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Abstract—Tracking the displacement between the pre- and
post-deformed radio-frequency (RF) frames is a pivotal step of
ultrasound elastography, which depicts tissue mechanical prop-
erties to identify pathologies. Due to ultrasound’s poor ability to
capture information pertaining to the lateral direction, the exist-
ing displacement estimation techniques fail to generate an accu-
rate lateral displacement or strain map. The attempts made in the
literature to mitigate this well-known issue suffer from one of the
following limitations: 1) Sampling size is substantially increased,
rendering the method computationally and memory expensive.
2) The lateral displacement estimation entirely depends on the
axial one, ignoring data fidelity and creating large errors. This
paper proposes exploiting the effective Poisson’s ratio (EPR)-
based mechanical correspondence between the axial and lateral
strains along with the RF data fidelity and displacement conti-
nuity to improve the lateral displacement and strain estimation
accuracies. We call our techniques MechSOUL (Mechanically-
constrained Second-Order Ultrasound eLastography) and L1-
MechSOUL (L1-norm-based MechSOUL), which optimize 1.2-
and Ll-norm-based penalty functions, respectively. Extensive
validation experiments with simulated, phantom, and in vivo
datasets demonstrate that MechSOUL and L1-MechSOUL’s lat-
eral strain and EPR estimation abilities are substantially superior
to those of the recently-published elastography techniques. We
have published the MATLAB codes of MechSOUL and L1-
MechSOUL at http://code.sonography.ai.

Index Terms—Ultrasound elastography, Mechanical constraint,
Effective Poisson’s ratio, Analytic optimization, High-quality
lateral estimation.

I. INTRODUCTION

Since its discovery in the 1950s, ultrasound has gradually
established itself as one of the most commonly used med-
ical imaging modalities thanks to its non-invasiveness, low
expense, and portability. Elastography [1], [2] is an emerging
clinical application of ultrasound that reveals tissue abnor-
malities by portraying hidden mechanical properties. Among
different ultrasound elastography techniques [3]-[3]], the free-
hand palpation quasi-static [6] one has drawn the special
attention of researchers over the last three decades, because it
is low cost and requires no additional hardware. Consequently,
it has been employed in successful assessments of breast [[7]],
[8]], liver [9]], [10], thyroid [[11f], prostate [[12], lymph node [13]],
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uterine [ 14, blood vessels [15]], and heart [16]], [[17]. Track-
ing the displacement (also known as time-delay estimation)
between two radio-frequency (RF) frames collected before
and after tissue deformation is the main step of quasi-static
elastography. The estimated displacement field is spatially
differentiated to obtain the strain maps, which show a color
contrast between the healthy and abnormal tissues.

Several approaches have been followed thus far to solve
the critical problem of displacement estimation. A common
approach is to split the RF data into a certain number of
windows and determine their displacements based on the
peak normalized cross-correlation (NCC) [18], [19] or zero-
phase crossing [20]. Although the window-based algorithms
are straightforward, they are sensitive to noise and make a
compromise between the tracking accuracy and the spatial
resolution depending on the window size. Recently, machine
learning-based techniques [21]-[23] have been employed to
accomplish this task. This newly-introduced class includes
both supervised [24] and unsupervised [25]-[27] training-
based algorithms. Although the preliminary validation results
of machine learning-based methods are promising, they are
still in the feasibility stage. This paper focuses on regular-
ized optimization-based or energy-based [28[|-[|32]] algorithms,
another established class of displacement tracking techniques
that involve formulating and optimizing an energy function
for obtaining the displacement fields. These techniques are
mathematically complex but produce accurate and spatially
smooth displacement and strain maps.

While many strides in improving axial displacement estima-
tion have been made, accurate lateral displacement estimation
remains an elusive problem. The existing techniques’ sub-
standard lateral strain imaging capability originates from the
wider point-spread function [33]] in this dimension. The lack
of an echo carrier [34] and the low sampling rate [35]] are two
other mainstream contributors to the loss of lateral estimation
accuracy. However, lateral strain carries important diagnostic
information. In addition, an accurate lateral displacement esti-
mation is vital for precise reconstructions of Young’s modulus
as well as poro- and rotation-elastograms [36]]. Therefore,
several attempts have been made to improve the lateral track-
ing quality. In [37], the number of RF lines is increased by
interpolating the acquired data in the lateral direction. RF data
has been enhanced at subpitch locations using a conventional
linear array transducer in [36]. A multi-angle acquisition
scheme has been incorporated in [38] to improve lateral esti-
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mation using beam-steered RF data. The data augmentation-
and beam-steering-based techniques either require artificial
enhancement of RF data or substantially increase the hard-
ware and software complexities. Multi-step virtual source
technique [39]], which requires channel data acquisition and
synthetic aperture beamforming for better lateral estimation,
has been proposed. Other notable algorithms [40], [41] derive
good quality lateral estimates from accurate axial and noisy
lateral priors depending on some mechanical correspondence.
These techniques disregard RF data while calculating the
lateral strain; therefore, the lateral estimate follows the axial
one, which might lead to incorrect results. In fact, we show
in some of our results that if the Poisson’s ratio (PR) and
the elastic modulus vary independently, the lateral and axial
strains are no longer correlated. Our proposed technique will
exploit the data fidelity term to address this issue.

In this paper, we develop two novel speckle tracking
techniques optimizing regularized cost functions that incor-
porate effective Poisson’s ratio (EPR), which is defined as
the negative of the sample-wise ratio of the lateral and axial
strains, to leverage the mechanical relation between different
strain components. The proposed techniques aim to exploit
the newly-introduced mechanical, first- and second-order con-
tinuity, and the RF data fidelity constraints simultaneously
(see Fig. 1 of the Supplemental Video) to produce highly
accurate lateral strain maps without hampering the axial strain
quality. Another purpose of the proposed algorithm is to
iteratively improve the EPR estimate, which can be used as
a contrast mechanism in addition to the strain images. We
name our techniques MechSOUL: Mechanically-constrained
Second-Order Ultrasound eLastography and L1-MechSOUL:
L1-norm-based MechSOUL. The difference between these
two proposed algorithms is that MechSOUL penalizes the L2-
norms of the mechanical inconsistency and the displacement
derivatives, whereas L1-MechSOUL employs the L1-norms.
Note that in the case of an inhomogeneous tissue containing an
inclusion, EPR is spatially varying (typically between 0.2 and
0.5) and technically different from the PR, which is a material
property and spatially constant. Therefore, MechSOUL and
L1-MechSOUL consider distinct EPR values for each RF
sample and iteratively update the strain maps and the EPR
distribution. It is worth mentioning that EPR-driven physical
constraint has been used in a deep-learning-based tracking
technique [42], unlike which the proposed algorithms incor-
porate EPR in regularized optimization-based frameworks to
improve lateral strain and EPR simultaneously. The perfor-
mance of the proposed techniques has been validated against
in silico, phantom, and in vivo datasets. Similar to our previous
techniques [43]-[45]], MechSOUL and L1-MechSOUL codes
have been published at http://code.sonography.ai.

