain 
tumor 

Liver 
tumor 

k-MDEV 0.65+0.67i 0.91+0.32i 1.59+1.38i 3.65 2.4 826 357 
MDEV 0.43+0.59i 0.89+0.54i 3.52+2.28i 3.94 2.67 16 79 

TWENN 0.60+0.10i 0.83+0.13i 1.12+0.19i 3.34 2.06 3069 3906 

TABLE II 
COMPARISONS OF RMSE IN ESTIMATING THE COMPLEX SHEAR MODULI OF A SIMULATED PHANTOM, SIMULATED BRAIN AND LIVER. VALUES OF AND CNR 
ARE ALSO COMPARED FOR IMAGING BRAIN AND LIVER TUMORS.  THE BEST RESULTS ARE SHOWN IN BOLD FONTS. 
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accuracy with RMSEs of 3.34 and 2.06kPa (TABLE II). The 
other two algorithms did not perform as well as TWENN 
probably due to the strong reflection of waves or the use of 
derivatives, which might produce artifacts for boundaries (Fig. 
6).  

 
Fig. 6.  A comparison of estimated 𝐺′ using different algorithms for 

simulated brain and liver. Regions were magnified to illustrate the 
anatomical features of 𝐺′. 

C. Performance Evaluation  
1) Phantom MRE 
Using multi-frequency MRE images of phantom, estimated 

𝐺% and 𝐺′′ values showed the proposed pipeline had the best 
performance in recovering the inclusion structures (Fig. 7a). 
Algorithms using the Laplace operator could not recover the 
structures well, probably because phantom images contained 
various noise and wave deflections. With longer wavelengths 
and lower SNR in regions with relatively high modulus, these 
algorithms were prone to underestimate the high modulus. The 
proposed pipeline produced the closest modulus estimation to 
the ground truth for both 𝐺% and 𝐺′′ at most cases (Fig. 7b).  

 
Fig. 7.  (a) A comparison of estimated 𝐺′	 and	𝐺′′  maps of gelatin 
phantom using different processing methods. (b)  A comparison of mean 
values of 𝐺!	and 𝐺′′  of each method. The longitudinal axis is displayed 
in a logarithmic form. 

2) Tumor MRE 
For both brain and liver tumors, the proposed pipeline had 

better reconstruction of boundaries (Fig. 8a, b), with more 
details matching that of T1 images and the highest values of 
CNR (TABLE II). This showed the ability of the proposed 
pipeline to reconstruct the structural details. 

3) Normal brain MRE 
For the normal human brain dataset, 𝐺% values estimated from 

MDEV were relatively low (<1kPa). This was probably 
affected by noise. Both the k-MDEV and the proposed pipeline 
could estimate shear modulus maps which match the structure 
image. k-MDEV introduced significant boundary artifacts 
which is consistent with the results in Fig. 6. As indicated by 
the white arrow in Slice 1, the brain's midline was better 
reconstructed using the proposed pipeline than that of other 
algorithms (Fig. 8c). The white arrow of Slice 2 (Fig. 8c) 
showed k-MDEV estimated relatively low modulus (<0.3 kPa), 
but the proposed method provided a proper estimate (~1kPa). 
This dataset demonstrated the capability of the proposed 
pipeline to reconstruct anatomical features.  

4) Liver dataset test 
  For liver MRE (Fig. 8e, f), the estimated 𝐺% values of the 
normal liver from k-MDEV, MDEV, and the proposed pipeline 
were 1.62, 1.31, and 1.97 kPa, respectively. These values were 
all in line with the reported normal range [42]. However, in the 
case of cirrhotic with iron deposition, the estimated 𝐺% values 
were 1.70 and 1.09 for k-MDEV and MDEV, respectively. 
This was likely caused by the iron deposition that resulted in a 
low SNR. The value of 3.13 kPa estimated by the proposed 
pipeline fell within the reported range [42].  