II. METHODS

Our goal is to estimate the displacement field between
two RF frames [1(i,j) and Iz(i,5), 1 < i < m, 1 <
j < n, collected before and after tissue deformation and
spatially differentiate its components to obtain the axial and
lateral strain fields. Dynamic Programming (DP) [46] provides
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Fig. 1: Comparison among different strain imaging algorithms.
(a) depicts the methodical differences among elastography
techniques. (b) demonstrates the lateral strain imaging per-
formance of four different tracking algorithms.

a € R™™ and [ € R"™*", the initial guesses for the axial
and lateral displacement fields. The vital step of estimating
Aa € R™*™ and Al € R™*", the refinement displacement
fields, is performed by a continuous optimization technique.
This section first describes SOUL [44]] and L1-SOUL [45],
two such recently-published techniques, and then MechSOUL
and L1-MechSOUL, the proposed algorithms.

A. Second-Order Ultrasound eLastography (SOUL)

SOUL optimizes Cjo, a non-linear cost function comprised
of L2-norm data constancy as well as L2-norm first- and
second-order continuity terms.

Clg(AaLh ...7Aam’n7All,1, ...,Alm’n) =

D1 (3, 4, ai 5, L j, Aag j, Al ;)15 + VI|0yar]3+

o]|0ya — €all3 + azl|dza — eall3 + Bil|0yl — all3+
Bal|021 — a3 + wan |02all3 + was||0Fall3 + wp 0715+

wPe || 03113 0

where D; denotes the data constancy term:

Dy (i, j,aij,lij, Nag j, Al j) =

o : . 2
116, 5) = Ia(i + @iy + Daij, g+ lij + Al )P
The non-linearity present in the data function is removed

by approximating I5 by its first-order Taylor series expansion:
IQ(Z""GZ"J' +A6Li7j,j+li7j —‘r—AlZJ) ~ (3)
L(i+aig,j+ i) + Ay Ly + Al Ty,

v, a1, a2, B1, B2, and w are tunable parameters. €, and
€1 contain the axial and lateral bias parameters that prevent
displacement underestimation [9]], [44], [45]]. Oyas stands for
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the axial derivatives of the RF lines’ first samples. Considering
that the imaginary sample prior to an RF line’s first sample is
zero, (Oyayr)1,; is defined as:

(Oyar)1,j = ar,; + Aay; 4)

(0ya)ij, (0za)i . (Oyl)ij, and (04l); ; denote the first-
order axial and lateral displacement derivatives, whereas
(82a); 5, (02a)i ;. (0f1);;, and (021);; refer to the second-
order displacement derivatives.

B. SOUL using L1-norm Regularization (L1-SOUL)

Unlike SOUL, L1-SOUL minimizes a penalty function Cj;
consisting of L2-norm data and L1-norm continuity terms:

Cll(Aal’l, ceey Aam’n, All,l, ceey Almyn) =
D13, 4y iy i gy Dai g, Al )15+ vsl|0yar 1+

wyais||0ya — €all1 + wrazgs||0za — €alls +wypBis| 0yl — all1+

wf/BQSHaxl —all + wsals”é);aHl + w5a25||83a\|1+
wsﬂlsHangl + w Bas| 0211

®)
where s, o, Q2s, Bis, B2s, Wy, and w, are tunable param-
eters. To facilitate analytic optimization, L1-SOUL replaces
the L1-norm with the total variation distance (TVD) approx-
imating the absolute value function with its smooth version.
Therefore, L1-norm is defined as:

=D /O + 02 (6)

j=1i=1

where 7 is a sharpness controlling parameter. As detailed in
[45], L1-SOUL iteratively optimizes Eq. [] to obtain a sharp
displacement map.

C. Mechanically-constrained SOUL (MechSOUL)

SOUL and L1-SOUL are not suitable for generating high-
quality lateral strain maps. MechSOUL resolves this limitation
by adding a mechanically-inspired constraint to SOUL’s cost
function. This newly-added constraint takes the EPR into
account to impose the mechanical relation between the axial
and lateral components (s, = Oya and sy, = 0,l) of the
strain tensor. Note that optimizing a regularized cost function
penalizing s, + Vs, is different from estimating s, first and
then multiplying it by —v to find s,,, where v is the EPR.
Because in our work, s;, + /sy, is just a soft constraint in a
cost function that contains data fidelity and spatial continuity
terms as well. Therefore, the estimated lateral strain has the
freedom to deviate from the axial strain’s multiple depending
on the RF data under investigation. A comprehensive analysis
of this feature is presented in the Discussion Section. In
addition, since EPR is expected to be spatially varying in
real tissue, MechSOUL (and L1-MechSOUL) establishes an
iterative scheme to employ a distinct EPR for each RF sample.
The MechSOUL cost function is given by:

ClQW(Aal,la ey Aa?ﬂ,na All,l; cey Alm;ﬂ) =

CZQ(Aal,lv (X2} Aa“m,’n» All,h SES) Alm,n)+

n o m (7N

DO asl(@ul)ig + i (9ya)i ]
j=11i=1

where «3 is the mechanical constancy weight, whereas v; ;

stands for the EPR for sample (i,7). We minimize Cjs,, by

. 9C12m. i j 9C12m.ij :
setting 2=~ = 0 and —5x7~** = 0 and obtain:
1,3 1,7

(H+Djo+Dojp+M;2)Adyp = Hypi—(Dia+Dojo+Mio)d+bgo

®)
where d € R?""<1 and Ad;, € R?™"*1 respectively, stack
the initial and the fine-tuning displacements. D;s and Dago,
respectively, are sparse matrices of size 2mn X 2mn containing
functions of first- and second-order regularization parameters.
H ¢ R?mnx2mn and H; € R?™mX2mn regpectively, are
symmetric tridiagonal and diagonal matrices comprising of
data derivatives and their functions. u € R?™"*1 contains the
data residuals. M;y € R2™™X2™% contains the functions of
the EPR and the mechanical constancy weight. by € R?7m7*1
denotes the adaptive regularization vector.

D. Mechanically-constrained L1-SOUL (L1-MechSOUL)

L1-MechSOUL is developed as the L1 version of Mech-
SOUL. L1-MechSOUL modifies the cost function of L1-
SOUL by adding the L1-norm of the aforementioned mechan-
ical constraint. As described in Eq. [6] the L1-norm is defined
in terms of a differentiable approximation of the absolute value
function. The L1-MechSOUL penalty function is given by:

Cllm(Aal’l’ ot Aamﬂh All,l, ceey Alm,n) =
Cll(Aale ceey Aam,n7 AlLl, ceny Alm,n)+

N ©)
Z Z O3 \/[(a””l)ivj +v3,5(0ya)i ;1% + 02,

j=1i=1
where ass and 7, are mechanical and sharpness parameters,

respectively. Optimizing Cjy,, in the same fashion as [45]]
leads to:

(H+Dp+Dopi +Mpn)Adyy = Hipi— (D +Dapn +Min )d+bs1

(10)
where Ad;; € R?™"%! stacks the refinement displacements.
Dy and Doy, respectively, are sparse matrices of size 2mmn x
2mn containing functions of first- and second-order continuity
weights. M;; € R?™nx2mn congists of the functions of the
EPR and the mechanical parameter. b,; € R?™"*! denotes
the adaptive regularization vector.

Both MechSOUL and L1-MechSOUL initialize the EPRs
with the organ- or material-specific nominal value of the PR
(e.g., 0.3 for liver). The subsequent iterations update each
sample’s EPR using v; j = —(Sz2,i,j)/(Syy,i,j)» Where sg,
and s, are lateral and axial strains calculated in the previous
iteration.

The estimated fine-tuning displacement fields are added to
the DP initial guesses to obtain the final displacements, which
are spatially differentiated using a least-square technique to



TABLE I: RMSE for the hard-inclusion simulated phantom.
The best values are highlighted in bold.

Axial Lateral EPR

NCC 32x107% 259x1072 137
NCC + PDE 1.7x1073  94x1073 0.52
SOUL 861x107* 74x1073% 039
L1-SOUL 736 x 107* 129 x 1072 0.68
MechSOUL 741 x107* 1.1x10"3% 0.05
L1-MechSOUL 7.35x10™% 1.1x1073 0.06

estimate the axial and lateral strain fields. Fig. |1| illustrates
methodical differences among SOUL, L1-SOUL, MechSOUL,
and L1-MechSOUL.

TABLE II: PSNR (dB) for the hard-inclusion simulated phan-
tom.

Axial Lateral EPR

NCC 4994 3173 -2.74
NCC + PDE  55.18 40.51 5.73
SOUL 61.30 42.62 8.08
L1-SOUL 62.66 37.82 3.33

MechSOUL 62.60 59.29 25.23

L1-MechSOUL  62.67 59.39 25.07

E. Ultrasound Simulation and Data Acquisition

1) Hard-inclusion Simulated Phantom: A homogeneous
tissue phantom containing a stiff cylindrical inclusion was
simulated, setting the background and inclusion elastic moduli
to 20 kPa and 40 kPa, respectively. Both the background and
target PRs were set to 0.49. The aforementioned phantom was
compressed by 2% using the finite-element (FEM) package
ABAQUS (Providence, RI), and the pre- and post-deformed
RF frames were simulated with Field II [47]]. The center
and sampling frequencies were set to 5 MHz and 50 MHz,
respectively.

2) Multi-inclusion Simulated Phantom: A tissue phantom
containing three hard inclusions with different elasticities was
simulated. While both the background and inclusion PRs were
set to 0.49, Young’s moduli corresponding to the background
and the three inclusions were fixed at 20 kPa, 40 kPa, 60 kPa,
and 80 kPa. Non-uniaxial displacement profiles were created
using ABAQUS in two ways: 1) imposing an additional
condition that set the lateral displacement of the phantom’s left
boundary to zero 2) deforming the phantom asymmetrically

TABLE III: RMSE for the multi-inclusion simulated phantom
with an additional lateral boundary condition.

Axial Lateral EPR

NCC 3.6 x 1073 48 x 1072 241
NCC + PDE 2.4 %1073 1.7x 1072 093
SOUL 2.2x 1073 1.2x 1072 0.6l
L1-SOUL 1.9%x107% 14x107%2 0.77
MechSOUL 2x 1073 1.8 x 1072  0.09
L1-MechSOUL 1.9 x 1073 1.7x1072 0.09

TABLE IV: PSNR (dB) for the multi-inclusion simulated
phantom with an additional lateral boundary condition.

Axial Lateral EPR

NCC 48.95 2641  -7.65
NCC + PDE 5247 3544 0.64
SOUL 53.08 38.59 4.23
L1-SOUL 54.59 36.86 2.27
MechSOUL 53.81 54.78  20.88
L1-MechSOUL 54.59 55.15 20.87

TABLE V: RMSE for the different PR simulated phantom.

Axial Lateral EPR

NCC 2.1x 1073 1.3x 1072  0.65
NCC + PDE 6.93x107* 36x10"3 0.18
SOUL 583 x107*  5.7x1073% 0.30
L1-SOUL 572x107%  1.16 x 1072 0.58
MechSOUL 842x107* 1.7x1073 0.09
L1-MechSOUL  5.17 x10~%* 1.5x10°2 0.08

using a surface traction load containing both axial and lateral
components. The pre- and post-compressed RF frames were
simulated with Field II [47]] setting the center frequency
and the temporal sampling rate to 7.27 MHz and 40 MHz,
respectively.

3) Simulated Phantom with Different PRs: A phantom with
the same background and target elasticity moduli (20 kPa)
but different Poisson’s ratios (0.45 for background and 0.25
for target) was simulated and compressed using ABAQUS.
The RF frames were simulated with Field II using the same
imaging setting as the multi-inclusion phantom.

4) Real Breast Phantom: The experimental phantom data
were collected at Concordia University’s PERFORM Centre.
A hand-held L3-12H linear array probe was used to com-
press a Zerdine-made CIRS breast phantom (Model 059).
The Young’s modulus of the soft tissue-like material was
20 £ 5 kPa, whereas the inclusion was at least twice as
hard as the background. An Alpinion E-cube R12 research
ultrasound system was employed to acquire RF data from the
phantom while it was deformed. The transmit frequency and
the temporal sampling rate, respectively, were fixed at 10 MHz
and 40 MHz.

5) In vivo Liver Cancer Datasets: The in vivo experiments
were conducted at the Johns Hopkins Hospital (Baltimore,
MD), where three cancer patients’ livers undergoing open-
surgical RF thermal ablation were compressed using a hand-
held VF 10-5 linear array probe. While the livers were
deformed, time-series RF data were collected with an Antares
Siemens research ultrasound machine setting the center and
sampling frequencies to 6.67 MHz and 40 MHz, respectively.
The Institutional Review Board approved this study, and writ-
ten consent was obtained from all patients. Interested readers
can find more details of this experiment in [48].

FE. Parameter Selection

The two proposed techniques’ performances were compared
with those of NCC, NCC refined by partial differential equa-
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Fig. 2: Results for the hard-inclusion simulated phantom. Rows 1 and 2 show the axial and lateral strains, respectively, whereas,
row 3 shows the EPR maps. Columns 1 to 7 correspond to ground truth, NCC, NCC + PDE, SOUL, L1-SOUL, MechSOUL,

and L1-MechSOUL, respectively.

TABLE VI: PSNR (dB) for the different PR simulated phan-
tom.

Axial Lateral EPR

NCC 53.50 37.74 3.79
NCC + PDE 63.19 48.83 15.15
SOUL 64.68 4488 10.52
L1-SOUL 64.85 38.71 4.79
MechSOUL 6149 5559 2132
L1-MechSOUL 65.73 56.53 22.09

tion (PDE)-based technique (NCC + PDE) [49], SOUL, and
L1-SOUL. It is worth mentioning that we implemented both
NCC and NCC + PDE in this work for comparison pur-
poses. As predecessors of MechSOUL and L1-MechSOUL,
both SOUL and L1-SOUL have been used as comparison
benchmarks to assess the impacts of the proposed techniques.