V. DISCUSSION 
A pipeline for estimating complex moduli from MRE images 

is proposed in this study. The processing pipeline contains two 
major steps: displacement extraction and modulus estimation. 
For displacement extraction, an optimization-based method 
with Dual-DC terms is used for both calculating principal 
components and phase unwrapping. For modulus estimation, a 
complex neural network using covariance as input is proposed 
based on the TWE model.  
 Since discontinuities of unwrapped phase images can 
introduce serious artifacts of the derived modulus distribution, 
accurate phase unwrapping is an important prerequisite. 
Complex or noisy wavefields are difficult to deal with using 
search-like or discrete greedy update phase unwrapping 
techniques, such as the SG algorithm. Laplacian-based 
estimation (LBE) can perform unwrapping well in noisy cases, 
but extra background offset noise could be introduced. The 
Dual-DC based continuous optimization can deal with 
unwrapping of complex wrapped and noisy phase without 
introducing extra phase offset. The proposed method for 
unwrapping uses phase gradient information, which is more 
adaptable to complex scenarios than discrete unwrapping. 
Compared to LBE, Dual-DC does not introduce new 
background noise. Phase images were unwrapped successfully 
for wavefield data from phantom, brain and liver, using the 
same set of hyperparameters. This verifies the generalizability 
of the proposed algorithm. In addition, the computation time for 
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MRE images of the whole brain (3 frequencies and 3 directions) 
was about 3 minutes.  

For modulus inversion, where noise robustness, structural 
resilience and computational complexity impose contradicting 
constraints, TWENN manages to reach a tradeoff among these 
three metrics. In terms of noise resilience, TWENN does not 
use explicit differentiation computation, which also provides 
structural resolution benefits by reducing potential edge 
artifacts. Except for the LFE-type and NLI-type methods [9], 
[25], [23], [26], most of current algorithms rely on differential 
computation, which can be sensitive to noise. By adding noise 
to the training set, TWENN can simultaneously achieve both 
denoising and inversion, improving its performance at regions 
with low SNR. For example, TWENN can estimate the modulus 
of cirrhotic tissue at low SNR regions induced by iron 
deposition (Fig. 8f). TWENN has the potential to improve the 
clinical performance of liver MRE due to the fact that iron 
deposition is a significant cause of liver MRE failure [42].  
 Considering structural resilience, a small patch of 3×3 or 
3×3×3 pixels is applied so that TWENN can still distinguish 
details of the image objects even if local homogeneity is 
assumed. Benefiting from the absence of differential 
calculations, no significant artifacts are observed at the 
structural edges. Compare with MDEV and k-MDEV, both of 
which apply differential operations, TWENN has better 
performance in preserving anatomical details on both simulated 
and in vivo liver and brain datasets (Fig. 6, Fig. 8). 

If the estimation kernel is chosen in a trial-and-error fashion, 
it is difficult to ensure the noise robustness of small patches. 

Therefore, neural networks are used here to establish the 
nonlinear mapping between noisy wavefields and complex 
wavenumbers. Even training without noise, TWENN still has 
better noise robustness than conventional DI using a small 
kernel (Fig. 4). The dimension of the kernel also affects the 
inversion. The use of a small sized patch will set an upper limit 
to the estimated modulus. Using dejittering method, it has been 
shown that interslice phase inconsistencies introduced in signal 
acquisition can be removed, providing robust 2D inversions, 
especially in the abdomen . Here, with improved phase 
unwrapping, the smooth and physically accurate phase can 
result in better modulus estimation from 3D inversion.  

TWENN uses neural networks to pre-learn wavefield 
structure information for inversion. The time of training data 
generation and network training using a desktop PC did not 
exceed 3 minutes. The trained network can be directly used to 
process MRE images with the same vibration frequency and 
resolution. In this study, the 3D multi-directional and multi-
frequency inversion time of a whole brain did not exceed 15 
seconds, showing its potential to be deployed clinically. This is 
because that all these methods use multi-frequency fusion, 
which is not used by other leading FE-based approaches like 
NLI. Furthermore, inverse FE-based algorithms require 
iterative FE computation updates [25], [37], [43] which may 
result in computations ten times or higher than TWENN, 
MEDV, and k-MEDV. 