The RF frames were upsampled by a factor of 3 using the
MATLAB function imresize for the implementation of NCC.
The optimal window length and overlap, respectively, were
determined as 15A(= 3 x 5\) and 86% by manually tuning
NCC’s performance on a validation set of input frames. The
optimal parameter values obtained from the validation frames
were used for generating the results for the test frame sets,
which are reported in this paper. The estimated axial and
lateral displacement fields were resized back to the RF frames’
original size with a scaling factor of % for the displacement
estimates. As suggested in [49], the ratio of the lateral and
axial fidelity weights was set to 100 for the PDE-based
refinement technique.

The tunable parameters of SOUL, L1-SOUL, MechSOUL,
and L1-MechSOUL were optimized for simulated, phantom,
and in vivo datasets using validation sets of RF frames accord-
ing to a cross-validation strategy to avoid any bias and data
leakage. The axial and lateral strain images for a large range of
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Fig. 3: Results for the multi-inclusion simulated phantom with an additional lateral boundary condition. Rows 1 and 2 depict
the axial and lateral strains, respectively, whereas, row 3 presents the EPR maps. Columns 1 to 7, respectively, correspond to
ground truth, NCC, NCC + PDE, SOUL, L1-SOUL, MechSOUL, and L1-MechSOUL.

TABLE VII: SNR and CNR values for the hard-inclusion simulated phantom dataset. The best values are highlighted in bold.

SNR CNR

Axial Lateral EPR Axial Lateral EPR
NCC 7.61 + 2.28 0.27 + 0.31 0.28 + 0.31 404 + 1.14 0.34 + 026 0.39 + 0.29
NCC + PDE 18.04 £ 4.75 1.15 £ 1.11 1.20 + 1.17 10.07 £ 2.14 1.07 +£ 0.88 0.91 + 0.92
SOUL 45.32 + 9.68 2.15 + 1.56 2.16 + 1.57 2228 £3.61 127 +£0.76 0.57 + 0.69
L1-SOUL 61.42 £+ 22.90 1.14 £ 1.04 1.14 £ 1.03 2638 +£3.99 0.73 £ 0.66 0.76 + 0.60
MechSOUL 51.40 4+ 12.78 39.84 + 1241 44.88 + 13.62 26.20 £ 4.67 13.01 + 4.33 3.48 + 2.48
L1-MechSOUL  60.59 4+ 21.20 37.72 + 13.73 43.16 + 1991 2713 £ 4.10 12.67 £4.09 327 £ 2.40

possible parameter values were generated. The best parameter
set was chosen by visually assessing the strain images’ con-
trast, background smoothness, and boundary sharpness. This
optimal parameter set was used to produce the results for test
images, which are reported in this work. The optimal values
for {aq, a2, B1, B2, w, v} and {aqs, aos, Bis, Bos, Wy, W, Vs }
have been shown in Tables I and II of the Supplementary
Video. For simulated, phantom, and in vivo datasets, respec-
tively, the sharpness controlling parameter n was set to 0.001,
0.0006, and 0.008 for the first-order terms and 0.0005, 0.0001,
and 0.0013 for the second-order terms. The mechanical con-
stancy weights {ag, s} were set to {20,0.045}, {80,0.072},
and {5,0.1} for simulated, phantom, and in vivo datasets. 7,
was fixed at 0.001, 0.0006, and 0.008, respectively, for the
simulated, phantom, and in vivo datasets.

G. Quantitative Metrics

The ground truth being available, the simulation results have
been assessed using root-mean-square error (RMSE) and the
peak signal-to-noise ratio (PSNR). RMSE is defined as:

MS

>

j=11

(Gi,j — 4i5)*

—

RMSE =

(an

mn

where ¢; ; and ¢;; denote the estimated and ground truth
values (either strain or EPR) at (7, j). For both simulated and
real datasets, elastographic signal-to-noise ratio (SNR) and
contrast-to-noise ratio (CNR) have also been reported. SNR
and CNR are given by:

SNR = 2%
Op

c
R:—:
CN N

2(8, — §)?

_ 12
op2 + 042 (12)

where s, and $; refer to the mean and o, and o; denote the



depth (mm)
W oN N

10

15

E 20

E

(7

S 30
35

40

10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30 10 20 30
width (mm) width (mm) width (mm) width (mm) width (mm) width (mm) width (mm)
(a) Ground truth (b) NCC (c) NCC + PDE (d) SOUL (e) L1-SOUL (f) MechSOUL  (g) L1-MechSOUL

10 20 30
width (mm)

(h) Ground truth

width (mm)

(i) NCC

width (mm)

(j) NCC + PDE

10

width (mm)

(0) Ground truth

width (mm)

(p) NCC

width (mm)

(q) NCC + PDE

0 0005 001 0015 002 0025 003 0035 0.008 0.009 001 0011 0.012 0013 0014 0015

(v) Axial strain (w) Color bar for (i) and (j)

width (mm)

(k) SOUL

width (mm)

(r) SOUL

width (mm)

(1) L1-SOUL

width (mm) width (mm)

(m) MechSOUL (n) L1-MechSOUL

width (mm)

(s) L1-SOUL

width (mm)

(t) MechSOUL

width (mm)

(u) L1-MechSOUL

(x) Color bar for (k), (1), (m),
()

(y) EPR

Fig. 4: Results for the simulated phantom with different target and background PRs. Rows 1-3 show the axial and lateral
strains and the EPR maps, respectively. Columns 1-7 correspond to FEM, NCC, NCC+PDE, SOUL, L1-SOUL, MechSOUL,

and L1-MechSOUL, respectively.

TABLE VIII: SNR and CNR values for the experimental phantom dataset. Physically impossible values are highlighted in red.

SNR CNR

Axial Lateral EPR Axial Lateral EPR
NCC 499 + 3.51 0.13 + 0.31 0.14 + 0.28 2.02 +£1.32 023 £0.17 0.03 £ 0.01
NCC + PDE 1454 + 7.11 1.77 £ 1.37 1.91 + 1.55 939 +£ 580 149 +1.10 0.86 4+ 0.80
SOUL 1494 £ 578 -0.44 +2.87 -0.30 £ 2.51 11.33 £ 474 239 £234 225+ 1.59
L1-SOUL 1548 +£5.19 -0.23 £2.03 -0.24 £+ 2.00 1325 £ 4.63 1.07 £1.35 0.71 £ 0.81
MechSOUL 15.96 & 533 14.66 £ 7.65 22.00 & 9.01 11.70 = 4.69 7.16 = 6.85 5.98 £ 2.90
L1-MechSOUL 17.69 4+ 5.80 16.72 £ 7.99 31.09 + 14.92 14.14 + 5.02 893 + 6.20 6.28 + 2.82

standard deviations of the background and target windows, re-
spectively. Other metrics used in the beamforming community
can also be used for quantitative comparisons [50]-[52].

III. RESULTS

Calculating the SNR on a single background window and
the CNR between a target-background window pair is a
common practice in quasi-static ultrasound elastography pa-
pers. Nevertheless, elastographic SNR and CNR are highly
sensitive to window selection; therefore, single values often
fail to quantify the differences among different techniques’

performance properly. To tackle this issue, we sweep two 3
mm X 3 mm spatial windows over the background and the
target and calculate 50 SNR (50 background windows) and 150
CNR (3 target and 50 background windows) values. Finally,
we summarize the quantitative performance by showing the
box plots, mean, and standard deviations of the aforementioned
SNR and CNR values.

Substantial improvements in lateral strain and EPR are the
main strengths of the proposed algorithms. Therefore, the axial
strain images, which are less attractive in this work, are shown
in the Supplemental Video for most of the datasets.
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TABLE IX: SNR and CNR values for the first liver cancer dataset.

SNR CNR

Axial Lateral EPR Axial Lateral EPR
NCC 3.50 &+ 1.57 0.46 + 0.38 0.33 + 0.34 2.62 + 145 0.32 + 0.27 0.30 + 0.31
NCC + PDE 11.16 £ 6.06 2.22 + 1.58 2.48 + 1.96 8.56 4+ 4.98 1.11 & 0.74 1.84 + 1.01
SOUL 2290 £+ 9.22 5.15 + 3.74 498 + 3.80 16.53 £ 6.04 2.64 + 1.59 3.39 + 1.94
L1-SOUL 33.14 + 13.13 6.35 + 2.66 6.43 + 293 22.36 + 7.08 3.69 + 2.15 1.83 + 1.31
MechSOUL 21.27 £ 8.02 18.01 £9.11  21.16 + 11.00 16.35 £ 6.16 823 £295 15.20 + 493
L1-MechSOUL  31.85 £+ 13.11 36.01 4+ 17.21  30.38 &+ 7.72 20.71 & 6.50 12.01 £ 3.60 16.65 + 4.78

A. Hard-inclusion Simulated Phantom Dataset

Fig. [2] describes that all six techniques successfully dis-
tinguish the hard inclusion from the uniform background.
NCC produces the noisiest axial strain image. The PDE-
based refinement technique substantially improves the output
of NCC. L1-SOUL and L1-MechSOUL obtain sharper axial
strain images than the other four techniques. NCC, SOUL,
and L1-SOUL fail to produce acceptable lateral strain images.
However, NCC + PDE turns the lateral estimate of NCC
into an acceptable one. The proposed techniques MechSOUL
and L1-MechSOUL generate high-quality lateral strain maps.
Although both MechSOUL and L1-MechSOUL show good
target-background contrast, L1-MechSOUL exploits the power
of L1-norm regularization to obtain a sharper lateral strain
image. The RMSE and PSNR values reported in Tables [I] and
[ indicate substantially higher resemblance of the proposed
techniques to the ground truth than NCC, NCC + PDE,
SOUL, and L1-SOUL. In addition, the SNR and CNR box
plots (Figs. [ and P) and the associated mean and standard
deviation values (Table [VII) demonstrate that MechSOUL and

L1-MechSOUL substantially outperform the other algorithms
in terms of lateral strain estimates.

The EPR maps depicted in Fig. 2] reveal that NCC, NCC
+ PDE, SOUL, and L1-SOUL estimate many EPR samples
that are beyond the physically possible range (also see Fig. 2
of the Supplemental Video). MechSOUL and L1-MechSOUL
resolve this issue by estimating EPR maps similar to the
ground truth. The EPR RMSE (Table [), PSNR (Table [I),
SNR, and CNR (see Fig. 6 of the Supplementary Video and
Table [VII) substantiate our qualitative assessment.

B. Multi-inclusion Simulated Phantom

The strain and EPR maps for the multi-inclusion simulated
phantom data with an additional lateral boundary condition
and surface traction-type loading are reported in Fig. B]and Fig.
3 of the Supplementary Video, respectively. All six techniques
detect the axial strain contrast between the background and the
inclusions. PDE-based technique refines NCC’s axial estimate
to reduce the noise. Due to the TV regularization, L1-SOUL
and L1-MechSOUL obtain sharper axial strain images than
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Fig. 6: Lateral strain results for the liver datasets. Rows 1, 2, and 3 show the lateral strain estimates for patients 1, 2, and
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for SOUL, L1-SOUL, MechSOUL, and L1-MechSOUL.

TABLE X: SNR and CNR values for the second liver cancer dataset.

SNR CNR

Axial Lateral EPR Axial Lateral EPR
NCC 577 £ 1.58 0.75 £ 0.29 0.73 £ 0.28 283 +£123 0.67 £039 046 £ 0.27
NCC + PDE 14.20 £+ 6.49 225 £ 0.72 241 £ 0.78 568 296 195+ 0.89 1.34 +0.73
SOUL 35.18 £+ 21.45 3.02 + 4.25 3.38 +4.92 11.36 + 3.60 3.30 + 2.75 2.69 + 2.36
L1-SOUL 57.63 + 69.73 7.70 + 9.39 6.92 + 10.23 1092 £ 451 4.62 £289 299 + 1.66
MechSOUL 31.80 +£ 21.87 21.63 4+ 13.24 29.36 + 15.84 10.55 £ 476 620 +£3.44 401 £ 1.52
L1-MechSOUL  49.59 £ 56.93 38.59 &+ 37.35 97.66 + 74.50 10.29 =454 7.28 +£3.37 4.86 £+ 1.83

TABLE XI: SNR and CNR values for the third liver cancer dataset. Impractical values are highlighted in red.

SNR CNR

Axial Lateral EPR Axial Lateral EPR
NCC 2.59 + 1.13 0.19 £+ 0.35 0.12 + 0.32 099 + 0.69 0.22 +0.15 0.03 + 0.03
NCC + PDE 5.93 + 3.09 0.48 + 0.77 0.45 + 0.81 217 +£1.69 0.79 +£ 043 0.56 + 0.33
SOUL 40.22 + 26.19  -2.20 + 6.99 -1.70 £ 6.57 2354+ 166 229+ 197 227 +£191
L1-SOUL 77.68 + 58.70 541 £+ 5.89 549 £+ 6.13 14.63 + 433 1.23 £0.58 1.50 £ 0.40
MechSOUL 66.31 = 51.25 36.96 4+ 23.85 57.23 £+ 60.37 954 + 387 623 +122 4.14 +0.63
L1-MechSOUL  76.94 + 56.67 62.54 + 61.59 123.32 4+ 136.16 13.82 +3.73 8.82 + 1.24 5.18 + 0.65

SOUL and MechSOUL. NCC, NCC + PDE, SOUL, and
L1-SOUL fail to render satisfactory lateral strain and EPR
maps. MechSOUL and L1-MechSOUL produce high-quality
lateral strain maps showing proper contrast among the four
(background and three inclusions) elastic regions in both
loading conditions. The EPR maps generated by MechSOUL
and L1-MechSOUL also correspond well with the ground
truths. Tables [[T]] and [V] and Tables III and IV of the Supple-
mentary Video validate this statement quantitatively. Given the
difficulty level of the datasets, this experiment highlights the
potential of MechSOUL and L1-MechSOUL in simultaneous

imaging of axial and lateral strains and the EPR.