The modulus inversion of MRE is equivalent to estimating the 
wavenumber for an array of wave points, which can be 
considered as a variant of the Direction of Arrival (DOA) 

Fig. 8. T1-weighted (T1w) images, magnitude images of MRE, 𝐺′ and 𝐺′′ maps estimated from different algorithms were compared for (a) brain 
tumor, (b) liver tumor, and (c, d) two difference slices of normal brain images. Magnified views of the tumor region were also provided.  Magnitude 
images of MRE, 𝐺′ and 𝐺′′ maps estimated from (e) a healthy volunteer and (f) a patient with hepatic siderosis & cirrhosis were compared. Regions 
of interest were delineated with white line, and the corresponding values of mean±standard deviation of 𝐺′ were provided.	
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problem in array signal processing. Strategies commonly used 
in DOA solution problems [30] can be drawn on, where second-
order moments can effectively reveal harmonic information. 
The possibility of estimating modulus from an array signal 
processing perspective was validated in our previous work [44]. 

From the perspective of generalizability, the training data set 
in TWENN is produced using a wave equation. Theoretically, 
any local wavefield can be represented using the TWE model, 
including reflected standing waves. Therefore, the training set 
can cover most of the wave propagation conditions, ensuring 
the generalizability of TWENN. Existing neural network 
training modulus estimation methods [28], [29] are usually 
trained using FE simulation for a limited number of scenarios, 
which could hamper their generalization performance. In 
addition, most of the elastography processing pipelines used 
various complex filters for either wave extraction or denoising 
[20], [21], [22]. However, the proposed pipeline does not use 
any filters other than a median filter with fixed parameters. 
Therefore, complicated parameter tuning procedures are 
prevented, improving its generalization performance. 

Although multi-frequency and multi-directional information 
is used to improve inversion performance [2], TWENN also 
supports single-frequency and single-direction inversion. In 
addition to 𝐺% and 𝐺′′ values, shear wave speed and penetrating 
rate that are closely related with stiffness and damping [2] can 
also be estimated. 

Limitations of this study include assumptions of local 
homogeneity, isotropy, and linear viscoelasticity, which could 
be addressed by more realistic FE simulation based NLI [9], 
[23], [24], [25], [45], [46], and neural network based inversion 
[29], [47], [48]. Although TWENN can estimate a relatively 
smoother viscosity distribution from the noisy wavefield, only 
simple phantom cases were used to validate it. In this study, 
limited human imaging data were used for validation. Future 
work includes applying the proposed pipeline to a larger cohort 
of clinical data sets such as neurological and liver diseases.  

The unwrapping method proposed in this paper is readily 
transferable to other fields where unwrapping is required. The 
inversion method can also be applied to other elastic imaging 
modalities, such as optical elastography and ultrasound 
elastography where wave equations apply. The TWE model can 
be modified in terms of specific anisotropic and dispersive 
material models, in order to solve more complex modulus 
inversion problems. Future work includes estimating properties 
of transversely isotropic and frequency-dependent materials 
within the TWENN framework. The potential of using this data-
driven method for obtaining inverse operators to solve other 
inverse problems such as electrical resistance tomography 
needs to be further explored.  

APPENDIX  

TRAINING DATA GENERATION  
The training data set was generated using the following 

parameter settings: 
1) The number 𝑀 of traveling waves 1,2,3,4,5,6,7,8 was 

set to be distributed at ratios of 6:4:3:2:1:1:1:1:1. 
2) The complex amplitude |𝑎G|  was uniformly 

distributed in [0,1] and angle(𝑎G)  was uniformly 

distributed in [0,2𝜋]. 
3) The unit vector of the wave propagation direction is 

𝒏Gw = [𝑥, 𝑦, 𝑧].  
a) In 2D cases, 𝑥 = cos(𝜃) , 𝑦 = sin(𝜃) , 𝑧 = 0, 𝜃 

was uniformly distributed in [0,2𝜋].  
b) In 3D cases,  𝑧  is uniformly distributed in 

[−1,1], 𝜃 was uniformly distributed in [0,2𝜋], 
𝑥 = √1 − 𝑧> cos(𝜃)，𝑦 = √1 − 𝑧> sin(𝜃). 

4) 𝑘′  and 𝑘%%  were uniformly distributed within the 
preset range. 
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