C. Simulated Phantom with Different PRs

Fig. ] demonstrates that all competing techniques generate
good-quality uniform axial strain images. However, NCC,
SOUL, and L1-SOUL fail to visualize the inclusion in the
lateral strain images and the EPR maps. NCC + PDE refines
NCC estimates to generate good lateral strain and EPR maps.
MechSOUL and L1-MechSOUL lateral strains do not follow
the uniform axial strains blindly and properly delineate the
inclusions. Although MechSOUL and L1-MechSOUL EPR
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maps do not replicate the ground truth fully, they are sub-
stantially better than the comparison techniques. The RMSE
and PSNR values reported in Tables [V] and [V]] substantiate our
Statements.

D. Real Breast Phantom Dataset

The axial and lateral strain and the EPR results for the
experimental breast phantom are shown in Fig. 4 of the
Supplemental Video and Fig. [5] of the current document,
respectively. All six axial strain images detect the hard in-
clusion. However, NCC’s axial estimate lacks smoothness in
the background. NCC + PDE resolves this issue at the cost
of visual contrast between the inclusion and the uniform
background. The axial strain images obtained by SOUL and
L1-SOUL are superior to those by NCC-based techniques.
MechSOUL and L1-MechSOUL axial strain estimates, respec-
tively, marginally outperform the ones generated by SOUL
and L1-SOUL. The total variation (TV) regularization-based
techniques L1-SOUL and L1-MechSOUL render sharper axial
strain images than the other algorithms. NCC, SOUL, and L1-
SOUL produce noisy lateral strain images with unacceptable
target-background contrast. In addition, large spatial regions
exhibit lateral strains that are out of physical range when
compared to axial strains. PDE refines NCC’s lateral result
to reduce the noise and visualize the inclusion. MechSOUL
and L1-MechSOUL successfully estimate high-contrast lateral

strain maps with smooth backgrounds and substantially out-
perform the other four techniques. Note that the lateral strain
image provided by L1-MechSOUL is visually sharper than the
one obtained by MechSOUL. The quantitative metric values
reported in Figs. [§]and [9]and Table [VIII] corroborate our visual
judgement.

Fig. 5] Table [VIII and Fig. 6 of the Supplementary Video
demonstrate that NCC, SOUL, and L1-SOUL fail to produce
viable EPR distribution. Although NCC + PDE performs
better than NCC, it still contains a noticeable amount of
EPR samples which are practically impossible. MechSOUL
and L1-MechSOUL successfully restrict the EPR values to
the physically possible range and exhibit higher EPR values
around the inclusion than the uniform regions.

E. In vivo Liver Cancer Datasets

Fig. 5 of the Supplemental Video and Fig. [6] of the current
document, respectively, depict the axial and lateral strain re-
sults for the liver cancer datasets collected before the ablation.
The B-mode image for patient 1 reveals the tumor by showing
a lower echo amplitude than the healthy tissue. However,
the target-background echogenic contrasts for the other two
patients’ B-mode images are negligible.

The axial strain images clearly distinguish the tumor and
healthy tissue for all three patient cases. Similar to the in
silico and phantom cases, NCC obtains the noisiest axial strain
images. The PDE-based refining step resolves this issue of
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Fig. 9: Box plots for 150 CNR values. Rows 1 and 2 correspond to axial and lateral, respectively, whereas columns 1 to 5

correspond to hard-inclusion simulated phantom, real phantom,

NCC and highlights the important details of the strain images.
SOUL and MechSOUL outperform NCC + PDE in terms of
background smoothness and the clarity of strain estimation
in the shallow tissue region. The TV-regularization feature
of L1-SOUL and L1-MechSOUL enables them to estimate
substantially sharper axial strain than SOUL and MechSOUL
for patients 1 and 2. In the case of the third liver patient, L1-
SOUL and L1-MechSOUL obtain brighter axial strain images
than the other techniques. In general, it is visually evident that
the axial strain imaging performance of MechSOUL and L1-
MechSOUL, respectively, are similar to those of SOUL and
L1-SOUL. The box plots reported in Figs. [8] and [0 and the
mean and standard deviation values (Tables [[X] [X] and [XI)
substantiate this observation.

and liver patients 1, 2, and 3, respectively.

NCC fails to produce acceptable lateral strain images in
patients 1 and 3. However, it shows slight target-background
contrast for patient 2. NCC + PDE notably improves the lateral
estimates of NCC in all three patient cases. The lateral strain
images for patients 1 and 2 obtained by SOUL and L1-SOUL
show minimal contrast between the healthy and pathologic
tissues. In addition, the estimated strains are markedly out of
the feasible bound. Furthermore, they are highly corrupted by
estimation noise. In the case of patient 3, both SOUL and
L1-SOUL fail to generate appreciable lateral strain images.
For all three patients, MechSOUL and L1-MechSOUL obtain
high-contrast lateral strain maps and substantially outperform
the other four algorithms. MechSOUL exhibits a horizontal
striking artifact in patient 2’s lateral strain images, which



is removed by L1-MechSOUL. In addition, L1-MechSOUL
yields sharper lateral strain estimates than MechSOUL in all
patient cases. The SNR and CNR box plots (Figs. [§] and [9)
and their mean and standard deviation values (Tables [[X] [X]
and align with our visual perception.

Fig. |Z] demonstrates that NCC, SOUL, and L1-SOUL
estimate physically impossible EPR maps. The PDE-based
method substantially improves NCC estimates. The proposed
techniques estimate smooth EPR maps with the individual
EPR values confined to the practical range (also see Fig. 6
of the Supplementary Video and Tables [XHXI). MechSOUL
and L1-MechSOUL yield higher tumor EPR for the first two
patients and lower tumor EPR for the third patient. This
opposing behavior of tumor EPRs might be related to the
complicated deformation physics in patient 3 stemming from
multiple blood vessels in the vicinity of the tumor.
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Fig. 10: Results for the first liver dataset after ablation.
Rows 1 and 2 correspond to MechSOUL and L1-MechSOUL,
respectively, whereas columns 1 to 4 correspond to B-mode,

axial strain, lateral strain, and EPR, respectively.

IV. DISCUSSION

The poor lateral displacement or strain estimation capability
stemming from low data resolution in this direction is a
well-known drawback of the existing ultrasound elastogra-
phy techniques. Due to the imaging mechanism, ultrasound
loses important information associated with the dimension
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Fig. 11: Individually tuned lateral strain results for the liver
patient 3. (a) and (b) correspond to MechSOUL and L1-
MechSOUL, respectively.

perpendicular to the primary wave propagation. The existing
strain imaging frameworks cannot make up for the lost lateral
information and, therefore, end up providing lateral estimates

& substantially inferior to the axial ones. The techniques pro-
| posed herein incorporate the tissue deformation mechanics to

couple the lateral strain to the axial one and compensate for
the information lost by the imaging modality. As demonstrated
in the validation examples, this coupled approach dramatically
improves lateral strain imaging performance.

MechSOUL and L1-MechSOUL impose an EPR-driven
relation between the axial and lateral strains along with data
fidelity and spatial smoothness constraints. Employing the
aforementioned mechanical constraint is not analogous to
calculating the lateral strain as a multiple of the independently
estimated axial strain, which is prone to mirroring the accurate
axial estimates to the less accurate lateral estimates. Instead,
MechSOUL and L1-MechSOUL allow the lateral strains to
deviate from the axial ones (see Fig. ) depending on the
underlying properties of tissue. Because the proposed tech-
niques solve a unified optimization problem to investigate
the mechanical and continuity constraints and the RF data
simultaneously. In addition, this work iteratively updates each
RF sample’s EPR value.

The proposed techniques introduce new tunable parameters
associated with the mechanical constancy terms. This mechan-
ical parameter partly determines how strongly the estimated
lateral strain follows the axial strain. On the one hand, a
very high mechanical constancy weight might suppress the
effect of data fidelity and force the lateral strain to follow the
axial one blindly. On the other hand, a tiny parameter value
restricts the impact of mechanical constraint, demolishing the
sole purpose of this study. Since the mechanical parameters are
not correlated with the continuity ones, MechSOUL and L1-
MechSOUL use the same continuity weights as SOUL and
L1-SOUL, respectively, and tune only the newly-introduced
parameters on validation images. In our experience, the opti-
mality of mechanical constancy weight is unrelated to the RF
signal’s SNR. While controlled by the material property and
the deformation profile, a moderate value of the mechanical
constancy parameter leads to a good estimation of the dis-



placement fields. It is worth noting that tuning the mechanical
parameters are not cumbersome since the proposed algorithms
are not sensitive to reasonable alterations in their values, which
is demonstrated in Fig. 7 of the Supplemental Video.

The proposed techniques’ parameters were tuned on val-
idation images different from the final test ones. Although
parameter values are optimized for simulated, phantom, and
in vivo datasets, a single parameter set is used for all datasets
of the same kind (i.e., same parameter set for all liver datasets).
Scatterer size and distribution, attenuation coefficient, imaging
settings, noise statistics, and the deformation field’s temporal
behavior are the main deciding factors for the optimal set of
continuity and mechanical weights. Since these properties are
different for different types of data used in this study, the
optimal parameter values also vary from each other. Note that
the simulated datasets employed in this work differ from the
real phantom one in terms of both quantitative properties and
imaging parameters, which leads to different sets of weights
for simulated and real phantoms. Therefore, the parameters
can be saved as presets in commercial ultrasound machines
for imaging different organs such as thyroid, breast, efc. The
proposed techniques exhibit good performance for all three
simulation experiments (Figs. 2}{4) using the same parameter
values. A single parameter set leads to high-quality estimations
in all in vivo cases (Figs. [f|and[7]and Fig. 5 of the Supplemen-
tary Video) as well. To further justify our argument, we have
conducted sensitivity analyses using two datasets: 1) the first
liver patient (before ablation) but with different input frames
than Fig. [6] 2) the first liver patient after ablation. Note that
the second dataset is an entirely new one collected from the
first liver patient after a significant clinical procedure that alters
the noise statistics. In addition, this dataset was not considered
for tuning the parameters. Fig. 8 of the Supplementary Video
and Fig. |10 demonstrate that MechSOUL and L1-MechSOUL
perform well in both cases for the same parameter sets by
properly delineating the tumor (before ablation) or coagulated
tissue (after ablation).

Figs. [8] and [9] provide the opportunity to conduct a statistical
test to determine if the proposed techniques are significantly
better than the existing ones. The comparison intervals of the
group means obtained from the analysis of variance (ANOVA)
followed by a multiple comparison statistical test are reported
in Figs. 9 and 10 of the Supplemental Video. The intervals
for SOUL, L1-SOUL, MechSOUL, and L1-MechSOUL are
close to each other in most axial cases. However, in the
lateral cases, MechSOUL and L1-MechSOUL comparison
intervals yield significantly higher values than the existing
techniques, reassuring the proposed algorithms’ superiority in
lateral tracking.

The L1-norm-based proposed technique L1-MechSOUL
exhibits sharper strain estimates than MechSOUL in the vali-
dation experiments presented in this study. It is worth noting
that L1-norm regularization does not force a sharp strain map
if the underlying strain map is not sharp. It can produce a sharp
estimate at the border of two organs where tissue properties
display a rapid change or a smooth change where changes in
the underlying mechanical properties are gradual. In contrast,
L2-norm regularization produces a smooth strain map even if

TABLE XII: RMSE of sPICTURE for the simulated datasets.

Lateral strain EPR

Multi-inclusion 1 4%x1073 0.2

Multi-inclusion 2 4x1073 0.22
Different PR 1.3x 1072  6.45 x 1072

TABLE XIII: PSNR (dB) of sPICTURE for the simulated
datasets.

Lateral strain EPR

Multi-inclusion 1 47.87 14.50
Multi-inclusion 2 47.96 13.23
Different PR 57.88 23.82

mechanical properties have a sharp transition.

Like L1-SOUL, L1-MechSOUL approximates the L1-norm
with TVD, establishing a balance between smoothness and
sharpness by penalizing the variation and simultaneously
allowing sharp transition. An alternating direction method
of multipliers (ADMM)-based strategy can eliminate the re-
quirement of TVD approximation by optimizing L1-norm’s
original formulation using the shrinkage function [53]], [|54]]
and utilize the full potential of L1-norm. ADMM offers this
direct optimization feature at the cost of increased complexity
and more sensitive parameter tuning. Therefore, ADMM-based
optimization of L1-MechSOUL'’s penalty function will be
explored in a future extension of this work.

The lateral strain estimation performance of the proposed
techniques is substantially better than the existing techniques
in all validation experiments conducted in this study. However,
the MechSOUL and L1-MechSOUL lateral strain images for
liver patient 3 are not as good as the other two liver patients.
This performance degradation might stem from the complicacy
of RF data acquired from patient 3. The field-of-view (FOV)
contains blood flow through the annotated vessels, which
introduces different types of noise to RF data. In addition,
being a combination of several vessels, healthy tissue, and
tumor, the FOV poses high-variance distributions of elasticity
and EPR. Furthermore, the tumor experiences a complicated
deformation physics since it is located underneath the easily-
compressible portal vein. It is worth observing that both Mech-
SOUL and L1-MechSOUL handle this challenging dataset
promisingly and yield perceptible contrast among different
tissues. As shown in Fig. slightly better performance can be
achieved when the strain imaging techniques’ parameter sets
are dedicatedly optimized for this particular dataset. However,
tuning the parameters for each dataset individually is not
possible in the clinical context and affects the algorithms’
generalizability.

SOUL and L1-SOUL exhibit poor lateral estimation per-
formance in most of the validation experiments conducted in
this work. However, they might produce acceptable lateral
strain images when a moderately high strain is applied to
the tissue in a highly controlled manner. More specifically,
we show results of an experiment where a phantom was
uniaxially compressed by approximately 5% using a linear
stage mounted on an optical table. Fig. [I2] shows the lateral
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Fig. 12: Lateral strain results for an additional phantom dataset. Columns 1 to 5 correspond to B-mode, SOUL, L1-SOUL,

MechSOUL, and L1-MechSOUL, respectively.

tracking performance of SOUL, L1-SOUL, MechSOUL, and
L1-MechSOUL for this dataset. Despite being substantially
outperformed by MechSOUL and L1-MechSOUL, SOUL and
L1-SOUL generate reasonable lateral strain images in this
experiment. We have also conducted a controlled experiment
on the hard-inclusion simulated phantom, where the ground
truth deformation field for 4% applied strain is obtained from
FEM. The pre-deformed frame is generated by warping the
Field II-simulated post-deformed RF data based on the ground
truth displacements. Fig. 11 of the Supplementary Video shows
that SOUL produces a good lateral strain image in this highly
controlled environment where the applied strain is reasonably
high. However, MechSOUL substantially outperforms SOUL
in this case as well, demonstrating its strength in lateral
tracking. These two experiments, in conjunction with the other
validation experiments carried out in this work, manifest that
SOUL produces reasonable lateral strain maps in a controlled
and moderately high-strain scenario, whereas it often fails in
realistic cases. Simultaneous exploitation of RF data and tissue
deformation physics enables MechSOUL to resolve this issue
by performing well in both controlled and realistic settings.

PDE-based refinement is one of the comparison tech-
niques used in this work. Duroy et al. also conducted
a similar study in a recent work. Both of these techniques
refine the initial axial and lateral estimates assuming tissue
incompressibility. As demonstrated in this paper, the PDE-
driven post-processing strategy improves the lateral estimation
quality. However, the incompressibility constraint assumes the
Poisson’s ratio to be 0.5, which is not true for all biological
tissues. In addition, the refinement techniques do not consider
RF data and the regularization constraints in a unified manner
and, therefore, are prone to failure of the first step. The pro-
posed techniques MechSOUL and L1-MechSOUL investigate
data, continuity, and mechanical constraints simultaneously
and update the EPR value at each sample iteratively to tackle
the aforementioned issues.

Our recently accepted deep learning framework self-
supervised Physically Inspired ConsTraint for Unsupervised
Regularized Elastography (sPICTURE) can be a good
competing technique to demonstrate MechSOUL and L1-

TABLE XIV: SNR and CNR of sPICTURE for the first liver
dataset.

Lateral strain EPR
SNR 3.88+1.88 2.74+1.86
CNR 1.68+1.43 3.444+2.08

MechSOUL’s lateral tracking potential. Fig. [I3] shows the
SPICTURE lateral strain and EPR maps for the multi-inclusion
simulated phantoms, different PR simulated phantom, and
the first liver patient. For both multi-inclusion simulated
phantoms, sPICTURE performs notably better than NCC,
NCC+PDE, SOUL, and L1-SOUL. However, both Mech-
SOUL and L1-MechSOUL substantially outperform sPIC-
TURE in terms of contrast and resemblance to the ground
truth. Note that the multi-inclusion phantoms contain non-
uniaxial force, and SPICTURE was not trained for such a case
during its development. Except for the red-marked outlier re-
gion, SPICTURE achieves similar performance as the proposed
techniques in the case of the different PR simulated phantom.
The RMSE and PSNR values reported in Tables [XII| and
[XTIT substantiate our visual assessments. SPICTURE shows a
contrast between the tumor and the healthy tissue in the case
of the first liver patient. Nevertheless, lateral strain and EPR
estimation quality are substantially lower than MechSOUL and
L1-MechSOUL (also see Table [XIV)). This comparison against
SPICTURE, a state-of-the-art deep learning-based lateral es-
timation technique, is another evidence of MechSOUL and
L1-MechSOUL’s strength in lateral strain imaging.

The spatial distribution of EPR is directly correlated with
tissue compressibility (i.e., ability to change the volume) [56],
[57]. Specific pathologies such as cancer and lymphedema
tend to alter the value of this mechanical parameter [56],
[57]. In addition, compressibility often signifies the tissue’s
sensitivity to treatments or therapies [56]. Therefore, the EPR
contrast between different regions can be used as a marker
for tissue’s pathologies or susceptibility to treatment. These
potential applications of an EPR map make MechSOUL and
L1-MechSOUL attractive for clinical translation since they
substantially improve the EPR image quality.
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Fig. 13: Lateral strain and EPR results obtained by sPICTURE.
Rows 1 to 4 correspond to multi-inclusion simulated phan-
tom (additional boundary condition), multi-inclusion simulated
phantom (surface traction), different PR simulated phantom,
and the first liver patient, respectively. Columns 1 and 2
represent lateral strain and EPR, respectively. The red arrows
indicate estimation artifacts.

Both PR and EPR range between 0 and 0.5 for uniform
soft materials. An EPR greater than 0.5 in a uniform region
for uniaxial compression refers to a negative bulk modulus,
which is impossible in thermodynamic equilibrium. Therefore,
the validation results showing EPR values greater than 0.5 in
uniform and uniaxial cases indicate possible errors in strain
estimation.

The success of the proposed algorithms is correlated with
the accuracy of the EPR update. Although MechSOUL and
L1-MechSOUL worked well in all validation experiments
conducted in this work, there might be a downfall in their per-
formance in the case of a more challenging dataset where the
EPR distribution progresses in a wrong direction. A potential
solution to this problem is incorporating an EPR-independent,
tensor geometry-driven mechanical constraint such as the
compatibility condition. A recent work has used the

compatibility equation to improve lateral strain estimation.
However, this work presents a post-processing algorithm that
highly depends on the initial axial and lateral estimation
accuracy. Since RF data and the mechanical constraint are
not investigated simultaneously, this post-processing technique
might fail in challenging scenarios like the different PR
phantom presented in this study. Simultaneous optimization
of data and compatibility constraints in a direct strain imaging
framework might resolve this issue.

V. CONCLUSION

Two novel algorithms, MechSOUL and L1-MechSOUL
have been proposed for high-accuracy lateral displacement
estimation in ultrasonic strain imaging. MechSOUL and L1-
MechSOUL, respectively, optimize L2- and L1l-norm-based
cost functions featuring mechanical as well as data similarity
and spatial continuity constraints. The main contribution of the
proposed techniques is emphasizing the EPR-inspired sample-
wise mechanical congruence between the axial and lateral
components of the strain tensor. Integrated optimization of
mechanical and data fidelities leads to dramatic improvements
of the lateral strain and EPR image quality, as demonstrated
in the in silico, phantom, and in vivo experiments conducted
in this study.
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